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In this chapter we use the ideas and the results of Chapters 1 and 3 to study in
details the asymptotic behaviour of a class of problems arising in the nonlinear theo-
ry of oscillations of distributed parameter systems. The main object is the following
second order in time equation in a separable Hilbert space H :

2
a%—zu+ya%u+z42u+M(|\A1/2u”2)Au+Lu = (1), ©.1)
du
u|t:0=u0, a 0—u1, (0.2)
L=

where A is a positive operator with discrete spectrum in 4, M (s) is a real function
(its properties are described below), L is a linear operator in H, p(t) is a given
bounded function with the values in A, and y is a nonnegative parameter. The
problem of type (0.1) and (0.2) arises in the study of nonlinear oscillations of a plate
in the supersonic flow of gas. For example, in Berger’s approach (see [1, 2]), the dy-
namics of a plate can be described by the following quasilinear partial differential
equation:

afu +y0,u+ A2y + (F —JIVuI2 dxj Au + paxlu = p(x, t), 0.3)

z e (x), ) € Qc R2, t>0
with boundary and initial conditions of the form

Ul =BU| =0, u|,_,=uy(2), 8tu|t =uy(v). (0.4)

=0
Here A is the Laplace operator in the domain Q; y >0, p >0, and I' are con-
stants; and p(x, t), uy(x), and u;(x) are given functions. Equations (0.3)-(0.4)
describe nonlinear oscillations of a plate occupying the domain € on a plane which
is located in a supersonic gas flow moving along the &, -axis. The aerodynamic pres-
sure on the plate is taken into account according to Ilyushin’s “piston” theory (see,
e. g, [3]) and is described by the term pd, u . The parameter p is determined by
the velocity of the flow. The function u(x, t) measures the plate deflection at the
point x and the moment ¢. The boundary conditions imply that the edges of the
plate are hinged. The function p(x, t) describes the transverse load on the plate.
The parameter I" is proportional to the value of compressive force acting in the
plane of the plate. The value y takes into account the environment resistance.

Our choice of problem (0.1) and (0.2) as the base example is conditioned by the
following circumstances. First, using this model we can avoid significant technical
difficulties to demonstrate the main steps of reasoning required to construct a solu-
tion and to prove the existence of a global attractor for a nonlinear evolutionary se-
cond order in time partial differential equation. Second, a study of the limit regimes
of system (0.3)—(0.4) is of practical interest. The point is that the most important
(from the point of view of applications) type of instability which can be found in the
system under consideration is the flutter, i.e. autooscillations of a plate subjected to
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aerodynamical loads. The modern look on the flutter instability of a plate is the fol-
lowing: there arises the Andronov-Hopf bifurcation leading to the appearance of
a stable limit cycle in the system. However, there are experimental and numerical
data that enable us to conjecture that an increase in flow velocity may result in the
complication of the dynamics and appearance of chaotic fluctuations [4]. Therefore,
the study of the existence and properties of the attractor of the given problem
enables us to better understand the mechanism of appearance of a nonlinear flutter.

§ 1 Spaces

As above (see Chapter 2), we use the scale of spaces 9; generated by a positive ope-
rator A with discrete spectrum acting in a separable Hilbert space H . We remind
(see Section 2.1) that the space ¥ is defined by the equation

. = D(A%) = {v: chek: Zc}% 23S < oo},
k=1 k=1

where {e k} is the orthonormal basis of the eigenelements of the operator A in H,
)“1 < kz < ... are the corresponding eigenvalues and s is a real parameter
(for s = 0 we have &% = H and for s < 0 the space ¥, should be treated as a class
of formal series). The norm in §i; is given by the equality
o oo
||7)||S2 = chkis for v = chek.
k=1 k=1

Further we use the notation L2 (O, T, 913) for the set of measurable functions

on the segment [O, T] with the values in the space 9;, such that the norm

/2

T 1
_ 2
P, 7, ) =| [ 1000 @
0

is finite. The notation L”(0, T'; X) has a similar meaning for 1 < p < oo.

We remind that a function u(¢) with the values in a separable Hilbert space H
is said to be Bochner measurable on a segment [0, T] if it is a limit of a se-
quence of functions

N
upn(t) = Z“N, K X, k(2
k=1

for almost all ¢ € [0, T'], where uy, , are elements of H and y, ,(t) are the cha-
racteristic functions of the pairwise disjoint Lebesgue measurable sets A, ;. One
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can prove (see, e.g., the book by K. Yosida [5]) that for separable Hilbert spaces un-
der consideration a function u(¢) is measurable if and only if the scalar function
(u(t), h)y is measurable for every i e H. Furthermore, a function u(t) is said
to be Bochner integrable over [0, T if

T

J [u(t) —uy (]2t > 0, N>,
0

where {uy ()} is a sequence of simple functions defined above. The integral of the
function w(t) over a measurable set S < [0, T] is defined by the equation

T
Ju(t) & = lim [ 75(1)uy(t)dr,
N —> o

S 0
where ¥ ¢(T) is the characteristic function of the set S and the integral of a simple
function in the right-hand side of the equality is defined in an obvious way.

For the function with the values in Hilbert spaces most facts of the ordinary Le-
besgue integration theory remain true.

Exercise 1.1 Let u(t) be a function on [0, T'] with the values in a sepa-
rable Hilbert space H . If there exists a sequence of measurable func-
tions ,,(t) such that w,,(t) - w(¢) almost everywhere, then u(t)
is also measurable.

Exercise 1.2 Show that a measurable function w(t) with the values in H
is integrable if and only if |u(¢)| € L1(0, T). Therewith

HJ};u(t) dr| < _1[ ()] dt

for any measurable set B < [0, T].

Exercise 1.3 Let a function %(t) be integrable over [0, T'] and let B be
a measurable set from [0, 7'] . Show that

J(u(r), by de = Ju(r)df, n
B B H

forany h € H.

Exercise 1.4 Show that the space L2 (O, T, 973) can be described as a set
of series

i =" ety
k=1

219



220

s Q

~ 0 =T o

The Problem on Nonlinear Oscillations of a Plate in a Supersonic Gas Flow

where ¢, () are scalar functions that are square-integrable over
[0, T'] and such that
T

Zkzsj. e ()P dt < oo . (1.1

0

Below we also use the space C (O, T; %) of strongly continuous functions on [O, T]
with the values in % and the norm

Ple, . 7) =  max lo @l -
Exercise 1.5 Let u(t) be a function with the values in % integrable over

[0, T']. Show that the function

t

v(t) = Ju(r) dr

0
lies in C(0, T'; %). Moreover, v(¢) is an absolutely continuous
function with the values in %, i.e. for any € > 0 there exists 0>0
such that for any collection of disjoint segments [, B,] < [0, T']
the condition Zk(Bk —ay,) < & implies that

D o (Be) —v(oy)], < -
K

Exercise 1.6 Show that for any absolutely continuous function v(t) on
[0, T'] with the values in % there exists a function u(¢) with the
values in %, such that it is integrable over [0, T'] and

t

o(t) = U(O)+Ju(r) dr, te[o,T].
0
(Hint: use the one-dimensional variant of this assertion).

The space
W, = {U(t): v(t)e L%(0,T; %), ©(t) e L2(0, T; H)} (1.2)
with the norm

1/2

plays an important role below. Hereinafter the derivative v (¢) = dv/dt stands for
a function integrable over [0, T'] and such that
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t

o(t) = h +Jq)(r)df
0
almost everywhere for some h € H (see Exercises 1.5 and 1.6). Evidently, the space
Wy is continuously embedded into C(0, T; H), i.e. every function u(t) from W,
liesin C(0, T; H) and

max |u(t) < Clu ,
, o lu (o) luly,,

where C is a constant. This fact is strengthened in the series of exercises given be-
low.

Exercise 1.7 Let p,, be the projector onto the span of the set {ek: k=
=1, ..., m} and let v(t) € Wj. Show that p, v(t) is absolutely
continuous and possesses the property

aqt(pmv(t)) = po(t) € L2(0, T5 p, 7).

Exercise 1.8 The equations

]
[P 22 1 = [P0 (S)]7 ) + ZJ(pmv(r), P?(1)), 5 dr (1.3)

and
2
(=)0 (0)]1)5 =

= [ O+ 2 =9) B0, £, 5) 0 W30)

S

are valid forany 0 < s <t < T and v(t) € Wp.
Exercise 1.9 Use (1.3) to prove that

sup | o, v(t < Colvl (1.4a)
S 12,00, € Cplly,
and
su -, )v(t < C —0.)v|,, - 1.4b
;e[(}?T]"(pm P (0] 7P =Py, (140)
Exercise 1.10 Use (1.4) to prove that Wy is continuously embedded into
c(0, T; %/2) and

max |v(t) < Colvly .
L 2ToT) (/2 rYw,
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The following three exercises result in a particular case of Dubinskii’'s theorem
(see Exercise 1.13).

Exercise 1.11 Let {hk(t)};o: 0 be an orthonormal basis in LZ(O, T; R) con-
sisting of the trigonometric functions

1 2 i lTk 2 2Tk
ho(t)zﬁ, h2k71(t):£51n”?”“’ h2k(t):J;cos—7—x,

k=1, 2,...Showthat f(¢t) e L?(0, T; %,) if and only if

ft)= Z chj hy(t)e; (1.5)

and

Exercise 1.12 Show that the space W can be described as a set of series of
the form (1.5) such that

[e 0]

Z (k2+ljz)]ckj]2 < oo,

k,j=1

Exercise 1.18 Use the method of the proof of Theorem 2.1.1 to show that
W, is compactly embedded into the space LZ(O, T; %,) for any
s< 1.

Exercise 1.4 Show that W is compactly embedded into C(0,7T; H).
Hint: use Exercise 1.10 and the reasoning which is usually applied
to prove the Arzeld theorem on the compactness of a collection
of scalar continuous functions.

§ 2 Auxiliary Linear Problem

In this section we study the properties of a solution to the following linear problem:

d2u | du

Sy L A2u+b(t)Au = h(t 2.1
d

ul,_y =t | =y 2.2)

dt 10



Auxiliary Linear Problem

Here A is a positive operator with discrete spectrum. The vectors h(t), Uy, Up
as well as the scalar function b(t) are given (for the corresponding hypotheses see
the assertion of Theorem 2.1).

The main results of this section are the proof of the theorem on the existence
and uniqueness of weak solutions to problem (2.1) and (2.2) and the construction
of the evolutionary operator for the system when h(t) = (. In fact, the approach we
use here is well-known (see, e.g., [6] and [7]).

A weak solution to problem (2.1) and (2.2) on a segment [0, T'] is a func-
tion u(t) € W such that u(0) = u, and the equation

T T
—J () +yu(t), o(t))de +J (Aw(t) +b(t)u(t), Av(t))ds =
0 0
T
= (g g, 0(0))+ [ (1), 0(0) @3)
0

holds for any function v(t) € W; such that v(T) = 0. As above, 7 stands for the
derivative of u with respect to ¢.

Exercise 2.1 Prove that if a weak solution w(¢) exists, then it satisfies
the equation

(w(t) +yu(t), w)=(uy+yuy w)-
—J(Au(r)+b(r) , Aw) dr+.[(h @4
0 0

for every w e % (Hint: take v(t) = '[T(P(T)df w in (2.3), where
¢ (t) is a scalar function from C[0, T]).

Theorem 2.1

Let uye %, uy € %, and y > 0. We also assume that b(t) is a bounded
continuous function on [0, T]and h(t) € L*(0, T; %)), where T is a posi-
tive number. Then problem (2.1) and (2.2) has a unique weak solution
u(t) on the segment [0, T'|. This solution possesses the properties

u(t) e C(0,T; %), u(t)eC(0,T; %) (2.5)
and satisfies the energy equation
t t
1(y - .
L) +1au)?) +yj||u(r)||2 de +J b(x ), () de
0

t
- %(”“1” + JAugl? +J (1), u(t))dr . (2.6)
0

223
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Proof.

We use the compactness method to prove this theorem. At first we construct ap-
proximate solutions to problem (2.1) and (2.2). The approximate Galerkin solution
(to this problem) of the order m with respect to the basis {ek} is considered to be
the function

m
() = " 0(t)ey @7

satisfying the equations -
(Vi + YUy, + A%, +b(t) Au,, —h(t), €)= 0, 2.8
(2, (0), €)= (g, €;),  (Uy(0), €;)=(uy, €;), =12, ..., m. (29

Here g,(t) € C1(0, T') and g,(t) is absolutely continuous. Due to the orthogonality
of the basis {e k} equations (2.8) and (2.9) can be rewritten as a system of ordinary
differential equations:

G+ Y05+ Mgy —b(1) Mgy = (1) = (R(2), €)) e,
gk(O) = (uo, ek), 9,(0) = (ul, ek), k=1,2,.., m.

Lemma 2.1

Assume that v >0, a >0, b(t) is continuous, and c(t) is a measu-
rable bounded function. Then the Cauchy problem

g+yg+a(a=b(t)g =c(t), tel0, 1],
(2.10)
9(0) =gy, ¢(0)=g,

1S uniquely solvable on any segment [O, T]. Its solution possesses the
property

t
G0 +a2g(1)? < g%+azgg+%/Jc(r)2dr M telo, 7], @1D)
0

where by = m?xlb(t)l. Moreover, if b(t) e Cl(O, T), c(t)=0 and for all
t € [0, T] the conditions

2 .
—%aﬂa— <o) < la, b(t)+y(%—b(t)) >0, (2.12)

hold, then the following estimate is valid:

Do

gt +a2g(t)? < 3(9%4—&29%) exp(— t) . (2.13)
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Proof.

Problem (2.10) is solvable at least locally, i.e. there exists ¢ such that a so-
lution exists on the half-interval [0, 1) . Let us prove estimate (2.11) for the in-
terval of existence of solution. To do that, we multiply equation (2.10) by g(¢).
As aresult, we obtain that

L 3(g2+a2e?) +7d? = ab(t)gg +e(t)d

We integrate this equality and use the equations

alb(t)gdl < 3 maxlb(t)l (g +a2g? ) cg < ygz—k%/cz,

to obtain that

t
C 2 9 2 1 2 2
G(t)*+a2g(t) < g{+a’g 2—J T)dt +0b J(g +a“g(1)”)dr.

This and Gronwall’s lemma give us (2.1 1).

In particular, estimate (2.11) enables us to prove that the solution g(¢) can
be extended on a segment [0, T ] of arbitrary length. Indeed, let us assume the
contrary. Then there exists a point 7 such that the solution can not be extended
through it. Therewith equation (2.11) implies that

g(t2+alg(t)* < C(T; 99 9,), O0<t<I<T.

