NATURAL
OPERATIONS
IN
DIFFERENTIAL
GEOMETRY

Ivan Kolar
Peter W. Michor
Jan Slovak

Mailing address: Peter W. Michor,
Institut fiir Mathematik der Universitat Wien,
Strudlhofgasse 4, A-1090 Wien, Austria.

Ivan Koléar, Jan Slovak,
Department of Algebra and Geometry
Faculty of Science, Masaryk University
Janackovo ndm 2a, CS-662 95 Brno, Czechoslovakia

Electronic edition. Originally published by Springer-Verlag, Berlin Heidelberg
1993, ISBN 3-540-56235-4, ISBN 0-387-56235-4.

Typeset by ApS-TEX



TABLE OF CONTENTS

PREFACE
CHAPTER I.
MANIFOLDS AND LIE GROUPS
. Differentiable manifolds
. Submersions and immersions
. Vector fields and flows
. Lie groups R
. Lie subgroups and homogeneous spaces
CHAPTER 1I.
DIFFERENTIAL FORMS
6. Vector bundles
7. Differential forms .
8. Derivations on the algebra of dlﬁerentlal forms
and the Frolicher-Nijenhuis bracket
CHAPTER III.
BUNDLES AND CONNECTIONS
9. General fiber bundles and connections
10. Principal fiber bundles and G-bundles
1. Principal and induced connections
CHAPTER IV.
JETS AND NATURAL BUNDLES
12. Jets
13. Jet groups . .
14. Natural bundles and operators
15. Prolongations of principal fiber bundles
16. Canonical differential forms .
17. Connections and the absolute dlﬁerentlatlon
CHAPTER V.
FINITE ORDER THEOREMS
18. Bundle functors and natural operators
19. Peetre-like theorems .
20. The regularity of bundle functors
21. Actions of jet groups .
22. The order of bundle functors
23. The order of natural operators
CHAPTER VI

N —

CUks W

METHODS FOR FINDING NATURAL OPERATORS

24. Polynomial GL(V)-equivariant maps

25. Natural operators on linear connections, the exterlor dlfferentlal

26. The tensor evaluation theorem

27. Generalized invariant tensors

28. The orbit reduction .
29. The method of differential equatlons

Electronic edition of: Natural Operations in Differential Geometry, Springer-Verlag, 1993

—

16
30
41

49
49
61

76
76
86
99

. 212
. 213
. 220
. 223
. 230
. 233
. 245



vi

CHAPTER VII.
FURTHER APPLICATIONS .
30. The Frolicher-Nijenhuis bracket
31. Two problems on general connections
32. Jet functors . S
33. Topics from Rlemannlan geometry
34. Multilinear natural operators
CHAPTER VIII.
PRODUCT PRESERVING FUNCTORS
35. Weil algebras and Weil functors .
36. Product preserving functors
37. Examples and applications
CHAPTER IX.
BUNDLE FUNCTORS ON MANIFOLDS
38. The point property
39. The flow-natural transformatlon
40. Natural transformations
41. Star bundle functors
CHAPTER X.
PROLONGATION OF VECTOR FIELDS AND CONNECTIONS
42. Prolongations of vector fields to Weil bundles
43. The case of the second order tangent vectors
44. Induced vector fields on jet bundles
45. Prolongations of connections to F'Y — M
46. The cases FY — FM and FY — Y
CHAPTER XI.
GENERAL THEORY OF LIE DERIVATIVES
47. The general geometric approach
48. Commuting with natural operators
49. Lie derivatives of morphisms of fibered mamfolds
50. The general bracket formula
CHAPTER XII.
GAUGE NATURAL BUNDLES AND OPERATORS
Gauge natural bundles
2. The Utiyama theorem .
Base extending gauge natural operators
Induced linear connections on the total space
of vector and principal bundles
References .
List of symbols .
Author index
Index

w

—_

w

v Ot Ot Ot
[\

Electronic edition of: Natural Operations in Differential Geometry, Springer-Verlag, 1993

. 249

250

. 255
. 259
. 265
. 280

. 296
. 297

308

. 318

. 329
. 329

336

. 341
. 345

. 350
. 351
. 357
. 360
. 363
. 369

376

. 376
. 381
. 387
. 390

. 394
. 394
. 399
. 405

. 409
. 417
. 428
. 429
. 431



PREFACE

The aim of this work is threefold:

First it should be a monographical work on natural bundles and natural op-
erators in differential geometry. This is a field which every differential geometer
has met several times, but which is not treated in detail in one place. Let us
explain a little, what we mean by naturality.

Exterior derivative commutes with the pullback of differential forms. In the
background of this statement are the following general concepts. The vector
bundle A¥T*M is in fact the value of a functor, which associates a bundle over
M to each manifold M and a vector bundle homomorphism over f to each local
diffeomorphism f between manifolds of the same dimension. This is a simple
example of the concept of a natural bundle. The fact that the exterior derivative
d transforms sections of A*T* M into sections of A*T1T* M for every manifold M
can be expressed by saying that d is an operator from A*T*M into AT+ M.
That the exterior derivative d commutes with local diffeomorphisms now means,
that d is a natural operator from the functor A¥T* into functor A¥*1T*. If k > 0,
one can show that d is the unique natural operator between these two natural
bundles up to a constant. So even linearity is a consequence of naturality. This
result is archetypical for the field we are discussing here. A systematic treatment
of naturality in differential geometry requires to describe all natural bundles, and
this is also one of the undertakings of this book.

Second this book tries to be a rather comprehensive textbook on all basic
structures from the theory of jets which appear in different branches of dif-
ferential geometry. Even though Ehresmann in his original papers from 1951
underlined the conceptual meaning of the notion of an r-jet for differential ge-
ometry, jets have been mostly used as a purely technical tool in certain problems
in the theory of systems of partial differential equations, in singularity theory,
in variational calculus and in higher order mechanics. But the theory of nat-
ural bundles and natural operators clarifies once again that jets are one of the
fundamental concepts in differential geometry, so that a thorough treatment of
their basic properties plays an important role in this book. We also demonstrate
that the central concepts from the theory of connections can very conveniently
be formulated in terms of jets, and that this formulation gives a very clear and
geometric picture of their properties.

This book also intends to serve as a self-contained introduction to the theory
of Weil bundles. These were introduced under the name ‘les espaces des points
proches’ by A. Weil in 1953 and the interest in them has been renewed by the
recent description of all product preserving functors on manifolds in terms of
products of Weil bundles. And it seems that this technique can lead to further
interesting results as well.

Third in the beginning of this book we try to give an introduction to the
fundamentals of differential geometry (manifolds, flows, Lie groups, differential
forms, bundles and connections) which stresses naturality and functoriality from
the beginning and is as coordinate free as possible. Here we present the Frélicher-
Nijenhuis bracket (a natural extension of the Lie bracket from vector fields to
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2 Preface

vector valued differential forms) as one of the basic structures of differential
geometry, and we base nearly all treatment of curvature and Bianchi identities
on it. This allows us to present the concept of a connection first on general
fiber bundles (without structure group), with curvature, parallel transport and
Bianchi identity, and only then add G-equivariance as a further property for
principal fiber bundles. We think, that in this way the underlying geometric
ideas are more easily understood by the novice than in the traditional approach,
where too much structure at the same time is rather confusing. This approach
was tested in lecture courses in Brno and Vienna with success.

A specific feature of the book is that the authors are interested in general
points of view towards different structures in differential geometry. The modern
development of global differential geometry clarified that differential geomet-
ric objects form fiber bundles over manifolds as a rule. Nijenhuis revisited the
classical theory of geometric objects from this point of view. Each type of geo-
metric objects can be interpreted as a rule F' transforming every m-dimensional
manifold M into a fibered manifold FM — M over M and every local diffeo-
morphism f : M — N into a fibered manifold morphism Ff : FM — FN over
f. The geometric character of F is then expressed by the functoriality condition
F(go f) = Fgo Ff. Hence the classical bundles of geometric objects are now
studied in the form of the so called lifting functors or (which is the same) natu-
ral bundles on the category M f,, of all m-dimensional manifolds and their local
diffeomorphisms. An important result by Palais and Terng, completed by Ep-
stein and Thurston, reads that every lifting functor has finite order. This gives
a full description of all natural bundles as the fiber bundles associated with the
r-th order frame bundles, which is useful in many problems. However in several
cases it is not sufficient to study the bundle functors defined on the category
M f,. For example, if we have a Lie group G, its multiplication is a smooth
map g : G x G — G. To construct an induced map Fu : F(G x G) — FG,
we need a functor F' defined on the whole category M f of all manifolds and
all smooth maps. In particular, if F' preserves products, then it is easy to see
that F'u endows F'G with the structure of a Lie group. A fundamental result
in the theory of the bundle functors on M f is the complete description of all
product preserving functors in terms of the Weil bundles. This was deduced by
Kainz and Michor, and independently by Eck and Luciano, and it is presented in
chapter VIII of this book. At several other places we then compare and contrast
the properties of the product preserving bundle functors and the non-product-
preserving ones, which leads us to interesting geometric results. Further, some
functors of modern differential geometry are defined on the category of fibered
manifolds and their local isomorphisms, the bundle of general connections be-
ing the simplest example. Last but not least we remark that Eck has recently
introduced the general concepts of gauge natural bundles and gauge natural op-
erators. Taking into account the present role of gauge theories in theoretical
physics and mathematics, we devote the last chapter of the book to this subject.

If we interpret geometric objects as bundle functors defined on a suitable cat-
egory over manifolds, then some geometric constructions have the role of natural
transformations. Several others represent natural operators, i.e. they map sec-
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Preface 3

tions of certain fiber bundles to sections of other ones and commute with the
action of local isomorphisms. So geometric means natural in such situations.
That is why we develop a rather general theory of bundle functors and natural
operators in this book. The principal advantage of interpreting geometric as nat-
ural is that we obtain a well-defined concept. Then we can pose, and sometimes
even solve, the problem of determining all natural operators of a prescribed type.
This gives us the complete list of all possible geometric constructions of the type
in question. In some cases we even discover new geometric operators in this way.

Our practical experience taught us that the most effective way how to treat
natural operators is to reduce the question to a finite order problem, in which
the corresponding jet spaces are finite dimensional. Since the finite order natural
operators are in a simple bijection with the equivariant maps between the corre-
sponding standard fibers, we can apply then several powerful tools from classical
algebra and analysis, which can lead rather quickly to a complete solution of the
problem. Such a passing to a finite order situation has been of great profit in
other branches of mathematics as well. Historically, the starting point for the
reduction to the jet spaces is the famous Peetre theorem saying that every linear
support non-increasing operator has locally finite order. We develop an essential
generalization of this technique and we present a unified approach to the finite
order results for both natural bundles and natural operators in chapter V.

The primary purpose of chapter VI is to explain some general procedures,
which can help us in finding all the equivariant maps, i.e. all natural operators of
a given type. Nevertheless, the greater part of the geometric results is original.
Chapter VII is devoted to some further examples and applications, including
Gilkey’s theorem that all differential forms depending naturally on Riemannian
metrics and satisfying certain homogeneity conditions are in fact Pontryagin
forms. This is essential in the recent heat kernel proofs of the Atiyah Singer
Index theorem. We also characterize the Chern forms as the only natural forms
on linear symmetric connections. In a special section we comment on the results
of Kirillov and his colleagues who investigated multilinear natural operators with
the help of representation theory of infinite dimensional Lie algebras of vector
fields. In chapter X we study systematically the natural operators on vector fields
and connections. Chapter XI is devoted to a general theory of Lie derivatives,
in which the geometric approach clarifies, among other things, the relations to
natural operators.

The material for chapters VI, X and sections 12, 30-32, 47, 49, 50, 52-54 was
prepared by the first author (I.K.), for chapters I, II, III, VIII by the second au-
thor (P.M.) and for chapters V, IX and sections 13-17, 33, 34, 48, 51 by the third
author (J.S.). The authors acknowledge A. Cap, M. Doupovec, and J. Janyska,
for reading the manuscript and for several critical remarks and comments and
A. A. Kirillov for commenting section 34.

The joint work of the authors on the book has originated in the seminar of
the first two authors and has been based on the common cultural heritage of
Middle Europe. The authors will be pleased if the reader realizes a reflection of
those traditions in the book.
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CHAPTER 1.
MANIFOLDS AND LIE GROUPS

In this chapter we present an introduction to the basic structures of differential
geometry which stresses global structures and categorical thinking. The material
presented is standard - but some parts are not so easily found in text books:
we treat initial submanifolds and the Frobenius theorem for distributions of non
constant rank, and we give a very quick proof of the Campbell - Baker - Hausdorff
formula for Lie groups. We also prove that closed subgroups of Lie groups are
Lie subgroups.

1. Differentiable manifolds

1.1. A topological manifold is a separable Hausdorff space M which is locally
homeomorphic to R™. So for any z € M there is some homeomorphism u : U —
u(U) € R™, where U is an open neighborhood of  in M and u(U) is an open
subset in R™. The pair (U, u) is called a chart on M.

From topology it follows that the number n is locally constant on M; if n is
constant, M is sometimes called a pure manifold. We will only consider pure
manifolds and consequently we will omit the prefix pure.

A family (U, ta)aca of charts on M such that the U, form a cover of M is
called an atlas. The mappings uag 1= tq © ugl cug(Uag) — ua(Uag) are called
the chart changings for the atlas (U, ), where Uy := U, N Us.

An atlas (U, Ua)aca for a manifold M is said to be a CF-atlas, if all chart
changings uag : ug(Uag) — ua(Uap) are differentiable of class C*. Two C*-
atlases are called C*-equivalent, if their union is again a C*-atlas for M. An
equivalence class of C*-atlases is called a C*-structure on M. From differential
topology we know that if M has a C'-structure, then it also has a C'-equivalent
C>-structure and even a Cl-equivalent C*-structure, where C* is shorthand
for real analytic. By a C*-manifold M we mean a topological manifold together
with a C*-structure and a chart on M will be a chart belonging to some atlas
of the C*-structure.

But there are topological manifolds which do not admit differentiable struc-
tures. For example, every 4-dimensional manifold is smooth off some point, but
there are such which are not smooth, see [Quinn, 82|, [Freedman, 82]. There
are also topological manifolds which admit several inequivalent smooth struc-
tures. The spheres from dimension 7 on have finitely many, see [Milnor, 56].
But the most surprising result is that on R* there are uncountably many pair-
wise inequivalent (exotic) differentiable structures. This follows from the results
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1. Differentiable manifolds 5

of [Donaldson, 83] and [Freedman, 82], see [Gompf, 83] or [Freedman-Feng Luo,
89] for an overview.

Note that for a Hausdorff C*°-manifold in a more general sense the following
properties are equivalent:

(1) Tt is paracompact.

(2) Tt is metrizable.

(3) It admits a Riemannian metric.

(4) Each connected component is separable.

In this book a manifold will usually mean a C°°-manifold, and smooth is
used synonymously for C'°°, it will be Hausdorff, separable, finite dimensional,
to state it precisely.

Note finally that any manifold M admits a finite atlas consisting of dim M + 1
(not connected) charts. This is a consequence of topological dimension theory
[Nagata, 65, a proof for manifolds may be found in [Greub-Halperin-Vanstone,
Vol. 1, 72].

1.2. A mapping f : M — N between manifolds is said to be C* if for each
x € M and each chart (V,v) on N with f(x) € V there is a chart (U,u) on M
with z € U, f(U) CV,and vo fou~!is C*. We will denote by C*(M, N) the
space of all C*-mappings from M to N.

A CF-mapping f : M — N is called a C*-diffeomorphism if f~1 : N — M
exists and is also C*. Two manifolds are called diffeomorphic if there exists a dif-
feomorphism between them. From differential topology we know that if there is a
C'-diffeomorphism between M and N, then there is also a C>®-diffeomorphism.
All smooth manifolds together with the C*°-mappings form a category, which
will be denoted by M f. One can admit non pure manifolds even in M f, but
we will not stress this point of view.

A mapping f : M — N between manifolds of the same dimension is called
a local diffeomorphism, if each © € M has an open neighborhood U such that
fIU : U — f(U) C N is a diffeomorphism. Note that a local diffeomorphism
need not be surjective or injective.

1.3. The set of smooth real valued functions on a manifold M will be denoted
by C°°(M,R), in order to distinguish it clearly from spaces of sections which
will appear later. C*°(M,R) is a real commutative algebra.

The support of a smooth function f is the closure of the set, where it does
not vanish, supp(f) = {x € M : f(x) # 0}. The zero set of f is the set where f
vanishes, Z(f) ={z € M : f(x) = 0}.

Any manifold admits smooth partitions of unity: Let (Uy)aca be an open
cover of M. Then there is a family (¢4 )aca of smooth functions on M, such
that supp(¢a) C Ua, (supp(pq)) is a locally finite family, and " po = 1
(locally this is a finite sum).

1.4. Germs. Let M and N be manifolds and = € M. We consider all smooth

mappings f : Uy — N, where Uy is some open neighborhood of z in M, and we

put f ~ g if there is some open neighborhood V of & with f|V = g|V. This is an
x

equivalence relation on the set of mappings considered. The equivalence class of
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6 Chapter I. Manifolds and Lie groups

a mapping f is called the germ of f at x, sometimes denoted by germ, f. The
space of all germs at = of mappings M — N will be denoted by C2°(M,N).
This construction works also for other types of mappings like real analytic or
holomorphic ones, if M and N have real analytic or complex structures.

If N = R we may add and multiply germs, so we get the real commutative
algebra C2°(M,R) of germs of smooth functions at .

Using smooth partitions of unity (see 1.3) it is easily seen that each germ of
a smooth function has a representative which is defined on the whole of M. For
germs of real analytic or holomorphic functions this is not true. So C2°(M,R)
is the quotient of the algebra C°°(M,R) by the ideal of all smooth functions
f:+ M — R which vanish on some neighborhood (depending on f) of x.

1.5. The tangent space of R". Let a € R™. A tangent vector with foot
point a is simply a pair (a, X) with X € R"™, also denoted by X,. It induces
a derivation X, : C*°(R",R) — R by X,(f) = df(a)(X,). The value depends
only on the germ of f at a and we have X,(f - g) = Xo(f) - g(a) + f(a) - Xa(9)
(the derivation property).

If conversely D : C*°(R™,R) — R is linear and satisfies D(f - g) = D(f) -
g(a)+ f(a)- D(g) (a derivation at a), then D is given by the action of a tangent
vector with foot point a. This can be seen as follows. For f € C*(R",R) we
have

f@ﬂsz%+A 4 fla+ t(x — a))dt

= f(a) + Z/O If (a+t(x — a))dt (2" — a’)

= f(a) + Zhl(x)(xl —a').

D(1)=D(1-1)=2D(1), so D(constant) = 0. Thus

D(f)=> D) gla(f), D= D)l
i=1

Thus D is induced by the tangent vector (a,> ., D(z")e;), where (e;) is the
standard basis of R".
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1. Differentiable manifolds 7

1.6. The tangent space of a manifold. Let M be a manifold and let « €
M and dim M = n. Let T, M be the vector space of all derivations at x of
C°(M,R), the algebra of germs of smooth functions on M at z. (Using 1.3 it
may easily be seen that a derivation of C*°(M,R) at z factors to a derivation of
(M, R).)

So T, M consists of all linear mappings X, : C*°(M,R) — R satisfying X, (f -
g) = Xu(f) - g(z) + f(z) - X4 (g). The space T,, M is called the tangent space of
M at z.

If (U,u) is a chart on M with € U, then u* : f — f ow induces an iso-
morphism of algebras Cg‘(x)( " R) = C(M,R), and thus also an isomorphism
Tou : TyM — Ty»)R", given by (Tou.Xy)(f) = Xo(f ou). So T, M is an n-
dimensional vector space. The dot in T,u.X, means that we apply the linear
mapping T,u to the vector X, — a dot will frequently denote an application of
a linear or fiber linear mapping.

We will use the following notation: u = (u!,... u"), so u* denotes the i-th
coordinate function on U, and

Bii x = (Twu)il(% u(:v)) = (Txu)il(u(x),ei).
So % » € T, M is the derivation given by
: I(fout
o) = AL ),

From 1.5 we have now

Tou Xy = Y (TouXo) (@) g ) =

i=1
=Y X(w' ow) gk luw) = D Xalu) 5
i=1 i=1

1.7. The tangent bundle. For a manifold M of dimension n we put TM :=
|| cas ToM, the disjoint union of all tangent spaces. This is a family of vec-
tor spaces parameterized by M, with projection mp, : TM — M given by
T M (TIM) = X.

For any chart (Uy,,u,) of M consider the chart (3 (Uy),Tuy) on TM,
where Tu, : W&l(Ua) — un(U,) x R™ is given by the formula Twu,.X =
(wa(mar (X)), Tr,, (x)ta-X). Then the chart changings look as follows:

Tug o (Tua) Tua(ﬂ'M (Uap)) = ua(Uag) x R" —
— ug(Uap) x R" = Tug(my (Uap)),
(f) = (Tua) "y, Y))(f 0 up)
fougougt) =d(fougoui)(y).Y
If (ug 0 ug ™t (y))-d(ug o uz')(y).Y
= (up o ug'(y),d(ug o uz')(y).Y)(f).

(Tup o (Tua)")(y,Y))
= (5, Y)(
= df
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8 Chapter I. Manifolds and Lie groups

So the chart changings are smooth. We choose the topology on T'M in such
a way that all Tu, become homeomorphisms. This is a Hausdorff topology,
since X, Y € TM may be separated in M if 7(X) # #(Y), and in one chart if
m(X) =m(Y). So TM is again a smooth manifold in a canonical way; the triple
(TM,mtpr, M) is called the tangent bundle of M.

1.8. Kinematic definition of the tangent space. Consider C§°(R, M), the
space of germs at 0 of smooth curves R — M. We put the following equivalence
relation on C§°(R, M): the germ of ¢ is equivalent to the germ of e if and only
if ¢(0) = €(0) and in one (equivalently each) chart (U, ) with ¢(0) = e(0) € U
we have 4|y (uoc)(t) = &|o(uoe)(t). The equivalence classes are called velocity
vectors of curves in M. We have the following mappings

.

T™ — M,

where a(c)(germ, g f) = 4)of(c(t)) and B : TM — C§°(R, M) is given by:
B((Tu)"(y,Y)) is the germ at 0 of t — u=!(y +tY). So TM is canonically
identified with the set of all possible velocity vectors of curves in M.

1.9. Let f: M — N be a smooth mapping between manifolds. Then f induces a
linear mapping T, f : To M — Ty, N for each x € M by (T, f.X.)(h) = X (hof)
for h € C7(,)(N,R). This mapping is linear since f* : C3, (N, R) — C2°(M, R),
given by h — ho f, is linear, and T, f is its adjoint, restricted to the subspace
of derivations.

If (U,u) is a chart around x and (V,v) is one around f(x), then

(waa;fulw)(v]) = %h(vﬂ of)= a?;i (v o f ou—l))
Tofs2ile =3/ (Tof 3o |e) (09) 55 4@y by 1.7
oo 1
= 5, 2 @) g o
So the matrix of T, f : Ty M — Ty ()N in the bases (52 ;) and (52 y(x)) is just
the Jacobi matrix d(v o f o u™!)(u(x)) of the mapping v o f ou™! at u(x), so
TiyvoTyfo(Tyu)™t =d(vo fout)(u(z)).

Let us denote by T'f : TM — TN the total mapping, given by T f|T, M :=
T, f. Then the composition Tvo T fo (Tu)™! : u(U) x R™ — v(V) x R™ is given
by (y,Y) — ((vo fouY)(y),d(vo fout)(y)Y), and thus Tf : TM — TN is
again smooth.

If f: M — N and g : N — P are smooth mappings, then we have T'(go f) =
TgoTf. This is a direct consequence of (go f)* = f* o ¢*, and it is the global
version of the chain rule. Furthermore we have T'(Idys) = Idrpy .

If f e C°(MR), then Tf : TM — TR = R x R. We then define the
differential of f by df :=prooTf: TM — R. Let t denote the identity function
on R, then (Tf.X,)(t) = X, (to f) = X,(f), so we have df (X,) = X.(f).
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1. Differentiable manifolds 9

1.10. Submanifolds. A subset N of a manifold M is called a submanifold, if for
each z € N there is a chart (U, u) of M such that uw(U N N) = u(U) N (R* x 0),
where R¥ x 0 < R*¥ x R"™% = R”. Then clearly N is itself a manifold with
(UNN,ulUNN) as charts, where (U, u) runs through all submanifold charts as
above and the injection i : N < M is an embedding in the following sense:

An embedding f : N — M from a manifold N into another one is an injective
smooth mapping such that f(INV) is a submanifold of M and the (co)restricted
mapping N — f(NV) is a diffeomorphism.

If f:R™ — RY is smooth and the rank of f (more exactly: the rank of its
derivative) is ¢ at each point of f~1(0), say, then f~%(0) is a submanifold of R
of dimension n — ¢ or empty. This is an immediate consequence of the implicit
function theorem.

The following theorem needs three applications of the implicit function theo-
rem for its proof, which can be found in [Dieudonné, I, 60, 10.3.1].

Theorem. Let f: W — R? be a smooth mapping, where W is an open subset
of R™. If the derivative df (x) has constant rank k for each x € W, then for each
a € W there are charts (U,u) of W centered at a and (V,v) of R? centered at
f(a) such that vo fou=™t: u(U) — v(V) has the following form:

(T1,. ) — (T1, ..., Tk, 0,...,0).

So f=1(b) is a submanifold of W of dimension n — k for each b € f(W). O

1.11. Example: Spheres. We consider the space R"*!, equipped with the
standard inner product (x,y) = > 2'y’. The n-sphere S™ is then the subset
{z e R""L: (z,2) = 1}. Since f(x) = (x,z), f: R"T! — R, satisfies df (z)y =
2(z,y), it is of rank 1 off 0 and by 1.10 the sphere S™ is a submanifold of R™*!.

In order to get some feeling for the sphere we will describe an explicit atlas
for S™, the stereographic atlas. Choose a € S™ (‘south pole’). Let

Uy = 8"\ {a}, up Uy — {a},  ug(z) = m1:<<gcaéfl(z>)a’
U= 5"\ {-a}, u:U-—{a}*, u_(a)=ginae,

From an obvious drawing in the 2-plane through 0, x, and a it is easily seen that
uy is the usual stereographic projection. We also get

_ 2_1q
uit(y) = —mzﬂa + —‘y‘fﬂy for y € {a}*

and (u_ o ui')(y) = ‘y%

drawing.