Therefore, (2.10) gives us that the derivative g(¢) is bounded on [0, 7).
Hence, the values
t t

J(t) = g, +'[g(r) dt,  g(t) = g +Jg’(r) dt
0 0
are continuous up to the point 7 . If we now apply the local theorem on exis-
tence to system (2.10) with the initial conditions at the point ¢ that are equal to
9(?) and g(?), then we obtain that the solution can be extended through 7 .
This contradiction implies that the solution g(t) exists on an arbitrary segment
[0, 7].
Let us prove estimate (2.13). To do that, we consider the function

V(e) = 302 +ala-b(0) g2+ 5 (99 + §a?) @.14)
Using the inequality
Ll Voo - 12, 7 2
579" ~g9" < 99 < g0+ 507,

it is easy to find that the equation

1( .- 3(
Zl(gz+azgz) < V(1) < 21(92”292) (2.15)

225
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holds under the condition

la—b(t)ZO, a[la-i—b(t)J—yz >0.

2 2
Further we use (2.10) with ¢(¢) = 0 to obtain that
dv Yoo 1, 7
i _ng —z(ab +ay(a—b))g?.
Consequently, with the help of (2.15) we get
v Ty <
a t5 V<0

under conditions (2.12). This implies that
V(1) < V(0)exp(-L1).
We use (2.15) to obtain estimate (2.13). Thus, Lemma 2.1 is proved.

Exercise 2.2 Assume that ¥ < 0 in Lemma 2.1. Show that problem (2.10)
is uniquely solvable on any segment [O, T] and the estimate

g(t)+ag(t)* < (g§ + azgg) oo+ 2l +8)t

t
+% Jc(r)z Sloo+ 2l +8)(1-7) 4
0

is valid for g(¢) and for any 6 > 0, where b, = mtaXIb(t)I .

Lemma 2.1 implies the existence of a sequence of approximate solutions {u,, ()}
to problem (2.1) and (2.2) on any segment [0, T].

Exercise 238 Show that every approximate solution «,, is a solution to
problem (2.1) and (2.2) with uq = u,,,, U, = %;,,,and h(x, t) =
= h,,(x, t), where

m
Uip = Pty = Z (w; ex)ey,
k=1 (2.16)

m
hm = pmh = Z (h(t)’ ek)ek’
k=1

and p,, is the orthoprojector onto the span of elements {ek: k=1,
2, ...,m} in F=H.

Let us prove that the sequence of approximate solutions {u } is convergent.

m
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At first we note that
m+1
Am,l(t) = Hum_um+l“2+uA(um m+l)” Z (gk +)\‘l%glc(t)2)
k=m+1

for every t € [0, T']. Therefore, by virtue of Lemma 2.1 we have that
m+1

T
Bi®) € S (e 4 2 g e g [0, e
0

k=m+1
for v > 0. Moreover, in the case y = 0, the result of Exercise 2.2 gives that

m+l T
(by+ 1)t 2 2 2 2
Ay, (1) < e? Z (uys €)" + Ay (ugs ) +J (R(t), )" dt
k=m+1 0
These equations imply that the sequences {2,,(t)} and {Aw,,(t)} are the Cauchy
sequences in the space C(0, T; H) on any segment [0, T]. Consequently, there
exists a function u(¢) such that

u(t) e C(0,T; H), u(t)eC(0,T; %),

. 2
Jlm_ma (1t (8) = () + e (8) ()] ) = 0. @.17)
Equations (2.8) and (2.9) further imply that

T T
—J (G 0) + 720, (1), (1)) +J (A, (8) 4 (1), (1), A (1))t =
0 0
T
= (g Pt DO+ [ (1), 0(0)

for all functions v(t) from W, suchthat v(7) = 0. Here u;, ,and h,,(t),7=0, 1,
are defined by (2.16). We use equation (2.17) to pass to the limit in this equation and
to prove that the function wu(t) satisfies equality (2.3). Moreover, it follows from
(2.17) that u(0) = u, . Therefore, the function % () is a weak solution to problem
(2.1) and (2.2).

In order to prove the uniqueness of weak solutions we consider the function

S

—Ju(r)dr, t<s,

vy(t) = 2.18)

for s € [0, T']. Here u(t) is a weak solution to problem (2.1) and (2.2) for =0,
uy=0,and u; = 0. Evidently v (t) € Wy,. Therefore,

227
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. T T

: —J( (1) + yu(t), ¢ dt+J. (t)u(t), Av(t))di = 0.
: 0 0

' Due to the structure of the function v (¢) we obtain that

4

%(”“(5)”2 + ||A“s(0)||2) + 7 | T db = J(u, v), (2.19)

ot—»

where
T (1, v) = J’(b(t)u(t), Avg(t))
0

It is evident that Av(t) = Av,(0)—Av,(0) for t < s. Therefore,

(. 0)| < bo{nA@S(O)“ JIIu(t)II dt+J‘||u(t)||-||A7)t(0)|| dt} <
0

)

< Yo +sboJ e+ [ (1ol +an oo
0

If we substitute this estimate into equation (2.19), then it is easy to find that

S
(sl + JAvg (O < CTJ (bu (012 + Ao, (02 ) dr
0
where s € [0, T] and Cy is a positive constant depending on the length of the seg-
ment [0, 7']. This and Gronwall’s lemma imply that w(¢) = 0.
Let us prove the energy equation. If we multiply equation (2.8) by gj(t) and
summarize the result with respect to 7, then we find that

1 (Vo + A 2 )+ i+ 0 (0) (At i) = (s )

After integration with respect to ¢ we use (2.17) to pass to the limit and obtain (2.6).
Theorem 2.1 is completely proved.

Exercise 2.4 Prove that the estimate

L () + Au(2))? < ["ul" + |Ang|? +2_ Jllh ||2ere o' (2.20)

is valid for a weak solution w(t) to problem (2.1) and (2.2). Here
by =max{[b(t): ¢ >0} and y>0.
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Exercise 25 Let u(t) be a weak solution to problem (2.1) and (2.2). Prove
that A%u(t) e C(0, T; % ,) and

a(t)+yult) = uy+yug —J (A%u(t) + () Au(t) R (1)) dr
0

Here we treat the equality as an equality of elements in % 1
(Hint: use the results of Exercises 2.1 and 2.1.3).

Exercise 2.6 Let u(t) be a weak solution to problem (2.1) and (2.2) con-
structed in Theorem 2.1. Then the function % (t) is absolutely conti-
nuous as a vector-function with the values in % 1 while the derivati-
ve 7i(t) belongs to the space L*(0, T; % ;). Moreover, the function
u(t) satisfies equation (2.1) if we treat it as an equality of elements
in % foralmostall ¢ € [0, T7.

In particular, the result of Exercise 2.6 shows that a weak solution satisfies equation
(2.1) in a stronger sense then (2.4).

We also note that the assertions of Theorem 2.1 and Exercises 2.4-2.6 with the
corresponding changes remain true if the initial condition is given at any other mo-
ment ¢, which is not equal to zero.

Now we consider the case h(t) = 0 and construct the evolutionary operator of prob-
lem (2.1) and (2.2). To do that, let us consider the family of spaces

Hy = Fox Ty G20

(o] 1+0

Every space J, is a set of pairs y = (u; v) such that u e Flic and v e F .
We define the inner product in %G by the formula

(Y1, 92)%6 = (uy, ug)y, o+ (01, Vg), -

Exercise 2.7 Prove that %Gl is compactly embedded into F6; for 6;>G.

In the space F6, we define the evolutionary operator U (t; to) of problem (2.1) and
(2.2) for h(t) = 0 by the equation

U(t; ty)y = (u(t); u(t)), 2.21)
where u(¢) is a solution to (2.1) and (2.2) at the moment ¢ with initial conditions
that are equal to y = (2; ;) at the moment ¢,.

The following assertion plays an important role in the study of asymptotic be-
haviour of solutions to problem (0.1) and (0.2).
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Theorem 2.2

Assume that the function b(t) is continuously differentiable in (2.1)
and such that

by = s%plb(t)| < o0, b, = s%p|l§(t)| <

Then the evolutionary operator U(t; T) of problem (2.1) and (2.2) for
h(t)=0 is a linear bounded operator in each space F_ for ¢ >0 and it
possesses the properties:

a) U(t; 1)U(t;s)=U(t;s), tzt=s, Ult;t)=1;

b) forall 6 > 0 the estimate

(¢ 5 exp(%bo(t —r)) (2.22)
s valid;
c) there exists a number N, depending on v, by, and b, such that the
equaltion
-1
|(1=Py) U(t y||7f < /3 |(7 = Py)v) %_° 4 L t>T, (2293

holds for all N =2 N, where Py, is the orthoprojector onto the subspace
Ly = Lin{(e,; 0), (0; e,): k=1, 2, ..., N}

in the space F, .

Proof.

Semigroup property a) follows from the uniqueness of a weak solution.
The boundedness property of the operator U(t; T) follows from (2.22). Let us prove
relations (2.22) and (2.23). It is sufficient to consider the case T = 0. According
to the definition of the evolutionary operator we have that

U(t; 0)y = (u(t); w(t)), = (ug; uy),
where u(t) is the weak solution to problem (2.1) and (2.2) for % (¢) = 0. Due to
(2.17) it can be represented as a convergent series of the form

o0
= ng(t)ek
k=1
Moreover, Lemma 2.1 implies that
. . byt
(0 + 29, (0 < (G(0)+ 27 9, (0)F) €™ (2:24)

Since

1U(t; 0)y

i( P4 22 g, (1) 22,

equation (2.24) implies (2.22).
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Further we use equation (2.13) to obtain that

_Y
G (1) + 23 9,0° < 3(0, (07 +229,(0)%) ¢ 2, 2.25)

provided the conditions (cf. (2.12))
2 A
1 Y 1 ; k
gl <60 < g bty +v(ZE-b(0)) 2 0,
are fulfilled. Evidently, these conditions hold if
4b 2
Ao> —Laap+ 1
k Y 0 bO
where b, = max|b(t)| and b, = m?XIb(t)l . Since
t
2 _ NI 2) %6
L = S (G0 + g, 07k,
k=N+1

equation (2.25) gives us (2.23) forall N 2 Ny—1, where N, is the smallest natural
number such that

|(1=E3) U(E; 0)y

4b 2
hy, 2 Tl+4b0+2;—0. (2.26)

Thus, Theorem 2.2 is proved.

Exercise 28 Show that a weak solution w(¢) to problem (2.1) and (2.2)
can be represented in the form
t

(u(t); u(t)) = U(t; 0)y +'[ U(t; 1)(0; (1))dt, (227
0
where y = (uq; %) and U(t; 7) is defined by (2.21).

Exercise 2.9 Use the result of Exercise 2.2 to show that Theorem 2.1 and
Theorem 2.2 (a, b) with another constant in (2.22) also remain true
for y < 0. Use this fact to prove that if the hypotheses of Theorems
2.1 and 2.2 hold on the whole time axis, then problem (2.1) and (2.2)
is solvable in the class of functions

W =C(R; %) N CYR; F)
with y > 0.

Exercise 2.10 Show that the evolutionary operator U(t, T) has a bounded
inverse operator in every space %6 for o > 0. How is the operator
[U(t, T)]! for ¢ > T related to the solution to equation (2.1) for
h(t) = 0? Define the operator U(¢, T) using the formula U(t, T) =
= [U(t, t)]"! for ¢t < T and prove assertion (a) of Theorem 2.2 for
all 1,7 e R.

231



232

s Q

~ 0 =T o

The Problem on Nonlinear Oscillations of a Plate in a Supersonic Gas Flow

§ 8 Theorem on Existence
and Uniqueness of Solutions

In this section we use the compactness method (see, e.g., [8]) to prove the theorem
on the existence and uniqueness of weak solutions to problem (0.1) and (0.2) under
the assumption that

uye ¥, u €%, p()el>0,T; %); 3.1
M(z) e CY(R,), Jb(z) = JM(@) dE > —az-b, 3.2)

where 0 < a < A, beR, A, is the first eigenvalue of the operator A, and the
operator L is defined on D(A) and satisfies the estimate
ILul < ClAul, weD(A). 3.3)
Similarly to the linear problem (see Section 2), the function u(t) € W, is said
to be a weak solution to problem (0.1) and (0.2) on the segment [0, T']
if %(0) = u and the equation
T T

—'[ () +yu(t), 5(1)) di +J (Au(e)+ M(lav2u ()l Ju(r), Av(r))di +
0 0

T T
+J(;(Lu(t), () dt = (uy+yug, v )+'([ d 3.4)

holds for any function v(t) € Wy such that v(7T) = 0. Here the space W, is defined
by equation (1.2).

Exercise 3.1 Prove the analogue of formula (2.4) for weak solutions to
problem (0.1) and (0.2).

The following assertion holds.

Theorem 3.1

Assume that conditions (3.1)—(3.3) hold. Then on every segment [0, T']
problem (0.1) and (0.2) has a weak solution wu(t). This solution is unique.
It possesses the properties

w(t) e C(0, T; %), 4(t) e C(0, T; %) (3.5)
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and satisfies the energy equality

B(u(t). (1)) = Blug, ug)+ | (~vli(0 +(~Lu() +p(0). i(1)) dr, (3.6)

ot— =

where

B(u, v) = 3 (ol + 14wl + 0 (1412 l?)). €Xo

We use the scheme from Section 2 to prove the theorem.
The Galerkin approximate solution of the order m to problem (0.1) and (0.2)
with respect to the basis e, is defined as a function of the form

m
u, (1) = 3 0,0
k=1
which satisfies the equations
(U () + 7 2py(2), €)) +
+ (Aum(t) +M(||Al/2 u||2)um(t), Aej) + (L, (1) =p(t), ;) =0 (3.8)
forj=1, 2, ..., m with t € (0, T'] and the initial conditions
(u,,(0), ej) = (ug» ej), (,,(0), ej) = (uy, ej), i=1,2,....,m. (3.9

Simple calculations show that the problem of determining of approximate solutions
can be reduced to solving the following system of ordinary differential equations:

m m
ék+yg'k+kl%gk+kkM[ijgj(t)2jgk+Z(Lej, ek)gj = p,(t), (3.10)
j=1 j=1

9,(0) =gg) = (ugs ), 9x(0) =gy, =(up, €), k=12, ..., m. (31D

The nonlinear terms of this system are continuously differentiable with respect to
gj- Therefore, it is solvable at least locally. The global solvability follows from the
a priori estimate of a solution as in the linear problem. Let us prove this estimate.

We consider an approximate solution um(t) to problem (0.1) and (0.2) on the
solvability interval (0, 7). It satisfies equations (3.8) and (3.9) on the interval
(0, 7). We multiply equation (3.8) by g'j(t) and summarize these equations with re-
spect to j from 1 to m . Since

& a(javzuf?) = 2m(lav2ul?)(Au(), 4(),

we obtain

8B, (1), 11 (1) = Y[t O = (La,, () =D (1), t1(1)) (312
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as a result, where E(u, 1) is defined by (3.7). Equation (3.3) implies that

< ClAu, i, < O(JAu, | + ], )2)-

Condition (3.2) gives us the estimate

1 . .
LA 2+ ) < €1+ CoB(uy ) 3.13)

|(Lu

m’ um)|

with the constants independent of m . Therefore, due to Gronwall’s lemma equation
(3.12) implies that

. 2 2 . Cot
(O] + [Au, O < (Co+ C1E(u,,(0), 1,,(0) €', 3.14)
with the constants C), C;, and Cy depending on the problem parameters only.