The latter equation can directly be seen from a

1.12. Products. Let M and N be smooth manifolds described by smooth at-
lases (Un, ua)aca and (Va,v3) e, respectively. Then the family (Uy x V3, uq X
vg 1 Uy x Vg — R™ X R") (4 g)caxp is a smooth atlas for the cartesian product
M x N. Clearly the projections

M Mx N 22N
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10 Chapter I. Manifolds and Lie groups

are also smooth. The product (M x N,pri,pre) has the following universal
property:

For any smooth manifold P and smooth mappings f: P — M andg: P — N
the mapping (f,g) : P — M X N, (f,9)(z) = (f(x), g(z)), is the unique smooth
mapping with pri o (f,g9) = f, pr2o (f,9) = g.

From the construction of the tangent bundle in 1.7 it is immediately clear

that

T(pr1) T (pr2)
— —

TM T(M x N) TN

is again a product, so that T(M x N) =TM x TN in a canonical way.
Clearly we can form products of finitely many manifolds.

1.13. Theorem. Let M be a connected manifold and suppose that f : M — M
is smooth with f o f = f. Then the image f(M) of f is a submanifold of M.

This result can also be expressed as: ‘smooth retracts’ of manifolds are man-
ifolds. If we do not suppose that M is connected, then f(M) will not be a
pure manifold in general, it will have different dimension in different connected
components.

Proof. We claim that there is an open neighborhood U of f(M) in M such that
the rank of 7T}, f is constant for y € U. Then by theorem 1.10 the result follows.

For z € f(M) we have T, f o T,,f = T, f, thus im T, f = ker(Id -7, f) and
rank T, f + rank(Id =T, f) = dim M. Since rank T, f and rank(Id —T, f) can-
not fall locally, rank T, f is locally constant for = € f(M), and since f(M) is
connected, rank T, f = r for all x € f(M).

But then for each x € f(M) there is an open neighborhood U, in M with
rank Ty, f > r for all y € U,. On the other hand rank T} f = rank T, (f o f) =
rank Ty, f o T, f < rank T}, f = r. So the neighborhood we need is given by

= Uasz(ZVI) Us.

1.14. Corollary. 1. The (separable) connected smooth manifolds are exactly
the smooth retracts of connected open subsets of R™’s.

2. f: M — N is an embedding of a submanifold if and only if there is an
open neighborhood U of f(M) in N and a smooth mapping r : U — M with
T o f = IdM

Proof. Any manifold M may be embedded into some R", see 1.15 below. Then
there exists a tubular neighborhood of M in R™ (see [Hirsch, 76, pp. 109-118]),
and M is clearly a retract of such a tubular neighborhood. The converse follows
from 1.13.

For the second assertion repeat the argument for N instead of R™. [

1.15. Embeddings into R™’s. Let M be a smooth manifold of dimension m.
Then M can be embedded into R™, if
(1) n=2m+ 1 (see [Hirsch, 76, p 55] or [Brocker-Janich, 73, p 73]),
(2) n =2m (see [Whitney, 44]).
(3) Conjecture (still unproved): The minimal n is n = 2m —a(m)+ 1, where
a(m) is the number of 1’s in the dyadic expansion of m.
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2. Submersions and immersions 11

There exists an immersion (see section 2) M — R™, if
(1) n = 2m (see [Hirsch, 76]),
(2) n=2m — a(m) (see [Cohen, 82]).

2. Submersions and immersions

2.1. Definition. A mapping f : M — N between manifolds is called a sub-
mersion at x € M, if the rank of T, f : T, M — T,y N equals dim N. Since the
rank cannot fall locally (the determinant of a submatrix of the Jacobi matrix is
not 0), f is then a submersion in a whole neighborhood of x. The mapping f is
said to be a submersion, if it is a submersion at each x € M.

2.2. Lemma. If f : M — N is a submersion at x € M, then for any chart
(V,v) centered at f(x) on N there is chart (U,u) centered at x on M such that
vo fou! looks as follows:

(y17 AR 7yn7yn+17 A 7y7n) — (y17 AR 7y7l)
Proof. Use the inverse function theorem. [

2.3. Corollary. Any submersion f : M — N is open: for each open U C M
the set f(U) is open in N. O

2.4. Definition. A triple (M,p, N), where p: M — N is a surjective submer-
sion, is called a fibered manifold. M is called the total space, N is called the
base.

A fibered manifold admits local sections: For each x € M there is an open
neighborhood U of p(z) in N and a smooth mapping s : U — M with pos = Idy
and s(p(z)) = «.

The existence of local sections in turn implies the following universal property:

M

(N

f

N———P
If (M,p, N) is a fibered manifold and f : N — P is a mapping into some further
manifold, such that fop: M — P is smooth, then f is smooth.

2.5. Definition. A smooth mapping f : M — N is called an immersion at
x € M if the rank of T, f : T, M — Ty, )N equals dim M. Since the rank is
maximal at x and cannot fall locally, f is an immersion on a whole neighborhood
of z. f is called an immersion if it is so at every z € M.

2.6. Lemma. If f: M — N is an immersion, then for any chart (U, u) centered
at x € M there is a chart (V,v) centered at f(x) on N such that vo fou~! has
the form:

W' y™) = (vt ..., y™,0,...,0)

Proof. Use the inverse function theorem. O
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12 Chapter I. Manifolds and Lie groups

2.7 Corollary. If f : M — N is an immersion, then for any x € M there is
an open neighborhood U of x € M such that f(U) is a submanifold of N and
fIU : U — f(U) is a diffeomorphism. O

2.8. Definition. If i : M — N is an injective immersion, then (M, 1) is called
an immersed submanifold of N.

A submanifold is an immersed submanifold, but the converse is wrong in gen-
eral. The structure of an immersed submanifold (M, ) is in general not deter-
mined by the subset i(M) C N. All this is illustrated by the following example.
Consider the curve v(t) = (sin®¢,sint.cost) in R%. Then ((—m,7),v|(—m,7))
and ((0,2m),7/(0,2m)) are two different immersed submanifolds, but the image
of the embedding is in both cases just the figure eight.

2.9. Let M be a submanifold of N. Then the embedding i : M — N is an
injective immersion with the following property:

(1) For any manifold Z a mapping f : Z — M is smooth if and only if
iof:Z — N is smooth.

The example in 2.8 shows that there are injective immersions without property
(1).

2.10. We want to determine all injective immersions i : M — N with property
2.9.1. To require that 7 is a homeomorphism onto its image is too strong as 2.11
and 2.12 below show. To look for all smooth mappings i : M — N with property
2.9.1 (initial mappings in categorical terms) is too difficult as remark 2.13 below
shows.

2.11. Lemma. If an injective immersion i : M — N is a homeomorphism onto
its image, then i(M) is a submanifold of N.

Proof. Use 2.7. O

2.12. Example. We consider the 2-dimensional torus T? = R?/Z2. Then the
quotient mapping 7 : R? — T2 is a covering map, so locally a diffeomorphism.
Let us also consider the mapping f : R — R2 f(t) = (¢, a.t), where « is
irrational. Then 7o f : R — T2 is an injective immersion with dense image, and
it is obviously not a homeomorphism onto its image. But m o f has property
2.9.1, which follows from the fact that 7 is a covering map.

2.13. Remark. If f: R — R is a function such that f? and f¢ are smooth for
some p, ¢ which are relatively prime in N, then f itself turns out to be smooth,
see [Joris, 82]. So the mapping i : t — (’;z), R — R2, has property 2.9.1, but i is
not an immersion at 0.

2.14. Definition. For an arbitrary subset A of a manifold N and 2y € A let
Oz (A) denote the set of all x € A which can be joined to zp by a smooth curve
in N lying in A.

A subset M in a manifold N is called initial submanifold of dimension m, if
the following property is true:

(1) For each x € M there exists a chart (U, u) centered at x on N such that
uw(Cp(UNM)) =u(lU)NR™ x0).
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2. Submersions and immersions 13

The following three lemmas explain the name initial submanifold.

2.15. Lemma. Let f: M — N be an injective immersion between manifolds
with property 2.9.1. Then f(M) is an initial submanifold of N.

Proof. Let x € M. By 2.6 we may choose a chart (V,v) centered at f(z) on N
and another chart (W, w) centered at # on M such that (vofow=1)(y*,... ,y™) =
(y',...,y™,0,...,0). Let r > 0 be so small that {y € R™ : |y| < r} C w(W)
and {z € R" : |z] < 2r} C v(V). Put
U:=v'({zeR":|z|] <r}) CN,
Wii=w't{yeR™: |yl <r}) Cc M.
We claim that (U, u = v|U) satisfies the condition of 2.14.1.
uwHuU)NR™ % 0) =u ({(y"s...,y™0...,0): [yl <r}) =
=fow to(uofow N *{(y, ...,y 0...,0): |yl <7}) =
=fow ' ({y e R™: [y| <r}) = f(W1) C Cy (U N F(M)),
since f(Wy) CUN f(M) and f(W;) is C°°-contractible.

Now let conversely z € Cy(,) (UN f(M)). Then by definition there is a smooth
curve ¢ : [0,1] — N with ¢(0) = f(z), ¢(1) = 2z, and ¢([0,1]) CUN f(M). By
property 2.9.1 the unique curve ¢ : [0,1] — M with f o é = ¢, is smooth.

We claim that ([0, 1]) € W;. If not then there is some ¢ € [0, 1] with &(t) €

w™l({y € R™ : r < |y| < 2r}) since ¢ is smooth and thus continuous. But then
we have

(vo f)(e(t) € (o fow ™ )({y eR™ 7 < Jy| <2r}) =
={(y,0) ER" x0:r < |y <2r} C{z €R":r < |2] < 2r}.

This means (vo foc)(t) = (voc)(t) e{z e R" : 1 < |z| < 2r}, so c(t) ¢ U, a
contradiction.

So &([0,1]) € Wy, thus &(1) = f~1(z) € Wy and z € f(W;). Consequently we
have Cp,y (U N f(M)) = f(W1) and finally f(W1) = u= ' (u(U) N (R™ x 0)) by
the first part of the proof. [J

2.16. Lemma. Let M be an initial submanifold of a manifold N. Then there
is a unique C'°°-manifold structure on M such that the injection i : M — N
is an injective immersion. The connected components of M are separable (but
there may be uncountably many of them).

Proof. We use the sets Cy (U, N M) as charts for M, where € M and (U, uy)
is a chart for N centered at x with the property required in 2.14.1. Then the
chart changings are smooth since they are just restrictions of the chart changings
on N. But the sets C, (U, N M) are not open in the induced topology on M
in general. So the identification topology with respect to the charts (Cy (U, N
M), uz)zenm yields a topology on M which is finer than the induced topology, so
it is Hausdorff. Clearly i : M — N is then an injective immersion. Uniqueness of
the smooth structure follows from the universal property of lemma 2.17 below.
Finally note that N admits a Riemannian metric since it is separable, which can
be induced on M, so each connected component of M is separable. [
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14 Chapter I. Manifolds and Lie groups

2.17. Lemma. Any initial submanifold M of a manifold N with injective
immersion i : M — N has the universal property 2.9.1:

For any manifold Z a mapping f : Z — M is smooth if and only ifio f : 7 —
N is smooth.

Proof. We have to prove only one direction and we will suppress the embedding 7.
For z € Z we choose a chart (U,u) on N, centered at f(z), such that u(C¢y(UN
M)) =u(U) N (R™ x 0). Then f~1(U) is open in Z and contains a chart (V)
centered at z on Z with v(V') a ball. Then f(V') is C*°-contractible in UNM, so
f(V) C Cpy(UNM), and (u|Cy.y(UNM))o fov™! =wuo fov!is smooth. [

2.18. Transversal mappings. Let M;, M>, and N be manifolds and let
fi + M; — N be smooth mappings for i = 1,2. We say that f; and fy are
transversal at y € N, if

imT,, fi +imT,, fo = TyN whenever fi(z1) = fa(z2) = v.

Note that they are transversal at any y which is not in f3 (M) or not in fo(Ms).
The mappings f1 and fy are simply said to be transversal, if they are transversal
at every y € N.

If P is an initial submanifold of N with injective immersion ¢ : P — N, then
f: M — N is said to be transversal to P, if i and f are transversal.

Lemma. In this case f~'(P) is an initial submanifold of M with the same
codimension in M as P has in N, or the empty set. If P is a submanifold, then
also f~1(P) is a submanifold.

Proof. Let x € f~!(P) and let (U,u) be an initial submanifold chart for P
centered at f(x) on N, ie. u(Cr,(UNP)) =u(U)N(RP x0). Then the mapping

M D 1) EN U uU) CRP x R"7P P2 pnop

is a submersion at x since f is transversal to P. So by lemma 2.2 there is a chart
(V,v) on M centered at = such that we have

(pTQOuofov_l)(yl,... YRy = (yl,... Lyt

But then z € C,(f~1(P) N V) if and only if v(z) € v(V) N (0 x R™~"*P) 5o
W(Calf7HPYNV)) = o(V) N (0 x R™747). O

2.19. Corollary. If f; : M1 — N and fy : My — N are smooth and transver-
sal, then the topological pullback

M, x  My=M Xy My :={(x1,22) € My X My : fi(z1) = fa(z2)}
(f1,N,f2)

is a submanifold of My x My, and it has the following universal property.
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2. Submersions and immersions 15

For any smooth mappings g1 : P — My and go : P — My with fiogy = foogo
there is a unique smooth mapping (g1, g2) : P — M X 5y My with prio(g1, g2) =
g1 and pra o (g1, 92) = go.

P g2
w‘gz)
g1 Ml XN M2 W M2
Jprl f2
M N
bh

This is also called the pullback property in the category M f of smooth man-
ifolds and smooth mappings. So one may say, that transversal pullbacks exist
in the category M f.

Proof. My xn My = (f1 x f2)"1(A), where fi X fo : My x My — N x N and
where A is the diagonal of N x N, and f; x fy is transversal to A if and only if
f1 and fy are transversal. [

2.20. The category of fibered manifolds. Consider a fibered manifold
(M,p,N) from 2.4 and a point & € N. Since p is a surjective submersion, the
injection i, : x — N of z into N and p: M — N are transversal. By 2.19, p~!(z)
is a submanifold of M, which is called the fiber over x € N.

Given another fibered manifold (M, p, N), a morphism (M,p, N) — (M, p, N)
means a smooth map f: M — N transforming each fiber of M into a fiber of
M. The relation f(M,) C Mz defines a map f: N — N, which is characterized
by the property po f = f op. Since po f is a smooth map, f is also smooth by
2.4. Clearly, all fibered manifolds and their morphisms form a category, which
will be denoted by FM. Transforming every fibered manifold (M, p, N) into its
base N and every fibered manifold morphism f: (M,p, N) — (M, p, N) into the
induced map f: N — N defines the base functor B: FM — MFf.

If (M,p,N) and (M,p, N) are two fibered manifolds over the same base N,
then the pullback M X, n ) M = M xx M is called the fibered product of M
and M. If p, p and N are clear from the context, then M x y M is also denoted
by M ® M Moreover, if flz (Mlvplv N) - (Mlvﬁlv N) and f2: (MQaPQa N) -
(Ms, pa, N) are two F M-morphisms over the same base map fo: N — N, then
the values of the restriction f; x fo| My x y My lie in M, x 5 M,. The restricted
map will be denoted by fl X fo f2 : M1 XNM2 — Ml XNMQ or fl@fg : Ml@MQ —
M, ® M, and will be called the fibered product of f; and fo.
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16 Chapter I. Manifolds and Lie groups

3. Vector fields and flows

3.1. Definition. A vector field X on a manifold M is a smooth section of
the tangent bundle; so X : M — TM is smooth and wp; o X = Idp;. A local
vector field is a smooth section, which is defined on an open subset only. We
denote the set of all vector fields by X(M). With point wise addition and scalar
multiplication X(M) becomes a vector space.

Example. Let (U,u) be a chart on M. Then the % U —>TM|U, x — %
described in 1.6, are local vector fields defined on U.

x>

Lemma. If X is a vector field on M and (U, u) is a chart on M and x € U, then
we have X () = 31| X (2)(u!) 2|0 We write X|U =31 X(u')52:. O

3.2. The vector fields (52:)™, on U, where (U,u) is a chart on M, form a
holonomic frame field. By a frame field on some open set V' C M we mean
m = dim M vector fields s; € X(V) such that si(x),..., s, (z) is a linear basis
of T, M for each x € V. In general, a frame field on V is said to be holonomic, if
V can be covered by an atlas (Un, ua)aeca such that s;|U, = % for all o € A.
In the opposite case, the frame field is called anholonomic. ’

With the help of partitions of unity and holonomic frame fields one may
construct ‘many’ vector fields on M. In particular the values of a vector field

can be arbitrarily preassigned on a discrete set {z;} C M.

3.3. Lemma. The space X(M) of vector fields on M coincides canonically with
the space of all derivations of the algebra C'°°(M,R) of smooth functions, i.e.
those R-linear operators D : C°(M,R) — C*°(M,R) with D(fg) = D(f)g +
fD(g)-

Proof. Clearly each vector field X € X(M) defines a derivation (again called
X, later sometimes called Lyx) of the algebra C>°(M,R) by the prescription
X(f)(@) == X (@)(f) = df (X ().

If conversely a derivation D of C*°(M,R) is given, for any x € M we consider
D, : C®(M,R) — R, D,(f) = D(f)(x). Then D, is a derivation at x of
C*(M,R) in the sense of 1.5, so D, = X, for some X, € T,M. In this
way we get a section X : M — TM. If (Uwu) is a chart on M, we have
D, = 3", X(z)(u') 52|, by 1.6. Choose V open in M, V C V C U, and
¢ € C*°(M,R) such that supp(p) C U and ¢|V = 1. Then ¢ -u’ € C°(M,R)
and (pu))|V = ui|V. So D(pui)(z) = X(z)(pu') = X(x)(u') and X|V =
S D(pud)|V - 22|V is smooth. O

3.4. The Lie bracket. By lemma 3.3 we can identify X(M) with the vector
space of all derivations of the algebra C'°°(M,R), which we will do without any
notational change in the following.

If X, Y are two vector fields on M, then the mapping f — X (Y (f))-Y (X(f))
is again a derivation of C*°(M,R), as a simple computation shows. Thus there is
a unique vector field [X,Y] € X(M) such that [X,Y](f) = XY (f)) = Y (X(f))
holds for all f € C°°(M,R).
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3. Vector fields and flows 17

In alocal chart (U, u) on M one immediately verifies that for X|U = 3~ X2
and Y|U = 3 Y2 we have

|:ZXI u“zyjauﬂ] :Z(Xl(aubyj) Yz(é)u‘X])) ’

,J

since second partial derivatives commute. The R-bilinear mapping
[, ]:X(M)xX(M)—X(M)

is called the Lie bracket. Note also that X(M) is a module over the algebra
C*(M,R) by point wise multiplication (f, X) — fX.

Theorem. The Lie bracket [ , |:X(M) x X(M) — X(M) has the following
properties:

(X, Y] = —[v, X],

[X,[Y,Z]| = [[X,Y],Z] + [Y,[X, Z]], the Jacobi identity,

[FX, Y] = fIX,Y] - (Y )X

[

XfY] XY+ (XY

The form of the Jacobi identity we have chosen says that ad(X) = [X, ]is
a derivation for the Lie algebra (X(M),[ , ).

The pair (X(M),[ , |]) is the prototype of a Lie algebra. The concept of a
Lie algebra is one of the most important notions of modern mathematics.

Proof. All these properties can be checked easily for the commutator [X,Y] =
X oY —Y o X in the space of derivations of the algebra C*°(M,R). O

3.5. Integral curves. Let ¢ : J — M be a smooth curve in a manifold M
defined on an interval J. We will use the following notations: ¢/(t) = ¢(t) =
%c( ) := Tie.l. Clearly ¢ : J — T'M is smooth. We call ¢ a vector field along
¢ since we have mp; o’ = c.

A smooth curve ¢ : J — M will be called an integral curve or flow line of a

vector field X € X(M) if ¢/(t) = X(¢(t)) holds for all t € J.

3.6. Lemma. Let X be a vector field on M. Then for any © € M there is
an open interval J,, containing 0 and an integral curve ¢, : J, — M for X (i.e.
¢ = X oe,) with ¢,(0) = z. If J,, is maximal, then c, is unique.

Proof. In a chart (U,u) on M with € U the equation ¢/(t) = X(c(t)) is an
ordinary differential equation with initial condition ¢(0) = x. Since X is smooth
there is a unique local solution by the theorem of Picard-Lindelof, which even
depends smoothly on the initial values, [Dieudonné I, 69, 10.7.4]. So on M there
are always local integral curves. If J, = (a,b) and lim;_.;_ ¢, (t) =: ¢, (b) exists
in M, there is a unique local solution ¢; defined in an open interval containing
b with ¢1(b) = ¢,(b). By uniqueness of the solution on the intersection of the
two intervals, ¢; prolongs ¢, to a larger interval. This may be repeated (also on
the left hand side of J,) as long as the limit exists. So if we suppose J,. to be
maximal, .J, either equals R or the integral curve leaves the manifold in finite
(parameter-) time in the past or future or both. O
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18 Chapter I. Manifolds and Lie groups

3.7. The flow of a vector field. Let X € X(M) be a vector field. Let us
write FLIX (z) = FI™¥ (t, ) 1= ¢, (t), where ¢, : J, — M is the maximally defined
integral curve of X with ¢,(0) = z, constructed in lemma 3.6. The mapping FI1*
is called the flow of the vector field X.

Theorem. For each vector field X on M, the mapping FI* : D(X) — M is
smooth, where D(X) = |J ¢ J» X {x} is an open neighborhood of 0 x M in
R x M. We have

FI¥(t 4 s,2) = FI* (¢, F1% (s, 2))

in the following sense. If the right hand side exists, then the left hand side exists

and we have equality. If both t, s > 0 or both are < 0, and if the left hand side
exists, then also the right hand side exists and we have equality.

Proof. As mentioned in the proof of 3.6, FI* (¢, z) is smooth in (t,z) for small
t, and if it is defined for (¢, ), then it is also defined for (s, y) nearby. These are
local properties which follow from the theory of ordinary differential equations.

Now let us treat the equation FI* (¢t + s, 2) = FI*(t,FI1* (s, )). If the right
hand side exists, then we consider the equation

EFIX(t+5,2) = 4L FI™ (u, 2) umsss = X(FIY( + 5, 7)),
FI¥(t + 5, 2) =0 = FI* (s, 2).
But the unique solution of this is FI* (£, F1* (s, z)). So the left hand side exists

and equals the right hand side.
If the left hand side exists, let us suppose that ¢,s > 0. We put

F1I* (u, z) ifu<s
co(u) = X X
F1* (u — s, F17 (s,2)) if u > s.
s, 4 FI* (u, z) = X (F1*(u,z)) foru <s
Ly (u) = =
du LR (4 — 5, FI1¥ (s, 2)) = X (FI¥ (u — 5, F1¥ (s, 2)))

= X(cz(u)) for0<u<t+s.

Also ¢,(0) = z and on the overlap both definitions coincide by the first part of
the proof, thus we conclude that ¢, (u) = FlX(u,x) for 0 < u < t+ s and we
have FI* (¢, F1* (s, 2)) = co(t + s) = FIX (t + s, z).

Now we show that D(X) is open and FI¥ is smooth on D(X). We know
already that D(X) is a neighborhood of 0 x M in R x M and that F1* is smooth
near 0 x M.

For x € M let J. be the set of all ¢ € R such that FI¥ is defined and smooth
on an open neighborhood of [0,¢] x {z} (respectively on [t,0] x {z} for t < 0)
in R x M. We claim that J., = J,, which finishes the proof. It suffices to show
that J! is not empty, open and closed in J,. It is open by construction, and
not empty, since 0 € J.. If J. is not closed in J,, let to € J, N (J, \ J.) and
suppose that tg > 0, say. By the local existence and smoothness FI¥ exists and is
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3. Vector fields and flows 19

smooth near [—e, ] x {y := FI* (t, z)} for some £ > 0, and by construction F1*
exists and is smooth near [0, ty — &] x {x}. Since FI*(—¢,y) = FI* (t; — ¢, z) we
conclude for ¢ near [0,%y —e], 2’ near z, and ' near [—¢, e, that F1* (t4+t/,2/) =
FI* (¢/, F1% (t,2')) exists and is smooth. So ¢, € J, a contradiction. [

3.8. Let X € X(M) be a vector field. Its flow FI¥ is called global or complete,
if its domain of definition D(X) equals R x M. Then the vector field X itself
will be called a complete vector field. In this case FltX is also sometimes called
exptX; it is a diffeomorphism of M.

The support supp(X) of a vector field X is the closure of the set {x € M :
X(z) #0}.

Lemma. Every vector field with compact support on M is complete.

Proof. Let K = supp(X) be compact. Then the compact set 0 x K has positive
distance to the disjoint closed set (Rx M)\ D(X) (if it is not empty), so [—&, €] x
K C D(X) for some ¢ > 0. If z ¢ K then X(z) = 0, so FI*(t,z) = z for all ¢
and R x {z} € D(X). So we have [—¢,¢] x M C D(X). Since FIX(t +¢,z) =
F1* (¢, F1* (¢, z)) exists for |t| < e by theorem 3.7, we have [—2¢, 2¢] x M C D(X)
and by repeating this argument we get R x M =D(X). O

So on a compact manifold M each vector field is complete. If M is not
compact and of dimension > 2, then in general the set of complete vector fields
on M is neither a vector space nor is it closed under the Lie bracket, as the
following example on R? shows: X = ya% and Y = %28% are complete, but
neither X 4+ Y nor [X,Y] is complete.

3.9. f-related vector fields. If f: M — M is a diffeomorphism, then for any
vector field X € X(M) the mapping Tf~! o X o f is also a vector field, which
we will denote f*X. Analogously we put f, X :=TfoXo f~! = (f"1)*X.

But if f: M — N is a smooth mapping and Y € X(N) is a vector field there
may or may not exist a vector field X € X(M) such that the following diagram
commutes:

™ 1L TN

i

f

M ——N.

Definition. Let f : M — N be a smooth mapping. Two vector fields X €
X(M)and Y € X(N) are called f-related, if T foX =Y o f holds, i.e. if diagram

(1) commutes.

Example. If X € X(M) and Y € X(N) and X xY € X(M x N) is given by
(X xY)(z,y) = (X(2),Y(y)), then we have:
(2) X xY and X are pri-related.
(3) X xY and Y are pro-related.
(4) X and X x Y are ins(y)-related if and only if Y (y) = 0, where
ins(y)(z) = (x,y), ins(y) : M — M x N.
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3.10. Lemma. Consider vector fields X; € X¥(M) and Y; € X(N) fori = 1,2,
and a smooth mapping f: M — N. If X; and Y; are f-related for i = 1,2, then
also M1 X1 + A2 Xs and M Y1 + \2Ys are f-related, and also [ X1, X2] and [Y1, Ys]
are f-related.