Exercise 3.2 Use equation (3.14) to prove the global solvability of Cauchy
problem (3.10) and (3.11).

It is evident that

: 1/2 1 1
) <l 30 42, 0) < 0] = o,

Therefore,
. 1
By, (0), 1y (0)) < 5 (Juy P + g2 + o))

where Cy,(p) = max{/b(z): 0 <z < pz/kl} . Consequently, equation (3.14) gives
us that

s (||u O +]Au,, () < 07 3.15)

for any 7' > 0, where CT does not depend on 2 . Thus, the set of approximate solu-
tions {u,,(t)} is bounded in W; for any T > 0. Hence, there exist an element
u(t) € Wy and a sequence {m} such that w,, (¢) —> u(t) weakly in Wy Let us
show that the weak limit point u(t) possesses the property

la(* +1Au()® < Cp (3.16)

for almost all ¢ € [O, T] . Indeed, the weak convergence of the sequence {u,, } to
the function » in W, means that umk and Aum}C weakly (in LZ(O, T; H)) con-
verge to w and Awu respectively. Consequently, this convergence will also take
place in Lz(a, b; H) for any a and b from the segment [O, T]. Therefore, by
virtue of the known property of the weak convergence we get

b b

2 2 . . 2 2
(i +14u()?)d < lim (uum (O + A, () Ja
k — oo ke k
a a



Theorem on Existence and Uniqueness of Solutions

With the help of (3.15) we find that
b

J (ol +14u(@)?) & < Cpv-a).

a
Therefore, due to the arbitrariness of @ and b we obtain estimate (3.16).

Lemma 3.1
For any function v (t) e L2(0, T; H)

lim JT(umk, v)=Jp(u, v),

k — o
where
T
Jp(u, v) = JM("AVzu(t)”z)(u(t), o())dr .
0
Proof.
Since

‘M(HAl/Zumkﬂz)—M(||A1/2u||2) <

1

‘|
0

where M (z) = 22M'(2?) € C(R,), due to (3.15) and (3.16) we have

E

where the constant C (Tl) is the maximum of the function M(z) on the sufficient-
ly large segment [O, aT], determined by the constant CT from inequalities
(3.15) and (3.16). Hence,

T
6ks'[
0

T

1/2
< Ot | [ #2000 ]
0

)

M(é HAl/ZumkH +(1- §)||A1/2u||)‘ dé - HAl/z (um}c_u)

(a2, ) - (l20l?)

< op |42 (u,, (1) ~u (1)

m(Javza, ) - (14720 - (w,,, (). o(e)] b <

The compactness of the embedding of W, into L2 (0, T; % /2) (see Exer-
cise 1.13) implies that Bk — 0 as k > oo. It is evident that
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[ty s 0) = Tp(s 0 < S+ [ (y, (0)=ult) o(t))-M{lAV2u(0)l ) d.

ot—

Because of the weak convergence of umk to w this gives us the assertion of the
lemma.

Exercise 8.3 Prove that the functional
T

Blu] = J(Lu(t), V(1)) de
0
is continuous on Wy, for any v e LZ(O, T; H).

Let us prove that the limit function % (t) is a weak solution to problem (0.1) and
(0.2).

Let p, be the orthoprojector onto the span of elements ¢;, k= 1, 2, ..., 1
in the space H . We also assume that

Wp={v e Wy v(T) =0}
and
I/NVéw = p, Wy ={pv: veWp}.

It is clear that an arbitrary element of the space VVZT has the form

!
v, t) = Z N(t)ey
k=1
where 1, (¢) is an absolutely continuous real function on [0, 7'] such that

N (T)=0,  M,(t) e L%(0, T).
If we multiply equation (3.8) by n i (t) , summarize the result with respect to j from
1to [, and integrate it with respect to ¢t from 0 to T, then it is easy to find that

T

(AuerM(HAl/zumnz) U,ys A?)l) de +J- (Lu,,, v,)dt =
0

(U + Y, D7) dE+

ot
ot—

= (uy+vug v,(0)+ | (p, v,) di

ot—3

for m > [ . The weak convergence of the sequence U, to w in Wy as well as Lem-
ma 3.1 and Exercise 3.3 enables us to pass to the limit in this equality and to show
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that the function w(t) satisfies equation (3.4) for any function v e V~VLT, where
l=1, 2, ... .Further we use (cf. Exercise 2.1.11) the formula

lim J (Ip25(0) =5 (1) + |p, Av(t) ~ A0 () ) o =
0

for any function v (t) e I7VT in order to turn from the elements v of qu« to the func-
tions v from the space Wp.

Exercise 8.4 Prove that u(t)|, _ = ug-
Thus, every weak limit point () of the sequence of Galerkin approximations {,,, }
in the space Wy is a weak solution to problem (0.1) and (0.2).

If we compare equations (3.4) and (2.3), then we find that every weak solution
u(t) is simultaneously a weak solution to problem (2.1) and (2.2) with b(¢) = 0 and

h@):—M@AV%MQV)AMG)—LUU)+pU) (3.17)

It is evident that h(t) € L®(0, T'; %;). Therefore, due to Theorem 2.1 equations
(3.5) are valid for the function u(t).

To prove energy equality (3.6) it is sufficient (due to (2.6)) to verify that for
h(t) of form (3.17) the equality

(h(v). i(v)) dr =

e

=1

J ~Lu(1)+p(v). (1) de L (laV2u (o)) (3.18)
0 T

=0
holds. Here u/(t) is a vector-function possessing property (3.5). We can do that by
first proving (3.18) for the function of the form p, % and then passing to the limit.

Exercise 3.5 Let u(t) be a weak solution to problem (0.1) and (0.2). Use
equation (3.6) to prove that
L () +1Au()? < (Co+C E(ug, uy)) e, >0, (3.19)

where C,, C;, Cy > 0 are constants depending on the parameters
of problem (0.1) and (0.2).

Let us prove the uniqueness of a weak solution to problem (0.1) and (0.2). We as-
sume that ul(t) and uz(t) are weak solutions to problem (0.1) and (0.2) with the
initial conditions {24, %, } and {ugy, %4}, respectively. Then the function

u(t) = uy(t) —uy(t)
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is a weak solution to problem (2.1) and (2. 2) with the initial conditions = uy;—
—Ugpg, U= U —Uy, the function b(t) ”Al/zu1 ” , and the right-hand
side

h(t) = [ (Jav2uy () - m(] 42, (1) )]Auz(z )+ Lt (t) —uy(1)).
We use equation (3.19) to verify that
IRl < Gp(E(ugp, wpy) +E(ugg, upp))[A(u(8) —uy(1))]

where GT(E) is a positive monotonely increasing function of the parameter &.
Therefore, equation (2.20) implies that

e [0, T],

Ji (2) = ()] + [y (£) —us (1) <

t
< Cp ||u11—u12||2 + w0y —u02||f + J ey (7) —uz(r)"f dr] ,
0

where CT > 0 depends on 7' and the problem parameters and is a function of the
variables £ (uo o U j), J =1, 2. We can assume that Cy is the same for all initial
data such that £(u,, o Uy j) <R, j=1, 2.Using Gronwall’s lemma we obtain that

. : c
[y (2) = (O + Juy (1) — ()]} < 01(”“11_“12”2+||u01_u02||?)ea 2, (3200

where ¢ € [0, T] and C > 0 is a constant depending only on 7', the problem pa-
rameters and the value B > 0 such that ||u0 J||? + ||u 1 j||2 < R . In particular, this esti-
mate implies the uniqueness of weak solutions to problem (0.1) and (0.2). The proof
of Theorem 3.1 is complete.

Exercise 3.6 Show that a weak solution u(t) satisfies equation (0.1) if we
consider this equation as an equality of elements in % 1 foralmost all ¢ .
Moreover, %(t) e C(0, T; %) (Hint: see Exercise 2.5).

Exercise 8.7 Assume that the hypotheses of Theorem 3.1 hold. Let u(¢) be
a weak solution to problem (0.1) and (0.2) on the segment [0, T']
and let u,,(t) be the corresponding Galerkin approximation of the
order m . Show that

u,,(t) > u(t) weaklyin L2(0,T; %),
U,,(t) > 0 (t) weaklyin L2(0, T; %) ,
u,,(t) > u(t) stronglyin L2(0,T; %,), s<1,

as M — oo.
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In conclusion of the section we note that in case of stationary load p(¢) = p € H we
can construct an evolutionary operator S, of problem (0.1) and (0.2) in the space
Fb6 = F, = F, x F, supposing that

Sy = (u(t); u(r))
for y = (uo, ul) , where u(t) is a weak solution to problem (0.1) and (0.2) with the
initial conditions y = (uo; u 1) . Due to the uniqueness of weak solutions we have

S 08, =8 Sg=1, 1, 120.

t+10
By virtue of (3.20) the nonlinear mapping S, is a continuous mapping of 7. Equa-
tion (3.5) implies that the vector-function S,y is strongly continuous with respect
to t for any y € JF4. Moreover, for any B >0 and T > 0 there exists a constant
C(R, T) > 0 such that

[S91=8,us)5 < CR, T)- |y —vs|s 321
forall ¢ € [0, T'] and for all Yy, € {y e F6: |ylsy < R}.

Exercise 3.8 Use equation (3.21) to show that (¢, y) — S,y 1is a continu-
ous mapping from R, x 76 into J.

Exercise 3.9 Prove the theorem on the existence and uniqueness of solu-
tions to problem (0.1) and (0.2) for ¥ < 0. Use this fact to show that
the collection of operators {Sz} is defined for negative ¢{ and forms
a group (Hint: cf. Exercises 2.9 and 2.10).

Exercise 8.10 Prove that the mapping S, is a homeomorphism in 76 for eve-
ryt>0.

Exercise 8.11 Let p(t) e L°(R,, H) be a periodic function: p(¢)=
=p(t+ty), ty> 0. Define the family of operators S,, by the for-
mula

Sy = (u(miy); u(miy)), m=0,1,2, ..,

in the space J6 = % x %, . Here u(t) is a solution to problem (0.1)
and (0.2) with the initial conditions » = (u,, u,). Prove that the
pair (6, S,,) is a discrete dynamical system. Moreover, S, = S7*
and S, is a homeomorphism in F6 .
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§ 4 Smoothness of Solutions

In the study of smoothness properties of solutions constructed in Section 3 we use
some ideas presented in paper [9]. The main result of this section is the following as-
sertion.

Theorem 4.1

Let the hypotheses of Theorem 3.1 hold. We assume that M(z) e
e C'TI(R,) and the load p(t) lies in C'(0,T; %) for some | > 1. Then

Jor a weak solution wu(t) to problem (0.1) and (0.2) to possess the properties
uk(t) e C(0,T; %), k=0,1,2,...,01-1,
4.1
ul(t) e C(0,T; 7)), ul+D(t)eC(0,T; %),

it is mecessary and sufficient that the following compatibility conditions
are fulfilled:

uk)(0)e %, k=0,1,2,...,1-1; ul(0)e 7. (4.2)

Here uV)(t) is a strong derivative of the function w(t) with respect to t
of the order j and the values u(k)(O) are recurrently defined by the initial
conditions u, and u, with the help of equation (0.1):

u0(0) = ug,  ul(0) = uy,

uk)(0) = —{yu(k—l)(0)+A2u(k—2)(0)+Lu(k—2)(o)+

} ; 4.3)
t=0

* (S,;kk_zz (M (IIAl/Zu(z:)Ilzj Aut) - p(,;))

where k=2, 3, ....

Proof.

It is evident that if a solution u(t) possesses properties (4.1) then compatibility
conditions (4.2) are fulfilled. Let us prove that conditions (4.2) are sufficient for
equations (4.1) to be satisfied. We start with the case [ = 1. The compatibility condi-
tions have the form: u, € %,, u,; € % . As in the proof of Theorem 3.1 we consider
the Galerkin approximation

w,(0)= > g 0)e,
k=1

of the order m for a solution to problem (0.1) and (0.2). It satisfies the equations
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Una (1) + 7t (1) + A%, (1) +

+M(“Al/2“m(’f)\|2)f4um(t)+PmLum(t) = p,p(t) , (4.4)

um(O) = Dyl s um(o) = DUy

where p,, is the orthoprojector onto the span of elements ¢, ... e, . The structure
of equation (3.10) implies that wu,,(t) € c2 (0, T; %,). We differentiate equation
(4.4) with respect to ¢ to obtain that v, (¢) = u,,(t) satisfies the equation

By + Y0, + A20,,) +M(HA1/2 ”m”zj Av,, +p,,Lv,, =
= —2mr(|AV2u, |*) (A, i) Au,, + 0, (1) 45)

and the initial conditions

Um(o) = Dy Uy

0,,(0) = —p,, {yul + Aug+ M(”Al/zpmuowzj Auy+Lp,,u, —p(O)} . (4.6)
It is clear that
¥,,(0) = p,,ul2)(0) + [M(” AL/2 %”2) - M(“ Al/2 pmuO“ZH Ap, g+ L(ug=D, ),
where u(z)(O) is defined by (4.3). Therefore,

[0,,(0) =P, u(0)] < C© (ol )]0 =Pme|, -

The compatibility conditions give us that u, € %, and hence u(?)(0) € %,. Thus,
the initial condition ,,(0) possesses the property

[00(0) =u(2)(0)) >0,  m—>o0. 4.7
We multiply (4.5) by 9,,,(¢) scalarwise in H to find that
3 S (B + 1400+ YO = B0 (), 48

where
F (1) = —M(HAVZ um\\Zj Av, —p, Lv, —

20 (|42, ) (Au,,. i) Au,, + D, B(0) 4.9)

Using a priori estimates (3.14) for u,,(t) we obtain

0] < Cp(1+]dv,0)]), ¢ ef0.T].
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Thus, equation (4.8) implies that

dy/,. .
g ([0 +J40,0F) < Co(1+ o, 0P + v, 0 ) ¢ [0 7],
Equation (4.7) and the property u € 971 give us that the estimate
I, O + s, O) < ©

holds uniformly with respect to m . Therefore, we reason as in Section 3 and use
Gronwall’s lemma to find that

A, (O + o ()

IN

Cp, tel0,T]. (4.10)

Consequently,

IA

[t () + [ (D]
Equation (4.4) gives us that
20 O] = [0+ b 0]+ P20, O 1, 0]+ [t (O] + DN
Therefore, (3.14) and (4.11) imply that
|A2u,, (1)) < Cp, tel0,T]. (4.12)

Cp, tel0,T]. 4.11)

Thus, the sequence {,,(t)} of approximate solutions to problem (0.1) and (0.2)
possesses the properties (cf. Exercise 3.7):

u,,(t) > u(t) weaklyin L2(0, T; D(A%));
,,(t) > u(t) weaklyin L2(0, T; D(A)); (4.13)
t,,(t) = (t) weaklyin L2(0, T; H);

where wu(t) is a weak solution to problem (0.1) and (0.2). Moreover (see Exer-
cise 1.13),

m — oo

T
lim '[||um(t) (O + o (1) —u ()], i =0 (4.14)
0

for every s < 1. If we use these equations and arguments similar to the ones given in
Section 3, then it is easy to pass to the limit and to prove that the function w(t) = (t)
is a weak solution to the problem

W+ y + A2w +M(||A1/2u(z)||2) Aw+Lw =

- oM (||A1/2u(z)||2)(Au, w)Au+p(t), (4.15)

w(0)=uy, w(0)=u2)(0),
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where u(z)(O) is defined by (4.3). Therefore, Theorem 2.1 gives us that
u(t) = w(t) e C(0,T; D(A))N Cl(O, T; H).
This implies equation (4.1) for [ = 1.

Further arguments are based on the following assertion.

Lemma 4.1
Let u(t) be a weak solution to the linear problem
a(t)+yu(t)+ A2u(t)+b(t)Au = h(t),

(4.16)
u(0) =1ug,

where b(l) is a scalar continuously differentiable function, h(t) €
e CY0,T; %) and wuy € %, uye%F. Then

u(t) e C(0,T; %) NCHO, T; F)NC2(0, T; F) (4.17)

and the function v(t) = u(t) is a weak solution to the problem obtained
by the formal differentiation of (4.16) with respect to t and equiped
with the initial conditions v(0) = uy; and 0(0)=(0) = —(yu,+ A%uy+
+b(0)Auy —h(0)).

Proof.

Let um(t) be the Galerkin approximation of the order m of a solution to
problem (4.16) (see (2.7)). It is clear that um(t) is thrice differentiable with re-
spectto t and v,,(t) = ,,(t) satisfies the equation

By + Y0, + A%, +b(t)Av,, = —b(t)Au,, + p,,h(t), t>0,

m
and the initial conditions
0,,(0)=p,,uy,  0,(0) = =p,,(Yu; +A2uy+b(0)Auy, —h(0)).
Therefore, as above, it is easy to prove the validity of equations (4.10)—(4.14)
for the case under consideration and complete the proof of Lemma 4.1.

Exercise 4.1 Assume that the hypotheses of Lemma 4.1 hold with b(t) €
e CY(0,T) and h(t) e C'(0,T; %,) for some [ > 1. Let the com-
patibility conditions (4.2) be fulfilled with (?)(0) = u, w(1)(0) =
= uy,and

ul)(0) = —{yu(k‘l)(O)+A2u(k—2)(0)+
k-2
+>° ¢y (0)Aulk~2=7)(0) +
Jj=0

+Lult-2)(0) —h(k‘z)(O)}
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for k=2, 3, ..., l. Show that the weak solution %(¢) to problem
(4.16) possesses properties (4.1) and the function v, () = u(¥)(¢) is
a weak solution to the equation obtained by the formal differentia-
tion of (4.16) k times with respectto t. Here k =0, 1, ..., [.

In order to complete the proof of Theorem 4.1 we use induction with respect to
[. Assume that the hypotheses of the theorem as well as equations (4.2) for
l=mn+1 hold. Assume that the assertion of the theorem is valid for =7 > 1.
Since equations (4.1) hold for the solution «(¢) with [ = 7, we have

f—;g {M (s Zu(t)”z)Au(t)} = m(lav2u(l?) 4u®0) + G (0),

where G, (t) € cl(o, T; %), k=1, ..., n. Therefore, we differentiate equation
(0.1) n—1 times with respect to ¢ to obtain that v(¢) = u(”~1)(¢) is a weak solution
to problem (4.16) with

b(t) = M(lAV2u(t)?) and h(t)= G, (t)+p (1)

Consequently, Lemma 4.1 gives us that w(t) = v(t) is a weak solution to the problem
which is obtained by the formal differentiation of equation (0.1) 7 times with re-
spectto t:

W+ Y + A2w + M(”Al/zu(t)"z) Aw = pM(1) -G (1),
w(0) = u((0), w(0) = u+1)(0) .
However, the hypotheses of Lemma 4.1 hold for this problem. Therefore (see (4.17)),
w™(t) = w(t) e C(0,T; F) NCLO, T; F)NC2(0,T; F),
i.e. equations (4.1) hold for [ = n+1 . Theorem 4.1 is proved.
Exercise 4.2 Show that if the hypotheses of Theorem 4.1 hold, then the
function v(¢) = u(¥)(¢) is a weak solution to the problem which is

obtained by the formal differentiation of equation (0.1) k times with
respecttot, k=1,2, ..., 1.

Exercise 4.3 Assume that the hypotheses of Theorem 4.1 hold and L = 0
in equation (0.1). Show that if the conditions
p(t) € C¥([0, T]; F_p), k=0,1,..,1, (4.18)

are fulfilled, then a solution u(¢) to problem (0.1) and (0.2) possess-
es the properties

u(t) e CH([0, T]; Fpyy_p)y k=0, 1, .0, I+1,
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Exercise 4.4 Assume that the hypotheses of Theorem 4.1 hold. We define
the sets

Y, = {(uo, uy) € Jb: equation (4.2) holds with | = k} (4.19)

in the space 76 = ¥, x %, . Prove that
V=%x%F and ¥ > >...>%.
Exercise 4.5 Show that every set %), given by equality (4.19) is invariant:
(ugs uy) € Y = (u(t); u(t)e¥,, k=1,..,1.
Here w(t) is a weak solution to problem (0.1) and (0.2).

Exercise 4.6 Assume that L = 0 in equation (0.1) and the load p(t) pos-
sesses property (4.18). Show that for k = 1, 2, ..., | the set 7} of
form (4.19) contains the subspace %, | x %, .

Exercise 4.7 Assume that the hypotheses of Theorem 3.1 hold and the ope-
rator L (in equation (0.1)) possesses the property

ILuly, < Clul,,, forsome 0<s<1. (4.20)
Let uy € %, ; and let u; € ¥, . Show that the estimate
. 2 2
[ (O]5 + (O} < Cps L €]0,T], (4.21)

is valid for the approximate Galerkin solution um(t) to problem
(0.1) and (0.2). Here the constant Cy does not depend on m
(Hint: multiply equation (3.8) by l?s g']»(t) and summarize the re-
sult with respect to 7 ; then use relation (3.14) to estimate the non-
linear term).

Exercise 4.8 Show that if the hypotheses of Exercise 4.7 hold, then prob-
lem (0.1) and (0.2) possesses a weak solution u(¢) such that

u(t) € C(0, T; Fyy ) NCHO, T F)NCHO,T5 Fqy ),

where s € (0, 1) is the number from Exercise 4.7.
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§ 5 Dissipativity and Asymptotic
Compactness

In this section we prove the dissipativity and asymptotic compactness of the dynam-
ical system (36, St) generated by weak solutions to problem (0.1) and (0.2) for
Y > 0 in the case of a stationary load p(t) =peH-= 9’0 . The phase space is J6 =
= @1 X 9’0 . The evolutionary operator is defined by the formula

S,y = (u(t), u(t)), 5.1
where % (t) is a weak solution to problem (0.1) and (0.2) with the initial condition
y = (ug; uy).

Theorem 5.1

Assume that in addition to (3.2) the following conditions are fulfilled:

a) there exist numbers a; > 0 such that

zM(z)—(zlJ.M(EJ)dé > ay21t%—a;, 220 (5.2)
0

with a constant oo > 0;
b) thereexist 0 < 0 < 1 and C > 0 such that

ILul < C|AO%|, u e D(AY). (5.3)

Then the dynamical system (J, Sz) generated by problem (0.1) and (0.2)
Jor v >0 and for p(t) = p € H is dissipative.

To prove the theorem it is sufficient to verify (see Theorem 1.4.1 and Exercise 1.4.1)
that there exists a functional V() on J# which is bounded on the bounded sets of
the space J6, differentiable along the trajectories of system (0.1) and (0.2), and
such that

V(y) > alyl’y -2, (5.4)

a%(V(SLy))-i-BV(Sty) <a,, (5.5)

where o, > 0 and %, Dy 2 0 are constants. To construct the functional (y)
we use the method which is widely-applied for finite-dimensional systems (we used
it in the proof of estimate (2.13)).

Let

V(y)=E(y)+vO(y),

where y = (uy; u,) € F. Here E(y) = E(uy; u,) is the energy of system (0.1)
and (0.2) defined by the formula (3.7),
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O(y) = (up; uy) +5|

and the parameter v > 0 will be chosen below. It is evident that

glul? < @) < o gl + vl
For 0 < v < v this implies estimate (5.4) and the inequality
V(y) < biE(y) +by (5.6)
with the constants b;, b, > 0 independent of v. This inequality guarantees the
boundedness of V(y) on the bounded sets of the space .
Energy equality (3.6) implies that the function E(y(t)), where y(t) = S, , is
continuously differentiable and
SEW©) = ~7hiP + (~Lu(e) +p. a(0).
Therefore, due to (5.3) we have that
E%E(y(t)) <~ Ml + ¢y la0u? + ©,
We use interpolation inequalities (see Exercises 2.1.12 and 2.1.13) to obtain that
J40ul* < S1Aul® + cglavzul®,  §>0.
Thus, the estimate

d .
SE() < -1l + §laul + c lav2ul? + ¢, (5.7

holds forany € > 0.

Lemma 5.1

Let u(t) be a weak solution to problem (0.1) and (0.2) and let y(t) =
= (u(t), w(t)). Then the function ®(y(t)) is continuously differenti-
able and

do(y(e)) = [ + (i(t) + ya(t), u(t)) . (5.8)

We note that since 7i(t) € C(R,, ¥ ) (see Exercise 3.6), equation (5.8) is correct-
ly defined.
Proof.

It is sufficient to verify that

(u(t), u(t)) = (ug, +Hu(r )+ Ja(x )IIZ}dT. .9
0
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Let p, be the orthoprojector onto the span of elements {ek, k=1, 2, ..., l} in
%, - Then it is evident that the vector-function u,(t) = p,u(t) is twice continu-
ously differentiable with respect to ¢ . Therefore,

t

(01 1) = (0). da(0))+ | {(am), ul<r)>+||ul<r)||2} dr
0

The properties of the projector p; (see Exercise 2.1.11) enable us to pass to
the limit  — oo and to obtain (5.9). Lemma 5.1 is proved.

Since w(¢) is a solution to equation (0.1), relation (5.8) implies that

d . 2

SO ) = lal - {nAuMZ s (JaV2l?)JA2 ul? + (Lo —p, u>}
Therefore, equation (5.2) and the evident inequality

(Lu-p, w) < SlAul+ 0y Jul® +pl?

give us that
L) < 1l - Liau? - a,w(141/20]) - a | AV2 T2 1 0y Jul?+ 0,
Hence, (5.6) and (5.7) enable us to obtain the estimate

SV +8V(y(1) < ~3(y=8by—2v) il -

3b
~Lv-80,—e)laul® - (va, - 1) (142 ul?) + R(us v. €, 8)

2 2
where & > 0 and
R(u; v, &, 8) = —va,[aV2ul**2% 4 c_|AV2u*+ v, |ul?+ Cy .

Therefore, for any 0 < v < 7/2 estimate (5.5) holds, provided 6 and € are chosen
appropriately. Thus, Theorem 5.1 is proved.

Exercise 5.1 Prove that if the hypotheses of Theorem 5.1 hold, then the as-
sertion on the dissipativity of solutions to problem (0.1) and (0.2)
remains true in the case of a nonstationary load p(t) € L*(R,, H).

Theorem 5.2
Let the hypotheses of Theorem 5.1 hold and assume that for some G > 0
peF,,  LD(A)c D(A%), lASLu| < ClAul. (5.10)

Then there exists a positively invariant bounded set K in the space Fb =
=%, o X F; which is closed in F6 and such that
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Lt —tp)

sup{dist%(Szy, Ky): y GB} < Cet (5.11)

Jor any bounded set B in the space J6, t > ig.

Due to the compactness of the embedding of F; in # for ¢ > 0, this theorem and
Lemma 1.4.1 imply that the dynamical system (%, St) is asymptotically compact.

Proof.

Since the system (%, St) is dissipative, there exists R > 0 such that for all
yeBandt>t,=t,(B)

lu()I® +1Au()? < R?, (5.12)

where (1) is a weak solution to problem (0.1) and (0.2) with the initial conditions
y=(ugy; u;) € B. We consider u(t) as a solution to linear problem (2.1) and (2.2)
with b() = M(JAY2wu(t)|?) and (1) = — Lu(t) + p . Itis easy to verify that b(t) is a
continuously differentiable function and

() +16(t) < Cp\ 21,
Moreover, equation (2.27) implies that
S,y =U(t, ty)y(ty) +G(t, tg; v), (5.13)

where
¢

G(t, ty; ) = —J U(t, 1)(0; Lu(t)—p)dr .
Ly
Here U(t, T) is the evolutionary operator of the homogeneous problem (2.1) and

(2.2) with 2(t)=0 and b(t) = M(||A1/2u(t)||2). By virtue of Theorem 2.2 there
exists Ny = 0 such that

[(1-Py) U(t, T)2

%, S «/§||hll%cexp {—E—;(t—r)}, (5.14)

where N > N, t > T 2, and Py s the orthoprojector  onto
%y = Lin{(e,; 0), (0; e;), k=1,2, ..., N}.
This implies that

[1=Fy )Gt )], < V3 jexp{—z(t—ﬂ}llLu(r) ~rlgdr.

Therefore, we use (5.10) to obtain that
”(I—PNO)G(L‘, tos y)"% < C(R). (5.15)
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It is also easy to find that
HPNOS‘yH%G < NGISis < RNg,  t2t.

Consequently, there exists a number R depending on the radius of dissipativity R
and the parameters of the problem such that the value

S,y —(1—PNO) U(t, tO)StOyo = PNOSty+(1_PNO)G(t’ tys y)  (5.16)
lies in the ball
By =1{y: lyls_ < R}
for ¢t > ;. Therefore, with the help of (5.12) and (2.23) we have that

-
dist (S,y, Bg) < ”(1—PN0) U(t, tO)StOy” < R.J3e alt=t), (.17

Let K5 =Vv"(By) = |J; » 05;(B,) - Evidently equation (5.11) is valid. Moreover, K
is positively invariant. The continuity of Sty with recpect to the both variables
(t; y) in the space F# (see Exercise 3.8) and attraction property (5.17) imply that
K is a closed set in J6 . Let us prove that K o is bounded in %G . First we note that
K is bounded in 7. Indeed, by virtue of the dissipativity we have that ||Sty|| <R
forally e B; and t >t = t(Bg). Since S,y is continuous with respect to the vari-
ables (t; y), its maximum is attained on the compact [0, tG] x B . Thus, there exists
R >0 suchthat |yl <R forally K . Let us return to equality (5.16) for ¢, =0
and y, € B . It is evident that the norm of the right-hand side in the space

is bounded by the constant C = C(o, }_i') . However, equation (5.14) implies that
H(l—PNO) u(t, O)yOH%G < J3R,, 120, y,eB,.
Therefore, equation (5.16) leads to the uniform estimate
||Sty||%0 <Ry, t20, yeB;.