Proof. The first assertion is immediate. To show the second let h € C*°(N,R).
Then by assumption we have T'f o X; =Y, o f, thus:

(Xi(ho f))(x) = Xi(z)(ho f) = (Tof Xi(x))(h) =
= (Tf o Xi)(z)(h) = (Yio f)(z)(h) = Yi(f(2))(h) = (Yi(h))(f(x)),
so X;(ho f) = (Y;(h)) o f, and we may continue:
[X1, Xo](ho f) = X1(Xa(ho f)) — Xa(Xi(ho f)) =
= X1 (Ya(h) o f) = Xa(Y1(h) o )
=Y1(Ya(h)) o f = Ya(Yi(h)) o f = [Y1,Y2](h) o f.
But this means T'f o [ X1, X5] = [Y1,Y2]o f. O

3.11. Corollary. If f : M — N is a local diffeomorphism (so (T, f)~! makes
sense for each x € M), then for Y € X(N) a vector field f*Y € X(M) is defined

by (f*Y)(z) = (T.f)"1.Y(f(x)). The linear mapping f* : X(N) — X(M) is
then a Lie algebra homomorphism, i.e. f*[Y1,Ys] = [f*Y1, f*Y5].

3.12. The Lie derivative of functions. For a vector field X € ¥(M) and
f € C®(M,R) we define Lx f € C>*°(M,R) by
Lxf(z):= %|0f(F1X(t,x)) or
Lxf = FloFL) f = glo(f o FI).

Since F1* (t,z) is defined for small ¢, for any x € M, the expressions above make
sense.

Lemma. di(FIX) f = (FIX)*X(f), in particular for t = 0 we have Lxf =
X(f)=df(X). O

3.13. The Lie derivative for vector fields. For X,Y € X(M) we define
LxY € X(M) by

ﬁxy = %‘0(

FI)'Y = 41o(T(F1¥,) o Y o FIY),
and call it the Lie derivative of Y along X.
Lemma. LxY = [X,Y] and 4 (FI*)*Y = (FI})*LxY = (FI)*[X,Y].

Proof. Let f € C*>°(M,R) be a function and consider the mapping «(t,s) =
Y (FI¥ (t,2))(f o FI¥), which is locally defined near 0. It satisfies

(t

alt,0) = Y (FI* (t,2))(f),

a(0,5) =Y (2)(f o FIY'),

at Silo Y FYY (t,2)(f) = &, (Y NEFF (t,2)) = X (2)(Y ),
35 loY (2)(f 0 FIY) = Y (2) 5 |o(f o FIT) = Y ()(Xf).

7 (0,
- (0,

O
=

QJ|Q7 Q)IQJ
8
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But on the other hand we have
%‘0a<u7 _u) = %|0Y(F1X(u,x))(f o Fl)—(u) =
= &0 (TIRIX,) oY 0 FIY) (f) = (£xY)al);

xT

so the first assertion follows. For the second claim we compute as follows:
2(FIX)Y = 2| (T(Fl)_ft) o T(FIX) oY o FIX oFlff)
= T(FI,) 0 2o ( (FIX,) oY oFl‘SX) o FIX
=T(FI%,) o [X,Y] o FI¥ = (FIY)*[X,Y]. O

3.14. Lemma. Let X € X(M) and Y € X(N) be f-related vector fields for
a smooth mapping f : M — N. Then we have f o Fltx = Flzf of, whenever
both sides are defined. In particular, if f is a diffeomorphism we have Fl{ Y =
f71oFl of.

Proof. We have &(foFIX) = Tfo 4 FI¥ = Tfo X oFLX =Y o foFI¥
and f(F1¥(0,2)) = f(x). So t — f(FI*(t,x)) is an integral curve of the vector
field Y on N with initial value f(z), so we have f(FI¥(t,z)) = FI¥ (¢, f(z)) or
foFLX =F1Y of. O
3.15. Corollary. Let X,Y € X(M). Then the following assertions are equiva-
lent

(1) LxY =[X,Y]=0.

(2) (FLX)*Y =Y, wherever defined.

(3) FIX o F1Y = F1¥ o FIX, wherever defined.

Proof. (1) & (2) is immediate from lemma 3.13. To see (2) < (3) we note
that FIX o F1Y = FIY o FIX if and only if FI' = FI¥, 0 FIY o FIX = F1IF)™Y by
lemma 3.14; and this in turn is equivalent to ¥ = (FIX)*Y. O

3.16. Theorem. Let M be a manifold, let ¢’ : R x M D U, — M be smooth
mappings for i =1,...,k where each Ug: is an open neighborhood of {0} x M
in R x ]W such that each ol is a d1ﬁ”eomorphzsm on its domain, ¢} = IdM, and

i = X; € X(M). We put [¢",¢']; = [‘Pt»@t] : (@t) Lo ()7t owl 0wl
Then for each formal bracket expression P of lenght k we have

076t5|op(991}; --,sﬁf) forl1 < /¢ <k,
k
P(Xl,...,Xk):%%b (L. -~7@f)€%(M)

in the sense explained in step 2 of the proof. In particular we have for vector
fields X, Y € X(M)

0= 2|, (F1¥, o F1*, o FI} o F1¥),
(X, Y] = L2 |o(F1Y, o FIX, o FIY o FIY).
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Proof. Step 1. Let ¢ : R — M be a smooth curve. If ¢(0) =z € M, /(0) =
0,...,c*=1(0) = 0, then ¢®)(0) is a well defined tangent vector in T, M which
is given by the derivation f +— (f o c¢)*)(0) at z.

For we have

k
((£-9) 0 ) (0) = ((fo0)-(go )M (0) = Z ()(f o) (0)(g o)™ (0)

since all other summands vanish: (f o ¢)?)(0) =0 for 1 < j < k.

Step 2. Let ¢ : Rx M D U, — M be a smooth mapping where U, is an open
neighborhood of {0} x M in R x M, such that each ¢; is a diffeomorphism on
its domain and g = Idy;. We say that ¢; is a curve of local diffeomorphisms
though Idj,. »

From step 1 we see that if %bg@t =0forall 1 <j <k, then X := %%b%
is a well defined vector field on M. We say that X is the first non-vanishing
derivative at 0 of the curve ¢, of local diffeomorphisms. We may paraphrase this
as (OFlop;)f = k' Lx f.

Claim 8. Let ¢, 1y be curves of local diffeomorphisms through Idy; and let
f € C>®(M,R). Then we have

k
Oflo(pr o) f = 0F Lo 0 0i) f =Y (5) (@ low)(0F o) f-
7=0

Also the multinomial version of this formula holds:

* k! 1 * 1 *

OFlolprocop) f=" Y ——=(0"ol¢))?) .- @o(e))f-
. A S I

it tde=k

We only show the binomial version. For a function h(t, s) of two variables we

have
k

=Y (5oL n(t, 8)|s=1,

7=0
since for h(t,s) = f(t)g(s) this is just a consequence of the Leibnitz rule, and
linear combinations of such decomposable tensors are dense in the space of all
functions of two variables in the compact C°°-topology, so that by continuity
the formula holds for all functions. In the following form it implies the claim:

k
OF o f (so(t =Y (5910 F(p(t, v(s,2))) e=s=o-

7=0
Claim 4. Let ¢; be a curve of local diffeomorphisms through Id,; with first
non-vanishing derivative k!X = 0F|op;. Then the inverse curve of local diffeo-

morphisms ;! has first non-vanishing derivative —k!X = 9F|op; *
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For we have <p;1 o, = 1d, so by claim 3 we get for 1 < j <k
0=20]lo(¢; o) f = Z (Do} (@] (e ) f =

= R low} (v )7 f + @50 Lol )" 1,
ie. d|optf = —8|o(@r )" f as required.
Claim 5. Let ¢; be a curve of local diffeomorphisms through Idy; with first
non-vanishing derivative m!X = 9]"|o¢t, and let ¢ be a curve of local diffeo-
morphisms through Idy; with first non-vanishing derivative n!Y = 9} |o):.

Then the curve of local diffeomorphisms [¢¢, 1] = 1, lo o Loapy 0y has first
non-vanishing derivative

(m +n)![X, Y] = 07" o[ior, 1]

From this claim the theorem follows.
By the multinomial version of claim 3 we have

Anf =0 oy ot orop)tf
N i —1\* —1\*
= X @l @)@ o(er) @)
i+j+k+l=N
Let us suppose that 1 < n < m, the case m < n is similar. If N < n all
summands are 0. If N = n we have by claim 4

ANF = (@ lo9i) f + O 0¥ F + (OFlo(er ) F + (9o (1)) f = 0.
Ifn<N<mwe have using again claim 4:

Anf= Y il !(6J|0¢t)(8e‘ (W ))f + 0% (0 lowr ) f + (9810l 1)) )

jH=N
= (0 o(; o)) f +0=0.
Now we come to the difficult case m,n < N < m + n.
Anf =0 oWt oot 0w f + () (07 l0wi) (0o (vt o gt o)) f
(1) + 0 owi) [

by claim 3, since all other terms vanish, see (3) below. By claim 3 again we get:

oot o 0w = S S @llovd)OHo(er )@ (v ) S

jthre=NJ

2 = > (D@ @) f + ()@ ™ 0w @ e ) ) f

JH=N
+ ()@ ooy O ™o ) + 0N ol ) f

=0+ (M) @ ™ovr)mlLox f+ (F)mL_x (O "o 1)) f
+ 0 olps ) f

= Sppn(m+n)(LxLy — Ly Lx)f + 0 o(er )" f

= n(m+n)Lix ) f + 0N ooy ') f
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From the second expression in (2) one can also read off that

(3) N o(wy opr o) f =01 ol ).
If we put (2) and (3) into (1) we get, using claims 3 and 4 again, the final result
which proves claim 5 and the theorem:
AN = Opn(m+ ) Lix v f+ 0 ol )" f
+ (W)@ oeD) (B ol D)) + (0 lowi) f
= Opan(m + )Ly f+ 0oy o) f
=0 n(m+n)Lixy f+0. O

3.17. Theorem. Let Xi,...,X,, be vector fields on M defined in a neighbor-
hood of a point x € M such that Xi(z),...,Xmn(x) are a basis for T, M and
[X:, X;] =0 for all 4, 5.

Then there is a chart (U,u) of M centered at x such that X;|U = 2.

Proof. For small t = (t!,... | t™) € R™ we put
f ™) = (Flt)f1 o--- o FIvm)(x).

By 3.15 we may interchange the order of the flows arbitrarily. Therefore

D f(tt ™) = 2 (FLY oFL T o- -+ )(2) = X;((FIff 0+ )(2)).
So Ty f is invertible, f is a local diffeomorphism, and its inverse gives a chart
with the desired properties. [

3.18. Distributions. Let M be a manifold. Suppose that for each x € M
we are given a sub vector space E, of T, M. The disjoint union E = | | ., Ex
is called a distribution on M. We do not suppose, that the dimension of F, is
locally constant in x.

Let Xj0.(M) denote the set of all locally defined smooth vector fields on M,
ie. Xjoe(M)=JX(U), where U runs through all open sets in M. Furthermore
let Xp denote the set of all local vector fields X € X;,.(M) with X(z) € E,
whenever defined. We say that a subset V C Xg spans E, if for each z € M the
vector space F, is the linear span of the set {X (x) : X € V}. We say that F is a
smooth distribution if Xg spans E. Note that every subset W C X;,.(M) spans
a distribution denoted by E (W), which is obviously smooth (the linear span of
the empty set is the vector space 0). From now on we will consider only smooth
distributions.

An integral manifold of a smooth distribution E is a connected immersed
submanifold (N,4) (see 2.8) such that T,i(T,N) = Ej) for all x € N. We
will see in theorem 3.22 below that any integral manifold is in fact an initial
submanifold of M (see 2.14), so that we need not specify the injective immersion
1. An integral manifold of F is called maximal if it is not contained in any strictly
larger integral manifold of E.
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3.19. Lemma. Let E be a smooth distribution on M. Then we have:

1. If (N,i) is an integral manifold of E and X € Xg, then i*X makes sense
and is an element of Xjo.(N), which is i|i~!(Ux)-related to X, where Ux C M
is the open domain of X.

2. If (Nj,i;) are integral manifolds of E for j = 1,2, then iy "(i1(N1) N
ia(No)) and i5 (i1 (N1) Niz(No)) are open subsets in Ny and Ny, respectively;
furthermore iy * oy is a diffecomorphism between them.

3. Ifx € M is contained in some integral submanifold of E, then it is contained
in a unique maximal one.

Proof. 1. Let Ux be the open domain of X € Xg. If i(x) € Ux for x € N,
we have X (i(z)) € By = Tpi(TpN), so i* X (x) := ((Tpi)"' o X 0i)(z) makes
sense. It is clearly defined on an open subset of N and is smooth in x.

2. Let X € Xg. Then i;X € xloc(Nj) and is ¢;-related to X. So by lemma
3.14 for j = 1,2 we have

1joFl = FIf oij.

= xo € M and choose vector

Now choose x; € N; such that i1(z1) = t2(z2)
., Xn(z0)) is a basis of E,,. Then

fields X1,...,X,, € Xg such that (X;(zg),..

F ) = (P oo BT

)(5)
is a smooth mapping defined near zero R" — N;. Since obviously %b fi =
5 Xk (x;) for j = 1,2, we see that f; is a diffeomorphism near 0. Finally we have

(i3 0iyo fu)(t, ... ") = (i3  0iy o FIA o o FILY ") (ay)
= (22_1 o Flﬁ1 0---0 FltXn" oiq)(z1)
= (Flﬁx1 0-+-0 Fl?,,x" oi2_1 0i1)(z1)

— fo(th, ...

So iy 104, is a diffeomorphism, as required.