Thus, the set K, is bounded in F6 . Theorem 5.2 is proved.

Exercise 5.2 Showthatforany 0 < s < ¢ abounded set of %S is attracted
by K at an exponential rate with respect to the metric of the space
Jb, . Thus, we can replace disty, by disty, in (5.11).
S

Exercise 5.8 Prove that if the hypotheses of Theorem 5.2 hold, then the as-
sertion on the asymptotic compactness of solutions to problem (0.1)
and (0.2) remains true in the case of nonstationary load p(t) e
e L*(R,, %;) (seealso Exercise 5.1).

Exercise 5.4 Prove that the hypotheses of Theorem 5.1 and 5.2 hold for
problem (0.3) and (0.4) for any 0 < 6 < 1/4, provided that y > 0
and p(x, t) = p(x) lies in the Sobolev space H(l)(Q) )
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Let us consider the dissipativity properties of smooth solutions (see Section 4) to
problem (0.1) and (0.2).

Theorem 5.3

Let the hypotheses of Theorem 5.1 hold. Assume that M(z) e C'*1(R,)
and the initial conditions y, = (uo; ul) are such that equations (4.1) (and
hence (4.2)) are valid for the solution (u(t); u(t)) = S,y,. Then there exists
R, > 0 such that for any initial data y,= (uo; u,) possessing the property

Jue+ D)2 + JAut) () + A2 u*=-D(0)* < p2, k=1,2,...1, (5.18)
the solution (u(t); u(t)) = S,y, admits the estimate
[+ D)2 + |Au®) (0)? +|2uE-D()? < R (5.19)
Jorall k=1,2, .., 1 assoonas t > ty,(p).

We use induction to prove the theorem. The proof is based on the following asser-
tion.

Lemma 5.2

Assume that the hypotheses of Theorem 5.3 hold for | = 1. Then the dy-
namical system (%1, Sz) generated by problem (0.1) and (0.2) in the
space Jb; = Fy x F, is dissipalive.

Proof.

Let (u(t); u(t))=S,y, be a semitrajectory of the dynamical system
(F,, S,) and let y,=(ug; uy) € ;=% x F . If the hypotheses of the lem-
ma hold, then the function w(¢) = %(t) is a weak solution to problem (4.15) ob-
tained by formal differentiation of (0.1) with respect to ¢ (as we have shown in
Section 4). By virtue of Theorem 2.1 the energy equality of the form (2.6) holds
for the function w(t) . We rewrite it in the differential form:

a%F(t; w(t), (1)) + 7yl (1) = P(u(t), w(t)), (5.20)
where

Pt w, ) = L1l + 1awl? + m(laV2u (o)) |4 2ul?)  21)

=1
2

and
Fu(t), w(t) = ~(Lw(t), w(t))+
+ a (142wl ) (Aue), () [JaV2w (o ~2(Au(0), b(1))]

The dissipativity property of (%, St) given by Theorem 5.1 leads to the esti-
mates
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lal2w]? < cplaw()l,

‘M(||A1/2u(t)||2)

[P (w(t), w(t) < [Lwllwl+CplAw (@) +lw(@)l)
forall (u; ;) with the property
2 2
[Awg” + ] < P

and for all ¢ > t,(p) large enough. Hereinafter R is the radius of dissipativity
of the system (¥, S,). These estimates imply that for ¢ > ¢,(p) we have

Yol +1awi2) -0y < Pt w, 1) < oty (o (D)1 + 1 (DI ) + o 5.22)

and

Srs w, )+ Ll < BlAOwl + aylAwl + oy, (5.23)

where the constants o, > 0 depend on R . Here 0 < 1. Similarly, we use Lem-
ma 5.1 to find that

% {(w(t), (1)) + %Ilw(t)llz} < ()P = F1aw ()P + ¢y

for ¢ > t,(p). Consequently, the function
V(t) = F(t; w,w)+V {(w, W) + %/Ilwﬂz}
possesses the properties
ar +oV < Cp, >0,
and
L1l +14wl) a, < v < ay(lwl? + 1) + ay
for t > t;(p)and for v > 0 small enough. This implies that
b (O +HAw O < ¢, (Jitte)P +JAaw()f )o@ +Cy G2
for ¢t > t, = t,(p), provided that
2 2
[Awg) + ey < P (5.25)
If we use (5.4)—(5.6), then it is easy to find that
[Au(P + i@l < ¢, p, >0,

under condition (5.25). Using the energy equality for the weak solutions to
problem (4.15) we conclude that
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d . .
L(1aw(@P +1@IF) < ¢,(p., R)-lwl-lbl +Cy(p, R).
Therefore, standard reasoning in which Gronwall’s lemma is used leads to
JAw () +hi (0 < (1Aw(O) + Li(0)F +a Jebt,

provided that equation (5.25) is valid. Here a and b are some positive con-
stants depending on p and £ . This and equation (5.24) imply that

Lo (t)I% + lAw (0)I* < Cy(p, R)((l+IIw(O)IIZ)Jr||Aw(0)||2)e*‘”‘+02, (5.26)
where 02 depends on R only. Since
N2 2 2 2 P2

Lo (O +1Aw(O)* < C,,  Juy* +[Augf* < (2_1)

provided that
2 2
[Awy|”+ |A2ug|* < p?,
equation (5.26) gives us the estimate
li(0)I* +1Aa()® < b3, > Ty(p).

This easily implies the dissipativity of the dynamical system (%1, St). Thus,

Lemma 5.2 is proved.

Exercise 5.5 Prove that the dynamical system (%1, St) generated by
problem (0.1) and (0.2) with the initial data y,= (uo; ul) € I, =
= %, x ¥, is asymptotically compact provided that equations (5.10)
hold.

In order to complete the proof of Theorem 5.3, we should note first that Lemma 5.2
coincides with the assertion of the theorem for [ = 1 and second we should use the
fact that the derivatives u(k)(t) are weak solutions to the problem obtained by dif-
ferentiation of the original equation. The main steps of the reasoning are given in the
following exercises.

Exercise 5.6 Assume that the hypotheses of Theorem 5.3 hold for [ = n+1
and its assertion is valid for [ = 7. Show that w(t) = u(”“)(t) is
a weak solution to the problem of the form

W () +yi(t) + A2w(t) + MIAV2ul? Aw + Lw =G, (1),
w(0) = ul*1(0), w(0) = u(**+2)(0),

where
|G, 1 (8)] < C(R,) forall t>i4(p).
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Exercise 5.7 Use the result of Exercise 5.6 and the method given in the
proof of Lemma 5.2 to prove that w(t) = u(”+1)(¢) can be estima-
ted as follows:

()| + LAw (1)f2 <

< Cl(llw(0)||2+||Aw(0)||2+Cz) ec0lic, | (52D

where ® > 0, the numbers Cj dependon p and K, j=1, 2,and
the constant C5 depends on E, only.

Exercise 5.8 Use the induction assumption and equation (5.27) to prove
the assertion of Theorem 5.3 for [ =n+1.

§ 6 Global Attractor and Inertial Sets

The above given properties of the evolutionary operator S, generated by problem
(0.1) and (0.2) in the case of stationary load p(¢) = p enable us to apply the gene-
ral assertions proved in Chapter 1 (see also [10]).

Theorem 6.1

Assume that conditions (3.2), (5.2), (5.3), and (5.10) are fulfilled. Then
the dynamical system (b, St) generated by problem (0.1) and (0.2) pos-
sesses a global attractor A of a finite fractal dimension. This attractor is
a conmnected compact set in J6 and is bounded in the space Fb = F  x T,
where G > 0 is defined by condition (5.10).

Proof.

By virtue of Theorems 5.1, 5.2, and 1.5.1 we should prove only the finite dimen-
sionality of the attractor. The corresponding reasoning is based on Theorem 1.8.1
and the following assertions.

Lemma 6.1.

Assume that conditions (3.2), (5.2), and (5.3) are fulfilled. Let p € H.
Then for any pair of semitrajectories {Styj: t>0}, j=1, 2, posses-
sing the property ”Styj” <R forall t =0 the estimate

||Sty1—SLy2||% < exp (aot)”yl—yz t>0, (6.1)

% bl
holds with the constant a, depending on R.
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Proof.

If 2, (t) and u4(t) are solutions to problem (0.1) and (0.2) with the initial
conditions y; = (ug;; ;) and yq = (Uge; U;g), then the function v(t) =
= u,(t) —uq(t) satisfies the equation

T+y0+A%0 = Fuy, ug, t), (6.2)
where
Futy, g 1) = M(JAV 20y (1)) Arig(0) = 2|41 20 (1)) Ay (1) ~ Lo (1)
It is evident that the estimate
|7y, ug, 1)) < Cp-[A(uy (1) —uy (1))

holds, provided that [y, (¢)|%, = |t ()]> + |u; (1)]] < R2. Therefore, (2.20)

implies that

1=yl < Wi=vallt o [ 15,1 St
0

Gronwall’s lemma gives us equation (6.1).

Lemma 6.2

Assume that the hypotheses of Theorem 6.1 hold. Let K be the compact
positively invariant set constructed in Theorvem 5.2. Then for any
Y1> Yo € K5 the inequality

7y

-1 Ly
|QN(S;y1=S,y3)|5 < age (HAG 3tj||y1— (6.3)

is valid, where Q= 1-PFy, N =N, the orthoprojector Py and the
number Ny are defined as in (5.14), L, and a, are positive constants
which depend on the parameters of the problem.

Proof.
It is evident that
OnSiy; = (ayu(1); any(t)),
where g, is the orthoprojector onto the closure of the span of elements {e K
k=N+1, N+2, ...} in %;=H . Moreover, the function wy(t) = q(u,(t)—us(t))
is a solution to the equation
i+ Yty + A2+ M(|AV 20, ) Ay = Doy (s, g, 1),

where

Dy (uy, ug, t) = —[M(”Alﬂul”z) —M(“Al/zuzuz)} ayAug —qyL(u;—us).
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Let us estimate the value ®@,;. Since [yly < Rs for y e K, - (see the proof
(e}
of Theorem 5.2), we have

lanAus|=ayus], < Ailanvsly, o < A Ro-
Using equation (5.10) we similarly obtain that
lavLo| < A% 1A% Lo] < Cad 1Al

Therefore,
lan L (uy(8) —ug (1)) < CAy|Siy1=S,Ys] 5 -
Consequently,
C(R
@y g, )] < CEys )~ 6.4)
N+1

Using equation (2.27) we obtain that
t
Qu(S,1~5,3) = (L 0) @y ~3) + [ U1, T)(0; By(1) e,
0

where Ul (t, ’E) is the evolutionary operator of homogeneous problem (2.1) with
b(t) = M(”Al/2 ul(t)Hz) and A(t) = 0. Therefore, (2.23) and (6.4) imply that

|Qn (S, 1 =S,y2)|4 <

_3‘1/’5 C(Ec)

< JBe

Y1 =Yg +
o2~ + 72—

t

Y

=T
Je“ [Sey1=S1ysf ATy (6.5)
0

We substitute (6.1) in this equation to obtain (6.3). Lemma 6.2 is proved.
Let us choose ¢, and N > N, such that
azexp{—z—;zfo} =g, Lckj_vilexp{agto} <1, o< 1.

Then Lemmata 6.1 and 6.2 enable us to state that

“Szoyl_sxoyz”% < Uy —vsl

and
”QN(SzO% _StOyZ)H% < Oy =Yg -
where | = e%to and the elements y, and y, lie in the global attractor /. Hence,

we can use Theorem 1.8.1 with M = A4, V=S, ,and P= Py . Therefore, the fractal
dimension of the attractor . is finite. Thus, Theorem 6.1 is proved.
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Theorem 5.2 and Lemmata 6.1 and 6.2 enable us to use Theorem 1.9.2 to obtain an
assertion on the existence of the inertial set (fractal exponential attractor) for the
dynamical system (6, S,) generated by problem (0.1) and (0.2).

Theorem 6.2

Assume that the hypotheses of Theorem 6.1 hold. Then there exists
a compact positively invariant set J%exp c J6 of the finite fractal dimen-
ston such that

sup {dist%(Sty, oexp) Y eB} < ce Vi)

Jor any bounded set B in J6 and t > t;. Here C and v are positive num-

bers. The inertial set /b, is bounded in the space J;.

To prove the theorem we should only note that relations (5.11), (6.1), and (6.3)
coincide with conditions (9.12)—(9.14) of Theorem 1.9.2.

Using (1.8.3) and (1.9.18) we can obtain estimates (involving the parameters of the
problem) for the dimensions of the attractor and the inertial set by an accurate ob-
serving of the constants in the proof of Theorems 5.1 and 5.2 and Lemmata 6.1 and
6.2. However, as far as problem (0.3) and (0.4) is concerned, it is rather difficult
to evaluate these estimates for the values of parameters that are very interesting
from the point of view of applications. Moreover, these estimates appear to be quite
overstated. Therefore, the assertions on the finite dimensionality of an attractor and
inertial set should be considered as qualitative results in this case. In particular, this
assertions mean that the nonlinear flutter of a plate is an essentially finite-dimen-
sional phenomenon. The study of oscillations caused by the flutter can be reduced to
the study of the structure of the global attractor of the system and the properties
of inertial sets.

Exercise 6.1 Prove that the global attractor of the dynamical system gene-
rated by problem (0.1) and (0.2) is a uniformly asymptotically stable
set (Hint: see Theorem 1.7.1).

We note that theorems analogous to Theorems 6.1 and 6.2 also hold for a class of re-
tarded perturbations of problem (0.1) and (0.2). For example, instead of (0.1) and
(0.2) we can consider (cf. [11-13]) the following problem

ii+yu+A2u+M(”A1/2u”2)Au+Lu+q(uz) =p,

Ul _g=%o» Ul,_g=u1, U, (-r,0) P (t)-
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Here A, M, and L are the same as in Theorems 6.1 and 6.2, the symbol «, denotes
the function on [—, 0] which is given by the equality u,(c) = u(t+0) for G €
€ [—7", O] , the parameter » is a delay value, and q() is a linear mapping from
Lz(—r, 0; %, ) into H possessing the property
0
la%q(o)l? < ¢ JnAlw(c)nz do
ot

for ¢, small enough and for all o € [0, OLO] , where o is a positive number. Such
a formulation of the problem corresponds to the case when we use the model of the
linearized potential gas flow (see [11-14]) to take into account the aerodynamic
pressure in problem (0.3) and (0.4).

The following assertion gives the time smoothness of trajectories lying in the attrac-
tor of problem (0.1) and (0.2).

Theorem 6.3

Assume that conditions (3.2) and (5.2) are fulfilled and the linear ope-
rator L possesses the property

lAoLu| < clac+124],  w e D(A) (6.6)
Sfor all 6 € [-1/2, 1/2). Let p € F,,,. Then the assertions of Theorem 6.1
are valid for any o € (0, 1/2). Moreover, if M(z) e C'*1(R,) for some
l > 1, then the trajectories y = (u(t), u(t)) lying in the global attractor

of the system (J, S,) generated by problem (0.1) and (0.2) for ¥ >0 pos-
sess the property

leale+ D)2 + JAut) ()1 + |2 uE-D()* < R 6.7

Jor all —o<t<oo, k=1,2,..,1, where R, is a constant depending on
the problem parameters only.

Proof.

It is evident that conditions (5.3) and (5.10) follow from (6.6). Therefore, we
can apply Theorem 6.1 which guarantees the existence of a global attractor /4. Let
us assume that M(z) e C'*1(R,), 1 > 1.Let y(¢) = (u(t), u(t)) be a trajectory in
A, —o0 < t < oo. We consider a function w,,(t) = p,,u(t), where p, is the ortho-
projector onto the span of the basis vectors {e 1o oo em} in % for m large enough.
It is clear that w,,(t) € C?(R; %,) and satisfies the equation

Uy + Y Uy, + A%, +M(||A1/2u(t)||2) Au,, +p,,Lu = p,p. (6.8)

Equation (6.6) for ¢ = —1/2 implies that p,,Lw is a continuously differentiable
function. It is also evident that M(|AY2u(t)|*) € CL(R). Therefore, we differenti-
ate equation (6.8) with respect to ¢ to obtain the equation



Global Attractor and Inertial Sets

W, + YWy, + A2w,, +M(||A1/2u(t)||2) Aw,, = —p, Lu(t)+F, (1)
for the function w,,(t) = ,,(t) = p,,%(t) . Here

P (t) = 200 (JAV2u (o)l ) (A (2). 4 (1)) A, (1),

Since any trajectory y = (u(t), %(t)) lying in the attractor possesses the property

li(0)® +lAu(t)* < RS, —wo<t<oo, (6.9)
it is clear that
||Fm(t)|| < CRO’ —00 < < 0. (6.10)
Relation (6.9) also implies that the function
b(t) = M(IIAI/Zu(t)IF) (6.11)
possesses the property
b(t) +1b(t) < Cp,» @ <t<w®.

Therefore, as in the proof of Theorem 2.2, we find that there exists N, such that

Y
-+ (t—1)
|(1=Py) UL, T)y”%S < C’”(l—PN)y”%Se 4 (6.12)

for all real s, where J6, = %, . x %, Py is the orthoprojector onto
Ly =Lin{(e, 0); (0, e,): k=1, 2, ..., N},
N = Ny,and U (¢, T) is the evolutionary operator of the problem
{d+yu+A2u+b(t)Au =0,

u|z:0:u07 ?’.l'|t =up,

=0

with b(t) of the form (6.10). Moreover, 2, (t) = (w,,(t), 1,,(t)) can be presented
in the form

¢
zm(t) = U(t, to)zm(to)+'[ U(t, 1')(0; —meu(r)+Fm(r)) drt. (6.13)
ty
Then for m > N > N0 we have

Y
—L(t—ty)
w20

(=P 2O, 2

cte-o
+C J e 1", Lai(t) + B (1), O -

Ly
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Therefore, we use (6.9), (6.10), and (6.6) for = —1/2 to obtain that

Yo LYo
e al tO)-I—CROJ-e‘*(t T)dr.

ty

(1 =Ex) 2, (1)

F6_ Ry m

Ve

We tend ¢, — —oo in this inequality to find that
< C,

su 1-P,)z (¢
t e% |(1=F)2(0) 719

where C > 0 does not depend on m . It further follows from (6.9) and equation (0.1)
that

P t < C,
sup [Py 2p(t)]se_ .
where the constant C' can depend on N . Hence,
. 2 . 2
swp ([p,, 42 + |4 2p,, i) < c.
S
We tend m — o to find that any trajectory y(¢) = (u(t), w(t)) lying in the attrac-
tor possesses the property
le(e)ly /g = 1AY20()] < Cp,» —®<t<oo.
By virtue of (6.6) we have
||Lu(t)|| < CRO , —oo<{<oo,.

Therefore, we reason as above to find that equation (6.13) implies

,to)

Y
*-(LL
[(1=Py) 2 (D5 < Crym e 4 +Cp, -

Similarly we get
||@'i(1t)||2+||Au(t)||2 < R%

for all ¢ € (—o0,00) . Consequently, using equation (0.1) we obtain estimate (6.7) for
k = 1.In order to prove (6.7) for the other values of ¥ we should use induction with
respect to k and similar arguments. We offer the reader to make an independent de-
tailed study as an exercise.

Exercise 6.2 Inaddition to the hypotheses of Theorem 6.3 we assume that
L =0 and p e % = D(A!). Prove that the global attractor /4 of
the system (J6, S,) liesin %, , | x %,.
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§ 7 Conditions of Regularity of Attractor

Unfortunately, the structure of the global attractor of problem (0.1) and (0.2) can be
described only under additional conditions that guarantee the existence of the Lya-
punov function (see Section 1.6). These conditions require that L = 0 and assume
the stationarity of the transverse load p(¢). For the Berger system (0.3) and (0.4)
these hypotheses correspond to p = 0 and p(«, t) = p(x), i.e. to the case of plate
oscillations in a motionless stationary medium.

Thus, let us assume that the operator L is identically equal to zero and
p(t) = p in (0.1). Assume that the hypotheses of Theorem 3.1 hold. Then energy
equality (3.6) implies that

o ty
Bl ~B() = 7 [ WP des [ @, P er,  an
t t
where y(t) = S,y = (u(t), u(t)), the function u(t) is a weak solution to problem
(0.1) and (0.2) with the initial conditions ¥ = (u(; u;), and E(y) is the energy
of the system defined by formula (3.7).

Let us prove that the functional ¥(y) = E(y) —(p, u,) with y = (ug; u;)
is a Lyapunov function (for definition see Section 1.6) of the dynamical system
(6, S,). Indeed, it is evident that the functional ¥(y) is continuous on . By vir-
tue of (7.1) it is monotonely increasing. If E'(y(t,)) = £(y) for some t, > 0, then

by
J.IIU(T)||2 dt = 0.
0

Therefore, 2(t) = 0 for T € [0, {;], i.e. u(t) =% is a stationary solution to prob-
lem (0.1) and (0.2). Hence, y = (%; 0) is a fixed point of the semigroup S, .
Therefore, Theorems 1.6.1 and 6.1 give us the following assertion.

Theorem 7.1

Assume that v >0, L =0, and p € % for some G > 0. We also assume
that the function M(z) satisfies conditions (3.2) and (5.2). Then the global
attractor /b of the dynamical system (J, S,) generated by problem (0.1)
and (0.2) has the form

A=M,(N), (7.2)

where N is the set of fixed points of the semigroup S,, i.e.
N= {(u; 0): ue%, Au +M(||A1/2u||2) Au :p} , (7.3)

and M, (N) is the unstable set emanating from N (for definition see Sec-
tion 1.6).
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Exercise 7.1 Let p = 0. Prove that if the hypotheses of Theorem 7.1 hold,
then any fixed point 2 of problem (0.1) and (0.2) either equals to ze-
ro, 2 = (0; 0), or has the form 2 = (c-e,; 0), where the constant
¢ is the solution to the equation M (c2 ;) + A, = 0.

Exercise 7.2 Assume that p = 0 and M(2) = —I'+2. Then problem (0.1)
and (0.2) has a unique fixed point 2, =(0; 0) for I'<A,.

If &, <T <A, ,thenthe number of fixed points is equal to 272 +1
and all of them have the form 2z, = (w;; 0), k=0, *1, ..., ¥n,
where
-,
wy=0, wy ==+ 7 €, k=1,2,...,n
k

Exercise 7.8 Show that if the hypotheses of Exercise 7.2 hold, then the
energy F(z,,) of each fixed point 2, has the form

E(z)) =0, E(zik)=—%l(r—}\,k)2, k=1,2,..,n,
for A, << A

n+1-

Exercise 7.4 Assume that the hypotheses of Theorem 7.1 hold. Show that
if the set

Y, = {y:(uo; uy) e F: Y(y)=E(y)—(p, uy) < c} (7.4)

is not empty, then it is a closed positively invariant set of the dyna-
mical system ( J, St) generated by weak solutions to problem (0.1)
and (0.2).

Exercise 7.5 Assume that the hypotheses of Theorem 7.1 hold and the set
@C defined by equality (7.4) is not empty. Show that the dynamical
system (%, S,) possesses a compact global attractor ., =M, (A)),
where J\@ is the set of fixed points of St satisfying the condition
Y(z)<c.

Exercise 7.6 Show that if the hypotheses of Theorem 7.1 hold, then the
global minimal attractor ./, ~(for definition see Section 1.3)
of problem (0.1) and (0.2) coincides with the set /& of the fixed
points (see (7.3)).

Further we prove that if the hypotheses of Theorem 7.1 hold, then the attractor ./
of problem (0.1) and (0.2) is regular in generic case. As in Section 2.5, the corre-
sponding arguments are based on the results obtained by A. V. Babin and M. I. Vishik
(see also Section 1.6). These results prove that in generic case the number of fixed
points is finite and all of them are hyperbolic.
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Lemma 7.1.

Assume that conditions (3.2) and (5.2) are fulfilled. Then the problem
Blu] = A%u +M(||A1/2u||2)Au=p, u e D(A2+0), (7.5)

possesses a solution for any p € %, where ¢ 2 0. If B is a bounded set
in % , then its preimage S@‘l(%) is bounded in F,, .= D(A*T9). If B
is a compact in %, then B YB) is a compact in D(A+0), ie. the
mapping b is proper.

Proof.
We follow the line of arguments given in the proof of Lemma 2.5.3. Let us
consider the continuous functional

W(u)= 2{(Au Au +J%(||A1/2u” )} (p, u) (7.6)

on # = D(A), where Jb(z J‘ M(&) dg is a primitive of the function M(2).
Equation (3.2) implies that

W) 2 LlAau? —alavzu? —b) - |atpl Jaul >

> M- afiaue -8 - (1- &) aril. .0

4 A
1 1

Thus, the functional W(w) is bounded below. Let us consider it on the subspace

»,,% , where p,  is the orthoprojector onto Lin{el, e em} as before. Since

W(u) — +oo as |Au| — oo, there exists a minimum point 2,, on the subspace

pm% . This minimum point evidently satisfies the equation

Au,, +M(H Al/2 umHZJ Au, = p,D. (7.8)

Equation (7.7) gives us that
g < ooy me{ W) e, % byl tpl

with the constants being independent of m . Therefore, it follows from (7.8)
that ”A2 umH < Cp, provided |p| < R. This estimate enables us to pass to the
limit in (7.8) and to prove that if ¢ = 0, then equation (7.5) is solvable for any
p € % . Equation (7.5) implies that

”A2+Gum” <Cp for |pls <

i.e. 71 B) is bounded in D(A%* %) if B is bounded. In order to prove that the
mapping $ is proper we should reason as in the proof of Lemma 2.5.3. We give
the reader an opportunity to follow these reasonings individually, as an exercise.
Lemma 7.1 is proved.
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Lemma 7.2

Let w e F,. Then the operator %' [u] defined by the formula
B [u]w = A2w +2M'(||A1/2u||2) (Au, w)Au +M(||A1/2u||2)Aw (7.9)

with the domain D(%'[u]) = D(A?) is selfadjoint and dimKer B'[u] <

< 00,

Proof.
It is clear that %'[w] is a symmetric operator on D(AZ). Moreover, it is
easy to verify that

| £ [u]w -A2w| < C(u) |Awl, w e D(A2), (7.10)

ie. S@’[W] is a relatively compact perturbation of the operator A2 . Therefore,
%'[u] is selfadjoint. It is further evident that

Ser B'[u] = Ker {1 +A72( % [u] —Az)}.

However, due to (7.10) the operator A~2(%'[u]—-A?) is compact. Therefore,
dim Her L' [u] < oo . Lemma 7.2 is proved.

Exercise 7.7 Prove that for any u € 971 the operator S@’[u] is bounded
below and has a discrete spectrum, i.e. there exists an orthonormal
basis { f}.} in J6 such that

Eulfy =M S, k=1,2,..., u<pg<.. limp, =oo.

n — oo

Exercise 7.8  Assume that u = c¢jey , where ¢, is a constant and e, is an
element of the basis {e, } of eigenfunctions of the operator A . Show
that %£'[u]e, = O,.e, forall k =1, 2, ... , where

I, = A§[1 + 26,€,€003Mf(c3x,€0)} F MGy )

Here Skkoz 1 for k = k and Sk}coz 0 for k # k.

As in Section 2.5, Lemmata 7.1 and 7.2 enable us to use the Sard-Smale theorem
(see, e.g., the book by A. V. Babin and M. I. Vishik [10]) and to state that the set

Py = {h e%: I[F[u]]! forall ue 55—1[1@]}

of regular values of the operator % is an open everywhere dense set in % for
c2>0.

Exercise 7.9 Show that the set of solutions to equation (7.5) is finite for
p € $oy (Hint: see the proof of Lemma 2.5.5).
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Let us consider the linearization of problem (0.1) and (0.2) on a solution u € D(Az)
to problem (7.5):
w+yw+ Blujw=0,

(7.11)

w|t:0:w0, u)|t:0:w1 )

Here %'[u] is given by formula (7.9).

Exercise 7.10 Prove that problem (7.11) has a unique weak solution on any
segment [0, T] if wy e %, w, € %, and the function M(z) e
e C2 (R,) possesses property (3.2).

Thus, problem (7.11) defines a strongly continuous linear evolutionary semigroup
T,[u] inthe space J6= %, x %, by the formula

Tlul(wgs wy) = (w(t); w(t)), (7.12)

where w(t) is a weak solution to problem (7.11).

Exercise 7.11 Let {f,} be the orthonormal basis of eigenelements of the
operator #'[u] andlet L, be the corresponding eigenvalues. Then
each subspace

F,=Lin{(fy; 0), (05 fy)} = Fb

is invariant with respect to 7, [u] . The eigenvalues of the restriction
of the operator 7, [u] onto the subspace %k have the form

2
exp {—(%i / YZ —uk>t}.
Lemma 7.3

Let L = 0. Assume that M(z) € C%(R,) possesses property (3.2). Then
the evolutionary operator S, of problem (0.1) and (0.2) is Frechét dif-
Serentiable at each fived point 7= (u; 0). Moreover, S,[u]=T,[u],
where T,[u] is defined by equality (7.12).