3. Let N be the union of all integral manifolds containing . Choose the union
of all the atlases of these integral manifolds as atlas for N, which is a smooth
atlas for N by 2. Note that a connected immersed submanifold of a separable
manifold is automatically separable (since it carries a Riemannian metric). O

3.20. Integrable distributions and foliations.

A smooth distribution E on a manifold M is called integrable, if each point
of M is contained in some integral manifold of E. By 3.19.3 each point is
then contained in a unique maximal integral manifold, so the maximal integral
manifolds form a partition of M. This partition is called the foliation of M
induced by the integrable distribution E, and each maximal integral manifold
is called a leaf of this foliation. If X € Xp then by 3.19.1 the integral curve
t— FIX(t, x) of X through x € M stays in the leaf through x.

Note, however, that usually a foliation is supposed to have constant dimen-
sions of the leafs, so our notion here is sometimes called a singular foliation.
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Let us now consider an arbitrary subset V C Xj,.(M). We say that V is
stable if for all X,Y € V and for all ¢ for which it is defined the local vector field
(FIX)*Y is again an element of V.

If W C Xj,c(M) is an arbitrary subset, we call S(W) the set of all local vector
fields of the form (Flffl 0---0 Flt)i’“)*Y for X;,Y € W. By lemma 3.14 the flow
of this vector field is

FI(FIS 0 o FIX*)*Y,¢) = FI¥} o+ o FI*} oF1} oFI 0. o FI}%,

so S(W) is the minimal stable set of local vector fields which contains W.

Now let F' be an arbitrary distribution. A local vector field X € X;,.(M) is
called an infinitesimal automorphism of F, if T,(FLX)(F,) C Fpix (1,2) Whenever
defined. We denote by aut(F') the set of all infinitesimal automorphisms of F'.
By arguments given just above, aut(F') is stable.

3.21. Lemma. Let E be a smooth distribution on a manifold M. Then the
following conditions are equivalent:

(1) E is integrable.

(2) X is stable.

(3) There exists a subset W C Xjo.(M) such that S(W) spans E.

(4) aut(E)NXg spans E.

Proof. (1) = (2). Let X € Xg and let L be the leaf through x € M, with
1 : L — M the inclusion. Then Fl)ft ol =1¢o0 FlitX by lemma 3.14, so we have

T.(F12,)(E,) = T(F1%,).T,i.T, L = T(F1%, 0i).T,, L
= 70T, (FI" )T, L
= Ti-TFli*X(—t,r)L = EFZX(ft,CE)'

This implies that (FIX)*Y € X for any Y € Xp.

(2) = (4). In fact (2) says that Xp C aut(E).

(4) = (3). We can choose W = aut(E) N Xg: for X, Y € W we have
(FIX)*Y € Xg; 50 W C S(W) C X and E is spanned by W.

(3) = (1). We have to show that each point x € M is contained in some
integral submanifold for the distribution E. Since S(W) spans E and is stable
we have

(5) T(FIY). By = Bypx

for each X € S(W). Let dim E, = n. There are X1,..., X, € S(W) such that
Xi(z),..., X, (x) is a basis of E,, since E is smooth. As in the proof of 3.19.2
we consider the mapping

f(tl,... 7t”) = (Flﬁl O-~-OF1§1")(;C)7

defined and smooth near 0 in R™. Since the rank of f at 0 is n, the image
under f of a small open neighborhood of 0 is a submanifold N of M. We claim
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that N is an integral manifold of E. The tangent space Ty, .. )N is linearly
generated by

D(FIX 0 o FIN)(2) = T(FLY 0 o FIV ) X (FIXF o -+ 0 FI) ()
= (F1X)" - (P X (F(E 7).
Since S(W) is stable, these vectors lie in Ef(;). From the form of f and from (5)

we see that dim Fy ) = dim E, so these vectors even span Ey;) and we have
TyyN = Ey ) as required. [

3.22. Theorem (local structure of foliations). Let E be an integrable
distribution of a manifold M. Then for each x € M there exists a chart (U, u)
with u(U) = {y € R™ : |y| < ¢ for all i} for some ¢ > 0, and an at most
countable subset A C R™™™, such that for the leaf L through x we have

wUNL)={yecul): (y", . .. ,y™) € A}

FEach leaf is an initial submanifold.
If furthermore the distribution E has locally constant rank, this property
holds for each leaf meeting U with the same n.

This chart (U,u) is called a distinguished chart for the distribution or the
foliation. A connected component of U N L is called a plaque.

Proof. Let L be the leaf through x, dim L = n. Let Xi1,...,X,, € Xg be local
vector fields such that Xi(x),...,X,(z) is a basis of E,. We choose a chart
(V,v) centered at x on M such that the vectors

X1($)7,Xn($),81}+3+1|$7,&11m‘m
form a basis of T, M. Then
ft .t = (FIY o o FII) (070, ..., 0,4 o t™))

is a diffeomorphism from a neighborhood of 0 in R™ onto a neighborhood of x
in M. Let (U,u) be the chart given by f~!, suitably restricted. We have

ye L <= (FI'o---oFI3")(y) € L
for all y and all t',... ,¢" for which both expressions make sense. So we have
f ... ™) € L < f(0,...,0,t" T, ... ™) € L,

and consequently L N U is the disjoint union of connected sets of the form
{y € U: (u"(y),...,u™(y)) = constant}. Since L is a connected immersed
submanifold of M, it is second countable and only a countable set of constants
can appear in the description of u(LNU) given above. From this description it is
clear that L is an initial submanifold (2.14) since u(C,(LNU)) = uw(U)N(R™ x0).
The argument given above is valid for any leaf of dimension n meeting U, so
also the assertion for an integrable distribution of constant rank follows. [
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3.23. Involutive distributions. A subset V C X;,.(M) is called involutive if
[X,Y] € V for all X,Y € V. Here [X,Y] is defined on the intersection of the
domains of X and Y.

A smooth distribution E on M is called involutive if there exists an involutive
subset V C X,.(M) spanning E.

For an arbitrary subset W C Xj0.(M) let £(W) be the set consisting of
all local vector fields on M which can be written as finite expressions using
Lie brackets and starting from elements of W. Clearly £(W) is the smallest
involutive subset of X;,.(M) which contains W.

3.24. Lemma. For each subset W C X;,.(M) we have
EW) C E(L(W)) C E(S(W)).

In particular we have E(S(W)) = E(L(S(W))).

Proof. We will show that for X,Y € W we have [X,Y] € Xg(s(w)), for then by
induction we get L(W) C Xpgsow)) and E(L(W)) C E(S(W)).

Let © € M; since by 3.21 E(S(W)) is integrable, we can choose the leaf L
through z, with the inclusion 7. Then *X is i-related to X, i*Y is i-related to
Y, thus by 3.10 the local vector field [i* X, i*Y] € Xj,.(L) is i-related to [X, Y],
and [X,Y](z) € E(S(W)),, as required. O

3.25. Theorem. Let V C X;,.(M) be an involutive subset. Then the distribu-
tion E(V) spanned by V is integrable under each of the following conditions.

(1) M is real analytic and V consists of real analytic vector fields.
(2) The dimension of E(V) is constant along all flow lines of vector fields in

V.

Proof. For X,Y € V we have < FIX)Y = (FIX *LxY, consequently
dt t t

;; (FIX) Y = (FI;)*(Lx)*Y, and since everything is real analytic we get for

r € M and small ¢

k
)Y (@) = 0 o oy ) = 3 ) v o).

k>0 k>0

Since V is involutive, all (Lx)*Y € V. Therefore we get (FIX)*Y (z) € E(V),
for small ¢. By the flow property of FI¥ the set of all ¢ satisfying (F1,*)*Y (z) €
E(V), is open and closed, so it follows that 3.21.2 is satisfied and thus E(V) is
integrable.

(2) We choose Xi,...,X,, € V such that X;(z),...,X,(z) is a basis of
E(V);. For X € V, by hypothesis, E(V)px ;) has also dimension n and ad-

mits X (F1* (¢, 2)), ..., X, (F1*(¢,z)) as basis for small t. So there are smooth
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functions f;;(t) such that

(X, X;](FIX (¢, x) Z Fii (O X;(F1X (¢, 2)).

47F1X). X, (FIX (¢, z) = T(Fl)ft).[X, X (F1X (¢, 2)) =

= 2 LT (L) X0V 1. 2),

So the T, M-valued functions g;(t) = T(FI*,).X;(FI1¥(t,z)) satisfy the linear
ordinary differential equation % gi(t) = Z?Zl fij(t)g;(t) and have initial values
in the linear subspace F(V),, so they have values in it for all small ¢. There-
fore T(Fl)ft)E(V)FIX(m) C E(V), for small t. Using compact time intervals
and the flow property one sees that condition 3.21.2 is satisfied and E(V) is
integrable. [J

Example. The distribution spanned by W C X;,.(R?) is involutive, but not
integrable, where W consists of all global vector fields with support in R? \ {0}
and the field 881 ; the leaf through 0 should have dimension 1 at 0 and dimension
2 elsewhere.

3.26. By a time dependent vector field on a manifold M we mean a smooth
mapping X : J x M — TM with 7wy o X = pry, where J is an open interval.
An integral curve of X is a smooth curve ¢ : I — M with é(t) = X(¢,¢(t)) for
all t € I, where [ is a subinterval of J.

There is an associated vector field X € X(J x M), given by X(¢,z) =
(115, X(t, .’L‘)) € TtR X TmM

By the evolution operator of X we mean the mapping ®X : J x J x M — M,
defined in a maximal open neighborhood of the diagonal in M x M and satisfying
the differential equation

{ FN(ts,0) = X(1, 2% (t,5,2))

X (s,5,x) = .

It is easily seen that (t, ®X(¢,s,7)) = FlX( s, (8,2)), so the maximally defined
evolution operator exists and is unique, and 1t satisfies

X _ 75X X
(I)t,s - (I)t,r © (I)r,s

whenever one side makes sense (with the restrictions of 3.7), where &% (x) =
D(t, s, x).
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4. Lie groups

4.1. Definition. A Lie group G is a smooth manifold and a group such that
the multiplication p : G X G — G is smooth. We shall see in a moment, that
then also the inversion v : G — G turns out to be smooth.

We shall use the following notation:
u: G x G — G, multiplication, u(x,y) = z.y.
Aa : G — G, left translation, A\,(z) = a.x.
po : G — G, right translation, p,(z) = z.a.
v:G — G, inversion, v(r) = 271
e € (G, the unit element.
Then we have A\q 0 Ay = )\a.ba Pa © Pb = Pb.as Agl = Aa*% )0;1 = Pa-15 Pa © Ap =
Ab © po. If ¢ : G — H is a smooth homomorphism between Lie groups, then we
also have o Ag = Ay(0) © 95 9 0 Pa = Py(a) © @, thus also T . TAy = TA,q). T,
etc. So T, is injective (surjective) if and only if T, ¢ is injective (surjective) for
all a € G.

4.2. Lemma. T,y : T,G x TyG — TopG is given by

T(a,b),u-(Xaa YE)) - Ta(pb)-Xa + Tb()\a)-Yb~

Proof. Let ri, : G — G X G, 1ig(x) = (a,z) be the right insertion and let
lip : G — G x G, liy(z) = (x,b) be the left insertion. Then we have

Tiapyi-(Xa, Vo) = Tiapypb-(Ta(lip). Xa + T(1ia).Ys) =
=To(poliy). Xe+Tp(poria).Ys = To(pp).Xo + To(Ae). Y. O

4.3. Corollary. The inversion v : G — G is smooth and

TaV = _Te(pa—1)~Ta()‘a—1) = _Te()‘a_l)'Ta(pa_l)‘

Proof. The equation p(x,v(z)) = e determines v implicitly. Since we have
T.(u(e, ))=Te.(\) =1d, the mapping v is smooth in a neighborhood of e by
the implicit function theorem. From (v o \,)(z) = 27 1.a™! = (p,—1 o v)(x) we
may conclude that v is everywhere smooth. Now we differentiate the equation

u(a,v(a)) = e; this gives in turn

0. = T(aﬂfl)u.(Xa,Tal/.Xa) = Ta(pafl).Xa + Tafl()\a).TaU.Xa,
Tov.Xe = —T.No) Tulpg-1)Xa = —Te(Mg-1).Ta(pa-1).Xo. O

4.4. Example. The general linear group GL(n,R) is the group of all invertible
real n X n-matrices. It is an open subset of L(R™ R"), given by det # 0 and a
Lie group.

Similarly GL(n,C), the group of invertible complex n X n-matrices, is a Lie
group; also GL(n,H), the group of all invertible quaternionic n X n-matrices, is
a Lie group, but the quaternionic determinant is a more subtle instrument here.
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4.5. Example. The orthogonal group O(n,R) is the group of all linear isome-
tries of (R”,( , )), where ( , ) is the standard positive definite inner prod-
uct on R™. The special orthogonal group SO(n,R) :== {A € O(n,R) : det A =1}
is open in O(n, R), since

-1 0

O(n,R) = SO(n,R) L ( 0 L,

) SO(n,R),

where T, is short for the identity matrix Idgx. We claim that O(n,R) and
SO(n,R) are submanifolds of L(R™ R™). For that we consider the mapping
f: L(R",R") — L(R™,R™), given by f(A) = A.A*. Then O(n,R) = f~1(L,);
so O(n,R) is closed. Since it is also bounded, O(n,R) is compact. We have
df(A).X = X. At + A. X", so kerdf(I,,) = {X : X + X* =0} is the space o(n,R)
of all skew symmetric n X n-matrices. Note that dimo(n,R) = £(n — 1)n. If
A is invertible, we get kerdf(A) = {Y : Y.A' + AY' = 0} = {V : Y.A' €
o(n,R)} = o(n,R).(A™1)!. The mapping [ takes values in Lgy,,(R",R™), the
space of all symmetric n x n-matrices, and dimker df (A) + dim Ly, (R™, R") =
f(n—1)n+ gn(n+1) =n®=dim L(R",R"), so f : GL(n,R) — Ly, (R™",R")
is a submersion. Since obviously f~1(I,) € GL(n,R), we conclude from 1.10
that O(n,R) is a submanifold of GL(n,R). It is also a Lie group, since the group

operations are obviously smooth.

4.6. Example. The special linear group SL(n,R) is the group of all n x n-
matrices of determinant 1. The function det : L(R",R") — R is smooth and
ddet(A)X = trace(C(A).X), where C(A)’, the cofactor of A7, is the determinant

of the matrix, which results from putting 1 instead of Ag into A and 0 in the rest
of the j-th row and the i-th column of A. We recall Cramer’s rule C'(A).A =
A.C(A) = det(A).I,. Soif C(A) # 0 (i.e. rank(A) > n — 1) then the linear
functional df(A) is non zero. So det : GL(n,R) — R is a submersion and
SL(n,R) = (det)~!(1) is a manifold and a Lie group of dimension n? — 1. Note
finally that 77, SL(n,R) = kerddet(I,,) = {X : trace(X) = 0}. This space of
traceless matrices is usually called sl(n,R).

4.7. Example. The symplectic group Sp(n,R) is the group of all 2n x 2n-
matrices A such that w(Az, Ay) = w(x,y) for all 2,y € R?", where w is the
standard non degenerate skew symmetric bilinear form on R?".

Such a form exists on a vector space if and only if the dimension is even, and
on R™ x (R™)* the standard form is given by w((x, 2*), (v, y*)) = (x, y*) — (y, 2*),
i.e. in coordinates w((z*)72y, (y7)52,) = Y1, (a'y" T — 2" 'y"). Any symplectic
form on R?" looks like that after choosing a suitable basis. Let (e;)?"; be the
standard basis in R?". Then we have

e = (5 )=

and the matrix J satisfies J¢ = —J, J? = —I,, J(Zj) = (Y,) in R" x R, and

w(z,y) = (x,Jy) in terms of the standard inner product on R?".
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For A € L(R*",R?") we have w(Az, Ay) = (Az, JAy) = (z, A'JAy). Thus
A € Sp(n,R) if and only if A*'JA = J.

We consider now the mapping f : L(R?",R?") — L(R** R?") given by
f(A) = A'JA. Then f(A)! = (A'"JA)! = —A'JA = —f(A), so f takes val-
ues in the space 0(2n,R) of skew symmetric matrices. We have df(A)X =
X'JA + A'J X, and therefore

ker df (Io,,) = {X € L(R*",R?") : X' J + JX =0}
={X : JX is symmetric} =: sp(n,R).

We see that dim sp(n, R) = M = (2"2“). Furthermore we have ker df (4) =
{X : XtJA+ A'JX = 0} and X — A'JX is an isomorphism kerdf(A) —
Lgym (R* R?™), if A is invertible. Thus dimkerdf(A) = (2”;1) for all A €
GL(2n,R). If f(A) = J, then A'JA = J, so A has rank 2n and is invertible, and

dimker df (A) + dimo(2n,R) = (1) + 222=1 = 42 = dim L(R>", R*"). So
f: GL(2n,R) — 0(2n,R) is a submersion and f~1(J) = Sp(n,R) is a manifold

and a Lie group. It is the symmetry group of ‘classical mechanics’.

4.8. Example. The complex general linear group GL(n,C) of all invertible
complex n x n-matrices is open in L¢(C™,C™), so it is a real Lie group of real
dimension 2n?; it is also a complex Lie group of complex dimension n?. The
complex special linear group SL(n,C) of all matrices of determinant 1 is a sub-
manifold of GL(n,C) of complex codimension 1 (or real codimension 2).

The complex orthogonal group O(n,C) is the set

{A e L(C",C") : g(Az, Aw) = g(z,w) for all z,w},

where g(z,w) = >, Z'w?. This is a complex Lie group of complex dimension
w, and it is not compact. Since O(n,C) = {4 : A'A = 1,}, we have
1 = detc(I,) = detc(AA) = detc(A)?, so detc(A) = +£1. Thus SO(n,C) :=
{4 € O(n,C) : detc(A) = 1} is an open subgroup of index 2 in O(n, C).

The group Sp(n,C) = {A € Lc(C*,C?") : A'JA = J} is also a complex Lie
group of complex dimension n(2n + 1).

These groups here are the classical complex Lie groups. The groups SL(n,C)
for n > 2, SO(n,C) for n > 3, Sp(n,C) for n > 4, and five more exceptional
groups exhaust all simple complex Lie groups up to coverings.

4.9. Example. Let C” be equipped with the standard hermitian inner product
(z,w) = Y.I, z'w'. The unitary group U(n) consists of all complex n x n-
matrices A such that (Az, Aw) = (z,w) for all z, w holds, or equivalently U(n) =
{A: A*A=1,}, where A* = 4.

We consider the mapping f : Lc(C",C") — L¢(C™,C™), given by f(A) =
A*A. Then f is smooth but not holomorphic. Its derivative is df (4)X =
X*A+ A*X, so kerdf(I,,) = {X : X* 4+ X = 0} =: u(n), the space of all skew
hermitian matrices. We have dimgu(n) = n?. As above we may check that
f:GL(n,C) — Lperm(C™,C™) is a submersion, so U(n) = f~(I,) is a compact
real Lie group of dimension n?2.

The special unitary group is SU(n) = U(n) N SL(n,C). For A € U(n) we
have | detc(A)| = 1, thus dimg SU(n) = n? — 1.
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4.10. Example. The group Sp(n). Let H be the division algebra of quater-
nions. Then Sp(1) := S% C H = R* is the group of unit quaternions, obviously
a Lie group.

Now let V be a right vector space over H. Since H is not commutative, we
have to distinguish between left and right vector spaces and we choose right ones
as basic, so that matrices can multiply from the left. By choosing a basis we get
V =R"@g H=H". For u = (u), v=(v') € H* we put (u,v) :== > u'v
Then ( , ) is R-bilinear and (ua,vb) = @(u,v)b for a,b € H.

An R linear mapping A : V — V is called H-linear or quaternionically linear
if A(ua) = A(u)a holds. The space of all such mappings shall be denoted by
Ly(V,V). It is real isomorphic to the space of all quaternionic n X n-matrices
with the usual multiplication, since for the standard basis (e;)7; in V = H" we
have A(u) = A(Y S, eu’) = Y, A(ei)u’ = Do ejAJul. Note that Ly(V,V) is
only a real vector space, if V' is a right quaternionic vector space - any further
structure must come from a second (left) quaternionic vector space structure on
V.

GL(n,H), the group of invertible H-linear mappings of H", is a Lie group,
because it is GL(4n,R) N Ly(H™, H"), open in Ly(H™, H").

A quaternionically linear mapping A is called isometric or quaternionically
unitary, if (A(u), A(v)) = (u,v) for all u,v € H". We denote by Sp(n) the
group of all quaternionic isometries of H", the quaternionic unitary group. The
reason for its name is that Sp(n) = Sp(2n,C) NU(2n), since we can decompose
the quaternionic hermitian form ( , ) into a complex hermitian one and a
complex symplectic one. Also we have Sp(n) C O(4n,R), since the real part of
( , ) is a positive definite real inner product. For A € Ly(H", H") we put
A* := A'. Then we have (u, A(v)) = (A*(u),v), so (A(u), A(v)) = (A*A(u),v).
Thus A € Sp(n) if and only if A*A = Id.

Again f: Ly(H",H") — Ly perm (H",H") = {A : A* = A}, given by f(A) =
A* A, is a smooth mapping with df (4)X = X* A+ A*X. So we have ker df (Id) =
{X : X* = —X} =: sp(n), the space of quaternionic skew hermitian matrices.
The usual proof shows that f has maximal rank on GL(n,H), so Sp(n) = f~1(Id)
is a compact real Lie group of dimension 2n(n — 1) + 3n.

The groups SO(n,R) for n > 3, SU(n) for n > 2, Sp(n) for n > 2 and
real forms of the exceptional complex Lie groups exhaust all simple compact Lie
groups up to coverings.

4.11. Invariant vector fields and Lie algebras. Let G be a (real) Lie group.
A vector field € on G is called left invariant, if \:( = & for all a € G, where
A€ =T(Ag-1)0€0), as in section 3. Since by 3.11 we have XX[£,n] = [A2€, Ain),
the space X (G) of all left invariant vector fields on G is closed under the Lie
bracket, so it is a sub Lie algebra of X(G). Any left invariant vector field &
is uniquely determined by £(e) € T.G, since £(a) = Te(Aq).£(€). Thus the Lie
algebra X, (G) of left invariant vector fields is linearly isomorphic to T.G, and
on T, G the Lie bracket on X1, (G) induces a Lie algebra structure, whose bracket
is again denoted by [ , |. This Lie algebra will be denoted as usual by g,
sometimes by Lie(G).
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We will also give a name to the isomorphism with the space of left invariant
vector fields: L : g — X1(G), X — Lx, where Lx(a) = TcA,.X. Thus [X,Y] =
[Lx,Ly](e).

A vector field n on G is called right invariant, if pin = n for all a € G. If
& is left invariant, then v*¢ is right invariant, since v o p, = A,-1 o v implies
that piv*€ = (Vo pa)*€ = (Ag—1 o v)*E = v*(A\y-1)*¢ = v*€. The right invariant
vector fields form a sub Lie algebra Xz(G) of X(G), which is again linearly
isomorphic to T.G and induces also a Lie algebra structure on T.G. Since
v* : X1 (G) — Xg(G) is an isomorphism of Lie algebras by 3.11, T,v = —1d :
T.G — T.G is an isomorphism between the two Lie algebra structures. We will
denote by R : g = T.G — Xr(G) the isomorphism discussed, which is given by
Rx(a) =T.(ps).X.

4.12. Lemma. If Lx is a left invariant vector field and Ry is a right invariant
one, then [Lx, Ry] = 0. Thus the flows of Lx and Ry commute.

Proof. We consider 0 x Lx € X(G x G), given by (0 x Lx)(a,b) = (04, Lx(b)).
Then Tqp)p-(0a, Lx (b)) = Tapp.0a + TyAa-Lx(b) = Lx(ab), so 0 x Lx is -
related to Lx. Likewise Ry x 0 is p-related to Ry. But then 0 = [0x Lx, Ry x 0]
is p-related to [Lx, Ry| by 3.10. Since u is surjective, [Lx, Ry] = 0 follows. O

4.13. Let ¢ : G — H be a homomorphism of Lie groups, so for the time being
we require ¢ to be smooth.
Lemma. Then ¢ :=T.p: g =T.G — h = T.H is a Lie algebra homomor-
phism.
Proof. For X € g and x € G we have
Top.Lx(x) =TT X =Te(poX;).X =
Te()\S"W) o (p)X = Tp(Aw(x))Tp@X = ch’(X) (gﬁ(l’))

So Ly is p-related to Ly (x). By 3.10 the field [Lx, Ly] = Lix y] is @-related
t0 [Lyr(x)s Ly (v)] = Ly (x),7(v))- So we have Tip o Lix y] = Liw (x),4/(v)] © ¢
If we evaluate this at e the result follows. [

Now we will determine the Lie algebras of all the examples given above.
4.14. For the Lie group GL(n,R) we have T.GL(n,R) = L(R™,R™) =: gl(n,R)
and TGL(n,R) = GL(n,R) x L(R",R™) by the affine structure of the sur-
rounding vector space. For A € GL(n,R) we have As(B) = A.B, so A
extends to a linear isomorphism of L(R™,R™), and for (B,X) € T GL(n,R)
we get Tp(Aa).(B,X) = (A.B,A.X). So the left invariant vector field Lx €
XL(GL(n,R)) is given by Lx(A) =Te(Aa).X = (A, A.X).

Let f: GL(n,R) — R be the restriction of a linear functional on L(R",R").
Then we have Lx(f)(A) = df(A)(Lx(A)) = df(A)(A.X) = f(A.X), which we
may write as Lx (f) = f( .X). Therefore

Lixy)(f) = [Lx, Ly](f) = Lx(Ly(f)) — Ly (Lx(f)) =
=Lx(f( .Y)—-Ly(f( X)) =
=f( XY)-f( YX)=Lxyv-vx(f)
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So the Lie bracket on gl(n,R) = L(R™,R") is given by [X,Y] = XY — Y X, the

usual commutator.

4.15. Example. Let V be a vector space. Then (V,+) is a Lie group, T,V =V
is its Lie algebra, TV = V XV, left translation is A, (w) = v+w, Ty (Ay).(w, X) =
(v+w,X). So Lx(v) = (v,X), a constant vector field. Thus the Lie bracket is
0.

4.16. Example. The special linear group is SL(n,R) = det '(1) and its Lie
algebra is given by T.SL(n,R) = kerddet(ﬂ) = {X € L(R™",R") : trace X =
0} = sl(n,R) by 4.6. The injection ¢ : SL(n,R) — GL(n,R) is a smooth
homomorphism of Lie groups, so Tpi = z’ :sl(n,R) — gl(n,R) is an injective
homomorphism of Lie algebras. Thus the Lie bracket is given by [X,Y] =
XY -YX.

The same argument gives the commutator as the Lie bracket in all other
examples we have treated. We have already determined the Lie algebras as T.G.