Proof.
Let
z(t) = S,[g+h] -7y -T,[ulh
where h=(hy; hy) € #, 7= (u; 0),and @ is a solution to equation (7.5).
It is clear that 2 (¢) = (v(t); ©(t)), where v(t) = u(t) =7 —w(t) is a weak so-
lution to problem

i +yv+A20 = F(u(t), u, w(t)),
{w yoAZy = F(u(t), 7 w(0) 1)
U|t=O=0’ U|t=O=0'
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Here

Plu(t). 7, w(t) = M(|av2al?) am - w1412 (o)) Au(r) +

+u(Javzal?) aw(e) + 20 (Jav2al )(Az, w() A7,

where () is a weak solution to problem (0.1) and (0.2) with the initial condi-
tions yy=7 +h = (W +hy; k) and w(t) is a solution to problem (7.11) with
wy=hyand w; = h;.Itis evident that

Fu(t), @, w(t)) = —M("AI/%_L”Z)AU +F1(t)—M'(||A1/2a||2)F2(t) . (7.14)

where
Fy(t) = —{M(”Al/zu(t)uzj - M(u AV2q|?) -

- (L)l - a2 ) ),

Fy(t) = (laV2u(ol? ~14127l?) Aur) - 2 (A7, w(r) A,
It is also evident that the value F(t) can be estimated in the following way
_12|2
R ()] < cl~max{|M" (2): z € [0, 62]} ‘||A1/2u(t)||2 —||A1/2u||2‘
for ¢ € [0, T'] and for |h|4 < R, where the constants ¢, and ¢, dependon T,
R ,and % . This implies that
|F1(0)] < C(T, R, 17)||A(u(zf)—ﬁ)||2 . (7.15)
Let us rewrite the value Fy(¢) in the form
Fy(t) = (u(t) +a, Au(t) —u)) A(u(t)-a) +
+]AV2 (u(t)-m)|* AT+ 2(m, Av(t)) AT .
Consequently, the estimate
|E5(0)] = C(T, R, w)lA(u(?) —@‘L)II2 +Cy(m)|Av(2)l (7.16)

holds for ¢ € [0, T'] and for |k]4 < R . Therefore, equations (7.14)—(7.16) give
us that

IF(u(t), @, w(t)l < ClAv()l +CylA(u(t) -a)?
onany segment [0, 7] . Here C; = C,(%) and Cy = Cy(T, R, @). We use conti-

nuity property (3.20) of a solution to problem (0.1) and (0.2) with respect to
the initial conditions to obtain that
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JA(u(t)—m)| < CT,RIIhII%, l e [0, T], 724 < R .
Therefore,
IF(u(t), @, wt)) < ClllAv(t)IlJrCzllhII%@

for t € [0, T] and for ||y < R. Hence, the energy equality for the solutions
to problem (7.13) gives us that

Ao @+ 1)) < a(lavel +1s0)I?)+ Il
Therefore, Gronwall’s lemma implies that
lAv(@)® + 5 )* < clalt,  te]o, 7).
This equation can be rewritten in the form
|S,[7+1] -7 —T,[@]h|, < Clnl*.
Thus, Lemma 7.3 is proved.
Exercise 7.12 Use the arguments given in the proof of Lemma 7.3 to verify

that under condition (3.2) for M(z) € C2(R,) the evolutionary
operator S, of problem (0.1) and (0.2) in J6 belongs to the class C 1

and
|5 [w1] =5; [vs]

forany ¢ > 0 and Y, € F .

B(I6, H) s C"yl_yZ"%

Exercise 7.18 Use the results of Exercises 7.7 and 7.11 to prove that for
aregular value p of the mapping # [u] the spectrum of the opera-
tor T [u] does not intersect the unit circumference while the eigen-
subspace £, which corresponds to the spectrum outside the unit
disk does not depend on ¢ and is finite-dimensional.

The results presented above enable us to prove the following assertion (see Chap-
ter V of the book by A. V. Babin and M. I. Vishik [10]).

Theorem 7.2

Assume that the hypotheses of Theorem 7.1 hold. Then there exists an
open dense set R, in % such that the dynamical system (J6, S,) possesses
a regular global attractor A for every p € R, 1. e.

N
S = U M, (zj),
j=1
where M, (zjj is the unstable manifold of the evolutionary operator S, ema-
nating from the fixed point Zj. Moreover, each set M, (zj) is a finite-dimen-
sional surface of the class C!.
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In the case of a zero transverse load (p = 0) Theorem 7.2 is not applicable in gene-
ral. However, this case can be studied by using the structure of the problem. For exam-
ple, we can guarantee finiteness of the set of fixed points if we assume (see Exer-
cise 7.1) that the equation M (c? M)+ A, =0, first, is solvable with respect to ¢
only for a finite number of the eigenvalues A . and, second, possesses not more than
a finite number of solutions for every k. The solutions to equation (7.5) are either
u=0,or u=cyeg,, where ¢, and k satisfy M(c% 7%0)4'7%0 = 0. The eigen-
values of the operator %'[u] have the form

O, = A+MO0)4, if =0

and
M, = M[M—M; 28y, o, 00 M (€ %)J it 7= oey,

Therefore, the result of Exercise 7.11 implies that the fixed points are hyperbolic
if all the numbers [1, are nonzero, i.e. if

M(0)# ~dy, k=120 dy#ly ko ky; M(Cgkko)io

for all ¢, and k; such that M(c% A )+ Kko = 0. In particular, if M(z)=-T +z,
then for any real I" there exists a finite number of fixed points (see Exercise 7.2)
and all of them are hyperbolic, provided that I" # 7% for all £ and the eigenvalues
kj satisfying the condition kj < I' are simple. Moreover, we can prove that for
A, <T'<A,.; the unstable manifold M, (z,), k=0, £1, ..., ¥n, emanating
from the fixed point z;, (see Exercise 7.2) possesses the property

dimM, (z,) =7, dimM, (z)) = k| -1.

§ 8 On Singular Limit in the Problem
of Oscillations of a Plate

In this section we consider problem (0.1) and (0.2) in the following form:
pi@+yu+A2u+M(||A1/2u||2)Au+Lu =p, t>0, (8.1

u’t:():uO’ a’tz():ul. (8.2)

Equation (8.1) differs from equation (0.1) in that the parameter [t > 0 is intro-
duced. It stands for the mass density of the plate material. The introduction of a new
time t' =t /ﬁl transforms equation (8.1) into (0.1) with the medium resistance pa-
rameter y'= '}//«/}_,l instead of y. Therefore, all the above results mentioned above
remain true for problem (8.1) and (8.2) as well.
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The main question discussed in this section is the asymptotic behaviour of the
solution to problem (8.1) and (8.2) for the case when the inertial forces are small
with respect to the medium resistance forces << y. Formally, this assumption
leads to a quasistatic statement of problem (8.1) and (8.2):

v+ A2u +M(||A1/2u||2) Au+Lu=p, t>0, (8.3)

u|t=0= Uy - (8.4)
Here we prove that the global attractor of problem (8.1) and (8.2) is close to the glo-
bal attractor of the dynamical system generated by equations (8.3) and (8.4)

in some sense.
Without loss of generality we further assume that ¥y = 1. We also note that
problem (8.3) and (8.4) belongs to the class of equations considered in Chapter 2.

Exercise 81 Assume that conditions (3.2) and (3.3) are fulfilled and
D € %, = H . Show that problem (8.3) and (8.4) has a unique mild
(in #, = D(A)) solution on any segment [0, T'], i.e. there exists
a unique function u(t) € C(0, T; %) such that

u(t) = eA% Uy —

t

— Je‘Az(t—T) {M(||A1/2u(r)||2) Au(t)+ Lu(t) —p} dr .
0
(Hint: see Theorem 2.2.4 and Exercise 2.2.10).

Let us consider the Galerkin approximations of problem (8.3) and (8.4):
U, (8)+ A2, (1) + M(HAUZ um(t)Hz) Au,, +p,, Lu, (1) =D, 0, (85)

U, (0) = D0, (8.6)
where p,, is the orthoprojector onto the first 7 eigenvectors of the operator A and
u,,(t) € Lin{e,, ..., e,,}.

Exercise 82 Assume that conditions (3.2) and (3.3) are fulfilled and
p € %,=H. Then problem (8.5) and (8.6) is solvable on any seg-
ment [0, 7] and

[I&a%(] |A(u(t) —w,, (1) >0, m—>oo. (8.7

Theorem 8.1

Let p € H and assume that conditions (3.2), (5.2), and (5.3) are ful-
filled. Then the dynamical system (971, Sz) generated by weak solutions to
problem (8.3) and (8.4) possesses a compact connected global attractor .
This attractor is a bounded set in ¥, , B Jor 0 < B <1 and has a finite frac-
tal dimension.
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Proof.

First we prove that the system (§71, Sz) is dissipative. To do that we consider
the Galerkin approximations (8.5) and (8.6). We multiply (8.5) by um(t) scalarwise
and find that

L S (0 + A, (O + M| 412, (02 ) |42, (0 +

F (L (1), 2, (1)) = (25 Uy (1)) -
Using equation (5.2) we obtain that

! dt”um(t 2+ ||Au,m(t)||2+alﬂ/(o(uAl/Zum(t)“z) <

2+2
< g —dg HAl/z um(t)H e _(Lum(t)> um(t)) + (p’ um(t)) :
We use equation (5.3) and reason in the same way as in the proof of Theorem 5.1 to
find that

5 i ol + 0o (e, +%(\|Al/2u )+ bafat/2u, [ < b, @)

with some positive constants b,, =0, 1, 2. Multiplying equation (8.5) by u,,(t)
we obtain that

L (01, (0) + [ + (L1, (0, 2 (1)) = (05 2,(1)),

where
M(u) = lAul® + a6(14120)2).
It follows that
S0, (0) + i (O < 201+ A0, (1) (8.9)

If we summarize (8.8) and (8.9), then it is easy to find that

d
&l 0+ e i, < .
This implies that
O 11000 < {11,000} ' .

We use (8.7) to pass to the limit as 72 — oo and to obtain that

lu(OF +T((®)) < {”uouz’LH(uo)} ey

This implies the dissipativity of the dynamical system (911, St) generated by prob-
lem (8.3) and (8.4). In order to complete the proof of the theorem we use Theorem
2.4.1.
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We note that the dissipativity also implies that the dynamical system (971, St) pos-
sesses a fractal exponential attractor (see Theorem 2.4.2).

Exercise 83 Assume that the hypotheses of Theorem 8.1 hold and L = 0.
Show that for generic p € H the attractor of the dynamical system
(./6*1, Sz) generated by equations (8.3) and (8.4) is regular (see the
definition in the statement of Theorem 7.2). Hint: see Section 2.5.

We assume that M(2) € C2(IR,) and conditions (3.2), (5.2), (5.3), and (5.10) are
fulfilled. Let us consider the dynamical system (%1, St’“l ) generated by problem
(8.1) and (8.2) in the space J6;, = %, x ¥, = D(Az) x D(A). Lemma 5.2 and Exer-
cise 5.5 imply that (%1, Sz“) possesses a compact global attractor J%“ for any
wu>0.

The main result of this section is the following assertion on the closeness of
attractors of problem (8.1) and (8.2) and problem (8.3) and (8.4) for small u > 0.

Theorem 8.2
Assume that M(z) € CZ(IR{+) and conditions (3.2), (6.2), (5.3), and
(5.10) concerning M(z), L, and p are fulfilled. Then the equation

lim sup{disty(y, A" ): y € J%H} =0 (8.10)

nw—>0

is valid, where A u is a global attractor of the dynamical system (%1, St“)
generated by problem (8.1) and (8.2),

A= {(zo; 2)): 2ge A, 2= —AzzO—M(”Al/zzonz) Azy—Lz, +p} :

Here /& is a global attractor of problem (8.3) and (8.4) in ¥ and
disty(y, A) is the distance between the element y and the set A in the
space Fb=F x %,. We remind that Y = 1 in equations (8.1) and (8.3).

The proof of the theorem is based on the following lemmata.

Lemma 8.1

The dynamical system (%1, StH ) is uniformly dissipative in b with
respect to e (0, uy] for some g, >0, ie there exists |, >0 and
R >0 such that for any set B < J6, which is bounded in J6 we have

S'B {y:(uo; wy): pfus? + A SRZ} (8.11)

Sorall t > t(B, n), ne(0,py].
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Proof.
We use the arguments from the proof of Theorem 5.1 slightly modifying
them. Let

V(y)=E(y)+v®(y), u=_(uy up),
where

B(y) = L(nfus? + Jaugl + a0 (ja2u )

and

1 2
D(y) = 1lug, uy)+ 5wl
Asin the proof of Theorem 5.1 it is easy to find that the inequalities

d
SE®) < —ul® +§laul® + ¢ Ja2ul? + ¢, (8.12)

and
o) < ulal? -L1au® - oy (|av2u)?) -
_ 1/2,,12+2a 2
as A2 +Cylull® + Cy (8.13)

are valid for y(t) = (u(t); u(t)) = St“yo. Here € > 0 is an arbitrary number,

the constants a; and ¢; do not depend on . Moreover, it is also evident that

1 2 2 2
V(y) < L Bo(pfusf? +[Augl? + 6(JAV 20 |?)) + B, (8.14)
for u e (0, py] and for any p,. Here P, and f3; do not depend on p e
e (0, “0] and v < 1. Equations (8.12)—(8.14) lead us to the inequality
IV +svw(t) < ~L(1-(6By+ v))lil? -
~Liv=8B,-o)laul® ~(va, -220) e Ja2ul?) + @
2 0 1 2 ’

where the constant % does not depend on [ € (0, [i,] . If we choose L1, small
enough, then we can take 6 >0 and v > 0 independent of u € (0, p,] and
such that

d%V(y(t)) V(Y1) < Dy, (8.15)

where 9251 > 0 does not depend on Ll € (0, “0] . Moreover, we can assume
(due to the choice of i) that

V() > By(uli(o)? +1au()i?) ¢, (8.16)

where 5 and C do not depend on € (0, L] . Using equations (8.14)—(8.16)
we obtain the assertion of Lemma 8.1.
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Lemma 8.2

Let u(t) be a solution to problem (8.1) and (8.2) such that |Au(t)| < R
Sorall t > 0. Then the estimate

t
! J (ol e P ar < (uhi(0)l? +1Au(0)I2) Pt + C(R, B)
0

is valid for t > 0, where P is a positive constant such that pu < 1/2.

Proof.
It is evident that the estimate

M(||A1/2u(t)||2) Au(t) + Lu(t) —pH < Cp

holds, provided |Au(t)| < R . Therefore, equaiton (8.1) easily implies the esti-
mate

b3 (uha(l +1au() + il < o

for the solution % (t). We multiply this inequality by 2 exp([3¢). Then by virtue
of the fact that |Au(t)| < R we have

a%[eﬁt(unu(t)nz N IIAu(t)IIZ)}Jr%Hu(t)HZ ePt < Cp gebt

for B < 1/2. We integrate this equation from 0 to ¢ to obtain the assertion

of the lemma.

Lemma 8.3

Let u(t) be a solution to problem (8.1) and (8.2) with the initial condi-
tions (uy; u;) € ;=% x ¥ and such that |Au(t)]l <R for t 2 0. Then
the estimate

(02 + 14w (D) < 041+ 1) +14w(0)2) ¢ P+ 0y 817)

is valid for the function w(t)=u(t). Here pe (0, U], M, is small
enough, BO>0, and the numbers C; and Cq do mot depend on
1e (0, pol.

Proof.
Let us consider the function

w(t) = Ll ()12 + 14w (0)12) + v (p(ab, w)+ Llwl?)

for v > 0. It is clear that
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< Lu@evplil + (L4 vig® Jlawl® . (8.18)

4 Since the function w(t) is a weak solution to the equation obtained by the dif-
ferentiation of (8.1) with respect to ¢ (cf. (4.15)):

(1) + b (t) + A2w(t) + M(1A1V2u (1)) Aw (1) + Luw(t) = F(1),
where
F(t) = 20 (A2 u () ) (Au (o). w(t)) Au(r),
then we have that

d%W(t) =~ (1 —vwlwl? —mJar2u@)2)(Aw, w) —(Lw, w)+(F, w) -

. V{HAszz+M(||Al/2u(t)||2)|L41/2w||2+(Lw, 0)—(F. w)}.
It follows that

d ,
Sy < =(§-vulel = Lv - paul + vl

We take v = Cj(gl)+ 2 and choose [, small enough to obtain with the help
of (8.18) that

W)+ Bowr) < Clw@l, 120, e (0, uyl,

where the constants BO > 0 and C do not depend on [L. Consequently,
¢
w(t) < woye Pl vc J la(o)2e PP e
0

Therefore, estimate (8.17) follows from equation (8.18) and Lemma 8.2. Thus,
Lemma 8.3 is proved.

Lemma 8.3 and equations (8.11) imply the existence of a constant £; such that for
any bounded set B in J, there exists t, = t,(B, 1) such that

wla(IF +l1An)l* < RZ, e (0, wy), (8.19)

where % (t) is a solution to problem (8.1) and (8.2) with the initial conditions from
B . However, due to (8.1) equations (8.11) and (8.19) imply that ||A2u(t)|| < C for
t > ty(B, n).Thus, there exists R, > 0 such that
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wla()l? + [Aa(e)l? +1A2u@)? < R, t21ty(B, w), (8.20)

where w(t) is a solution to system (8.1) and (8.2) with the initial conditions from the
bounded set B in J,, Ry does not depend on pe (0, U,), and p, is small
enough. Equation (8.20) and the invariance property of the attractor M imply the
estimate

Bl (O +[Adu (O] + |42u, () < RS (8:21)

for any trajectory St Yy = (u (1); H(t)) lying in féu forall t € (—o0, 00).
Let us prove (8.10). Itis ev1dent that there exists an element Y= (uo W U u)
from J%“ such that

d(y ) dist ., (y“, A" ) = sup{disty(y, A ): y e J%“} .

Let yu(t) = (u“(t); uu(t)) be a trajectory of system (8.1) and (8.2) lying in the at-
tractor b, and such that y“(O) =Yy Equation (8.21) implies that there exist
asubsequence {y, (¢)} and an element y(t)=(wu(t); u(t)) € L®(—o0, 05 Fb))
such that for any segment [a, b] the sequence y“/n(t) converges to y(¢) in the
*-weak topology of the space L*(a, b; J,) as p,— 0. Equation (8.21) gives us
that the subsequence { Au“n(t)} is uniformly continuous and uniformly bounded
in H . Therefore (cf. Exercise 1.14),

lim max ”A u(t))” =0 (8.22)

w,—>0 te [a, b]

for any a < b . However, it follows from (8.21) that u ||uu(t)|| — 0 as © — 0. There-
fore, we pass to the limit it — 0 in equation (8.1) and obtain that the function u(t)
is a bounded (on the whole axis) solution to problem (8.3) and (8.4). Hence, it lies in
the attractor / of the system (%, S,). With the help of (8.21) and (8.22) it is easy
to find that

d(yun) < Hyun -0, w,—>0,

where

yOZ(u(O); —Au(0) — (”Al/2 u(0 )||2)Au0—Lu0+ p) e A .

Thus, Theorem 8.2 is proved.
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§ 9 On Inertial and Approximate
Inertial Manifolds

The considerations of this section are based on the results presented in Sections 3.7,
3.8, and 3.9. For the sake of simplicity we further assume that p(t) = g € H.

Theorem 9.1

Assume that conditions (3.2), (5.2), and (5.3) are fulfilled. We also as-
sume that eigenvalues of the operator A possess the properties

A
inf = >0 and Ay = ckP(1+0(1),  p>0, k>, (9.1
N Anil

Jor some sequence {N(k)} — co. Then there exist numbers 7, > 0 and k;> 0
such that the conditions

v>7% oand kzzxf(k)u_kzgv(k) > ko Ay(k)+1 9.2)

imply that the dynamical system (6, S,) generated by problem (0.1) and
(0.2) possesses a local inertial manifold, i.e. there exists a finite-dimen-
stonal manifold b in F6= F, x F, of the form
Mo ={y=w+D(w): wePIHH, Ow)e (1-P)H}, (9.3)
where (- is a Lipschitzian mapping from PJ into (1-P)J6 and P is a
Sinite-dimensional projector in F6. This manifold possesses the properties:
1) for any bounded set B in J and for t > t,(B)

sup {dist(S,y, Mb): y € B} < Cexp{-P(t—1ty,(B))} ; (9.4)

2) there exists R > 0 such that the conditions y € /b and ||Sty||% < R for
t € [0, t,] imply that S,y € Jb for t € [0, ty];

3) if the global attractor of the system (6, S,) exists, then the set b
contains it (see Theorem 6.1).

Proof.
Conditions (3.2), (5.2), and (5.3) imply (see Theorem 5.1) that the dynamical
system (b, S,) is dissipative, i.e. there exists B > 0 such that
”Szy”% <R, wyeB, 2 tO(B) (9.5)
for any bounded set B € J4. This enables us to use the dynamical system (%, Sz)
generated by an equation of the type
{d+yu+A2u = Bp(u) ,

(9.6)

u‘tZO:uo, u| =uy,

t=0
to describe the asymptotic behaviour of solutions to problem (0.1) and (0.2). Here

By(u) = 2((2R) 14wl {g ~m(Jav2ul?) Au —Lu}
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and ¥ (s) is an infinitely differentiable function on R + Dossessing the properties
0<yx(s)<1; Ix'(s) <2;
x(s)=1, 0<s<1; x(s)=0, s=2.
It is easy to find that there exists a constant Cp, such that
[Be(w)] < Cr
and
|Br(uy) =Bp(us)] < CplA(u;—uy)|-
Therefore, we can apply Theorem 3.7.2 to the dynamical system (%, S’t) generated
by equation (9.6). This theorem guarantees the existence of an inertial manifold of
the system (%, St) if the hypotheses of Theorem 9.1 hold. However, inside the dissi-

pativity ball {y: |yly < R} problem (9.6) coincides with problem (0.1) and (0.2).
This easily implies the assertion of Theorem 9.1.

Exercise 9.1 Show that the hypotheses of Theorem 9.1 hold for the prob-
lem on oscillations of an infinite panel in a supersonic flow of gas:

T
6?u+y6tu+6§u+ F—J-yaxu(x, t)]2dx 6§u+ po,u=g(x), xe(0,m),t>0
0
2
u|x=0, r=m_ a=7€u|gc=0, x=7'c:0’ u|t=0=u0(x), 8tu‘t=02 ul(x)

Here I' and p are real parameters and g(z) e L2(0, 7).

It is evident that the most essential assumption of Theorem 9.1 that restricts its ap-
plication is condition (9.2). In this connection the following assertion concerning the
case when problem (0.1) and (0.2) possesses a regular attractor is of some interest.

Theorem 9.2
Assume that in equation (0.1) we have L=0 and p(t)=ge
e Lin{e,, ..., eNO} Jor some N,. We also assume that conditions (3.2) and

(5.2) are fulfilled. Then there exists N| 2 N, such that for all N =2 N, the
subspace

Fy = Lin{(e,; 0), (0; e,): k=1, 2, ..., N} 9.7

1S an tnvariant and exponentially attracting set of the dynamical system
(6, S,) generated by problem (0.1) and (0.2):

—H(=10(B))

dist(S,y, Fby) < CB”(I—PN)y yeB 9.8)

5% €
Jor 1t >t (B) and for any bounded set B in J. Here Py is the orthoprojector
onto Fy;.
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Proof.
Since pyyg =g for N > N, where p,; is the orthoprojector onto the span of
{el, ey €y }, the uniqueness theorem implies the invariance of %N. Let us prove

attraction property (9.8). It is sufficient to consider a trajectory (w(t), 2(¢)) lyingin
the ball of dissipativity {%: |yl < R}. Evidently the function v(t) = (1—pp)u(t)
satisfies the equation

b+ y0 + A2 +M(||A1/2u(t)||2) Av =0,
(9.9

V|, o= (1=pp)ug, V|,_o=1-pp)u; -
It is also clear that the conditions
el o)

hold in the ball of dissipativity. This fact enables us to use Theorem 2.2 with b(t) =
=M (||A1/ 2u (t)||2) . In particular, equation (2.23) guarantees the existence of a num-
ber N| > N, which depends on y, b,(R),and b;(R) and such that

< by(R)

< by(R) and ’%M(||A1/2u(t)||2)

_7,
()l = |(1-By)u(D)] < SBIA-Bu()e ©', 150,

for all N> N, , where F; is the orthoprojector onto J#,, and y(t) = (v(t), v(t)).
This implies estimate (9.8). Theorem 9.2 is proved.

Exercise 9.2 Assume that the hypotheses of Theorem 9.2 hold. Show that
for any semitrajectory S,y there exists an induced trajectory in
Fby; , 1.e. there exists § € Fy such that
Y
_ —7(t=1p)
”Sty —Sty”% < Cpe
for t > t, and for some ¢, = ¢, (¥l ) -

Exercise 9.8 Write down an inertial form of problem (0.1) and (0.2) in the
subspace %N, provided the hypotheses of Theorem 9.2 hold. Prove
that the inertial form coincides with the Galerkin approximation of
the order N of problem (0.1) and (0.2).

Exercise 94 Show that if the hypotheses of Theorem 9.2 hold, then the
global attractor of problem (0.1) and (0.2) coincides with the global
attractor of its Galerkin approximation of a sufficiently large order.

Let us now turn to the question on the construction of approximate inertial mani-
folds for problem (0.1) and (0.2). In this case we can use the results of Section 3.8
and the theorems on the regularity proved in Sections 4 and 5.
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Exercise 9.5 Assume that M(2) e C™TY(R,), m > 1 and
B(u) = p—M(”Al/Zqu) Au—Lu,

where p € H and u € @(A) = % . Show that the mapping B( - )
has the Frechét derivatives B(*) up to the order [ inclusive. Moreo-
ver, the estimates

k
B [u]; wy, ..., wp)| < CRH”ij" (9.10)
=1
and
“(B(k)[u] -BO[w]; wy, ..., wk)H <
k
< CplA(u—w)l | JlAwf (9.11)
=1
are valid, where k=0, 1, ..., m, |Au| < R, |Au*| < R, and
w; € @(A). Here (BF)[u]; Wy, ..., wyy is the value of the
Frechét derivative on the elements w, ..., w;, .

We consider equations (9.10) and (9.11) as well as Theorem 5.3 which guarantees
nonemptiness of the classes Lm’ p corresponding to the problem considered when
R > 0 islarge enough. They enable us to apply the results of Section 3.8.

Let P be the orthoprojector onto the span of elements {el, e, € N} in H and
let @ = 1—P . We define the sequences {%,,(p, D)} o and {l(p, D)} o of map-
pings from PH x PH into @ H by the formulae

ho(p, P) = lo(p, D) =0, 9.12)

Ay (p. p) = ag=My_y(p, D) Ahy,_y = QL(p+1y_y) “Vhyk)

n= n=

—(Oplg_1s PY +(Oply_ys YD+ A%p —by+ M, _,(p, P)Ap+ PL(p+hy_,)),(9.13)
lk(ps p) = <6ph/k_1; D) —
= (8l _ys YD+ AP —by+ My _y(p, D)Ap+PL(p+hy_1)).  (9.14)

Here M,(p, p) = M(”Al/zp”2 + ”Al/zhk( , p)“z), Sp and Sp are the Frechét de-
rivatives with respect to the corresponding variables, a,= g, b, = Pg, where
g = p(t) is a stationary transverse load in (0.1), k=1, 2, ..., m, the numbers
v(k) are chosen to fulfil the inequality ¥ —1 < v(k) < k.

Exercise 9.6 Evaluate the functions %, (p, p) and I;(p, p).
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Theorem 3.8.2 implies the following assertion.

Theorem 9.3

Assume that p(t)=ge H, M(z) e C"T(R,), m > 2, and conditions
(3.2), (6.2), and (5.3) are fulfilled. Then forall k =1, ..., m the collection of
mappings (hn, ln) given by equalities (9.12)—(9.14) possesses the properties

1) there exist constants M;= M;(n, p) and L;(n, p), j=1, 2 such that

|42, (g Do) < My, AL, (0. Do)| < My,
|42, (01, D1) =y (Dg, D2))| < Ly(|A2(0)—po)| + [A(D1 = D5)]),

[AQ (215 1) =Ly (Dg D2))| < La([A%(0) = py)| + [AB1 = Do),
Jor all p; and pj from PH and such that

|42 )? + 4B, < p, =012, p>0;

2) for any solution u(t) to problem (0.1) and (0.2) which satisfies com-
patibility conditions (4.3) with | = m the estimate

1/2
{laetuo) O + ) -m, ) = €55,
is valid for n < m—1 and for t large enough. Here
(1) = p(8) +h, (0(2), B(1))

(1) = p(t) + L, (p(1), P(1))
A N S the N-th eigenvalue of the operator A and the constant C, de-
pends on the radius of dissipativity.

In particular, Theorem 9.3 means that the manifold
A, = {(p+h,(p, p); D+l,(p, P)): p,DePH}

attracts sufficiently smooth trajectories of the dynamical system (%, St) generated
by problem (0.1) and (0.2) into a small vicinity (of the order C, 7‘J_\/n+1 ) of b, .

Exercise 9.7 Assume that the hypotheses of Theorem 6.3 hold (this theo-
rem guarantees the existence of the global attractor /4 consisting of
smooth trajectories of problem (0.1) and (0.2)). Prove that

sup{dist(y, 4b,): y € A} < C, A%,
for all » < m—1 (the number m is defined by the condition

M(z) e C™THRL)).

Exercise 9.8 Prove the analogue of Theorem 3.9.1 on properties of the non-
linear Galerkin method for problem (0.1) and (0.2).
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