4.17. One parameter subgroups. Let GG be a Lie group with Lie algebra g.
A one parameter subgroup of G is a Lie group homomorphism « : (R,+) — G,
i.e. a smooth curve o in G with «(0) = e and a(s +t) = a(s).a(t).

Lemma. Let a: R — G be a smooth curve with «(0) = e. Let X = &(0) € g.
Then the following assertions are equivalent.

) « is a one parameter subgroup.
) a(t) = F1¥X (¢, €) for all t.

3) a(t) = F1%% (t,e) for all t.
) z.ot) = FI** (¢, z), or FIFX = Pat), for all t.
) a(t).x = FI"¥X(t, ), or FI'* = \,(), for all t.
)

dra(t) = Lloz.alt+5) = Lloz.a(t).o(s) = LioA,amals)
= Te(Av.a(n))- gsloc(s) = Lx (a.a(t)).

By uniqueness of solutions we get z.a(t) = FI** (¢, z).
(4) = (2). This is clear.
(2) = (1). We have ga(t)a(s) = fLhapmals) = T(aw)gsols) =
T(Xa))Lx(a(s)) = Lx(a(t)a(s)) and a(t)a(0) = aft). So we get a(t)a(s) =
FI"¥ (s, a(t)) = FIX FIf* (e) = FI" (t + s,¢) = a(t + 5).
(4) <= (5). We have FIy =yl oF1¢ o by 3.14. Therefore we have by 4.11

(Flfx (1‘*1))71 _ (l/ ° Flfx OI/)(:E) _ FltV*RX (x)
o Flf? (r) = z.a—t).

So FIf** (z71) = a(t).z~ ", and FI[** (y) = a(t).y.
(5) = (3) (1) can be shown in a similar way. O
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An immediate consequence of the foregoing lemma is that left invariant and
the right invariant vector fields on a Lie group are always complete, so they
have global flows, because a locally defined one parameter group can always be
extended to a globally defined one by multiplying it up.

4.18. Definition. The exponential mapping exp : ¢ — G of a Lie group is
defined by

exp X = FIFX(1,e) = F1%% (1,¢) = ax(1),
where ax is the one parameter subgroup of G with ax(0) = X.

Theorem.

(1) exp: g — G is smooth.

(2) exp(tX) = F1¥¥(t,e).

(3) FIEX (¢, x) = z. exp(tX).

(4) FI®X(t,2) = exp(tX).x.

(5) exp(0) = e and Tpexp = Id : Tog = g — T.G = g, thus exp is a
diffeomorphism from a neighborhood of 0 in g onto a neighborhood of e
inG.

Proof. (1) Let 0x L € X(g x G) be given by (0 x L)(X,z) = (0x, Lx(x)). Then
pro F12%E(t, (X, e)) = ax(t) is smooth in (¢, X).

(2) exp(tX) = FI"¥(1,¢e) = FI** (t,e) = ax(t).

(3) and (4) follow from lemma 4.17.

(5) Toexp.X = Llpexp(0+t.X) = |, FI" (t,e) = X. O

4.19. Remark. If G is connected and U C g is open with 0 € U, then the
group generated by exp(U) equals G.

For this group is a subgroup of G containing some open neighborhood of e,
so it is open. The complement in G is also open (as union of the other cosets),
so this subgroup is open and closed. Since G is connected, it coincides with G.

If G is not connected, then the subgroup generated by exp(U) is the connected
component of e in G.

4.20. Remark. Let ¢ : G — H be a smooth homomorphism of Lie groups.
Then the diagram

/

Y

g——b

expGJ Jepo

P

G——H

commutes, since t — @(exp®(tX)) is a one parameter subgroup of H and
dilow(exp tX) = ¢/(X), so p(exp? tX) = exp (t¢'(X)).

If G is connected and ¢, : G — H are homomorphisms of Lie groups with
¢ =1 :g— b, then ¢ = 9. For ¢ = 1) on the subgroup generated by exp® g
which equals G by 4.19.
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4.21. Theorem. A continuous homomorphism ¢ : G — H between Lie groups
is smooth. In particular a topological group can carry at most one compatible
Lie group structure.

Proof. Let first ¢ = o : (R,+) — G be a continuous one parameter subgroup.
Then a(—e,e) C exp(U), where U is an absolutely convex open neighbor-
hood of 0 in g such that exp |2U is a diffeomorphism, for some £ > 0. Put
B = (exp|2U)" ' o : (—g,) — g. Then for [¢| < 1 we have exp(28(t)) =
exp(A(1))? = a(t)? = a(2t) = exp(B(21)), so0 28(t) = A(24); thus B(3) = 18(s)
for [s| < e. So we have a(%) = exp(8(%)) = exp(38(s)) for all |s| < ¢ and by
recursion we get a(z5) = exp(558(s)) for n € N and in turn a(£5s) = ()" =
exp(558(s))* = exp(£3(s)) for k € Z. Since the % for k € Z and n € N are
dense in R and since « is continuous we get «(ts) = exp(t3(s)) for all t € R. So
« is smooth.

Now let ¢ : G — H be a continuous homomorphism. Let X,..., X, be a lin-
ear basis of g. We define ) : R" — G as (!, ... ,t") = exp(t' X1) - - - exp(t" X,,).
Then Ty is invertible, so 1 is a diffeomorphism near 0. Sometimes ¢! is called
a coordinate system of the second kind. ¢ — ¢@(exp®tX;) is a continuous one
parameter subgroup of H, so it is smooth by the first part of the proof. We have
(powp)(th,... ,t") = (pexp(tt X1)) - -+ (pexp(t"X,)), so o1 is smooth. Thus
 is smooth near e € G and consequently everywhere on G. [J

4.22. Theorem. Let G and H be Lie groups (G separable is essential here),
and let ¢ : G — H be a continuous bijective homomorphism. Then ¢ is a
diffeomorphism.

Proof. Our first aim is to show that ¢ is a homeomorphism. Let V be an
open e-neighborhood in G, and let K be a compact e-neighborhood in G such
that K.K~! C V. Since G is separable there is a sequence (a;);ey in G such
that G = |J;2, a;.K. Since H is locally compact, it is a Baire space (V; open
and dense implies (| V; dense). The set ¢(a;)¢(K) is compact, thus closed.
Since H = |J, ¢(a;i).(K), there is some i such that ¢(a;)p(K) has non empty
interior, so ¢(K) has non empty interior. Choose b € G such that ¢(b) is an
interior point of p(K) in H. Then ey = @(b)p(b~!) is an interior point of
o(K)p(K=1) C ¢(V). So if U is open in G and a € U, then ey is an interior
point of p(a=tU), so ¢(a) is in the interior of p(U). Thus ¢(U) is open in H,
and ¢ is a homeomorphism.

Now by 4.21 ¢ and ¢~ ! are smooth. [

4.23. Examples. The exponential mapping on GL(n,R). Let X € gl(n,R) =
L(R™,R"™), then the left invariant vector field is given by Ly (A4) = (4, A.X) €
GL(n,R) x gl(n,R) and the one parameter group ax(t) = F1¥X(¢,1) is given
by the differential equation %ax(t) = Lx(ax(t)) = ax(t).X, with initial con-
dition ax(0) = I. But the unique solution of this equation is ax(t) = !X =

oo tF vk
kZOFX . SO

eXpGL(n,]R) (X) _ €X _ 220:0 % Xk,
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If n =1 we get the usual exponential mapping of one real variable. For all Lie
subgroups of GL(n,R), the exponential mapping is given by the same formula
exp(X) = eX; this follows from 4.20.

4.24. The adjoint representation. A representation of a Lie group G on a
finite dimensional vector space V' (real or complex) is a homomorphism p : G —
GL(V) of Lie groups. Then by 4.13 p' : g — gl(V) = L(V,V) is a Lie algebra
homomorphism.

For a € G we define conj, : G — G by conj,(z) = awva™t. It is called
the conjugation or the inner automorphism by a € G. We have conj,(zy) =
conj, (z) conj,(y), conj,, = conj, o conj,, and conj is smooth in all variables.

Next we define for a € G the mapping Ad(a) = (conj,) = Te(conj,) : g — g.
By 4.13 Ad(a) is a Lie algebra homomorphism, so we have Ad(a)[X,Y] =
[Ad(a)X,Ad(a)Y]. Furthermore Ad : G — GL( ) is a representation, called
the adjoint representation of G, since Ad(ab) = Te(conj,;,) = T.(conj, o conj,) =
T.(conj,) o T.(conj,) = Ad(a ) o Ad(b). We will use the relations Ad(a) =
Te(conj,) = Ta(pa-1)-Te(Aa) = To-1(Xa) Te(pa-1).

Finally we define the (lower case) adjoint representation of the Lie algebra g,
ad: g — gl(g) = L(g,9), by ad := Ad' = T, Ad.

Lemma. (1) Lx(a)= Rpq(a)x(a) for X € ganda € G.

(2) ad(X)Y = [X,Y] for X,Y € g.

Proof. (1) LX(a’) = Te()‘a)'X = Te(pa)'Te(pa*1 © )\a)'X = RAd(a)X(a)'
(2) Let Xi,...,X, be a linear basis of g and fix X € g. Then Ad(x)X =

Yo fi(z).X; for f; € C*°(G,R) and we have in turn

Ad (V)X = T.(Ad( )X)Y =d(Ad( )X)[Y =d(3 fiX)leY =

= deile( )Xi =3 Ly (fi)(e)-X;
Lx(2) = Raa@)x (x) = RO fi(2) Xa)(x) = 3 fi(x). R, (2) by (1).
[Ly,Lx] = [Ly,}_ fi.-Rx,] = 0+ > Ly (fi)-Rx, by 3.4 and 4.12.
¥, X] = [Ly, Lx](e) = X Ly (f)(€) R, (¢) = Ad' (V)X = ad(¥)X. O

4.25. Corollary. From 4.20 and 4.23 we have
Adoexp® = exp®t® o ad

Ad( e:vp X)Y = Zk' adX Y = 24Xy

_Y+[XY] LIX, (X, V)] + L[X, X, X Y]]+ O

4.26. The right logarithmic derivative. Let M be a manifold and let f :
M — G be a smooth mapping into a Lie group G with Lie algebra g. We define
the mapping 6f : TM — g by the formula 6 () = Ty (Pp@)-1) TofEe-
Then 6f is a g-valued 1-form on M, §f € Q' (M, g), as we will write later. We
call §f the right logarithmic derivative of f, since for f : R — (RT,-) we have

0f(x)1 = L& = (logof) ().
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Lemma. Let f,g: M — G be smooth. Then we have
0(f-9)(x) = 6 f(x) + Ad(f(x)).6g(x).
Proof. We just compute:

6(f.9)(x) =T (pg(a)-1.f(2)-1)-Tu(f.9) =
=T(ps)-1)-T(Pg(z)-1)-T(f(x).g(x))H-(Tu f, Tug) =
=T(ps()1) T (Pg@)=1)- (T(Pg(@)- Taf + T(\y(a))-Teg) =
=6f(x) + Ad(f(x)).0g(z). O

Remark. The left logarithmic derivative §'° f € Q' (M, g) of a smooth mapping
f: M — G is given by §l°ftf.¢, = Ty (N f(@)-1)-Tof -z The corresponding
Leibnitz rule for it is uglier than that for the right logarithmic derivative:

5 (£g)(x) = 8 g(x) + Ad(g(x) )3 ()

The form §'**(Idg) € Q(G; g) is also called the Maurer-Cartan form of the Lie
group G.

z

we have

4.27. Lemma. Forexp:g— G and for g(z) := c

6(exp)(X) = T (pexp(-x))-Tx exp = Z ﬁ (ad X)? = g(ad X).
p=0

Proof. We put M(X) = d(exp)(X): g — g. Then
(s+t)M((s+t)X) = (s+t)d(exp)((s+t)X)
(s+t) ))X by the chain rule,

).exp(t )).X
s )).X + Ad(exp(sX)).0(exp(t )).X by 4.26,

= s.0(exp)(sX) + Ad(exp(sX)).t.0(exp)(tX)

= s.M(sX) + Ad(exp(sX)).t.M(tX).
Now we put N(t) :=t.M(tX) € L(g, g), then the above equation gives N (s+t) =
N(s) + Ad(exp(sX)).N(t). We fix ¢, apply dlls|07 and get N'(t) = N'(0) +
ad(X).N(t), where N'(0) = M(0) + 0 = d(exp)(0) = Idg. So we have the

differential equation N'(t) = Idg +ad(X).N(t) in L(g, g) with initial condition
N(0) = 0. The unique solution is

N(s) = Z ﬁ ad(X)P.sPT and so
p=0

S(exp)(X) = M(X) = N(1) = Y oy ad(X)P. O
p=0
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4.28. Corollary. Tx exp is bijective if and only if no eigenvalue of ad(X) :
g — g is of the form \/—12kmw for k € Z\ {0}.

Proof. The zeros of g(z) = 62;1 are exactly z = /—12kn for k € Z \ {0}. The
linear mapping T'x exp is bijective if and only if no eigenvalue of g(ad(X)) =
T (pexp(—x))-T'x exp is 0. But the eigenvalues of g(ad(X)) are the images under
g of the eigenvalues of ad(X). O

4.29. Theorem. The Baker-Campbell-Hausdorff formula.

Let G be a Lie group with Lie algebra g. For complex z near 1 we consider the

function f(z) := % =2 >0 (;Jlr)ln (z—=1)".
Then for X, Y near 0 in g we have exp X.expY = exp C(X,Y'), where

1
C(X,Y)= Y+/ flet 24X e2dY) X gt

—X+Y+Zn+):/ (Z kt— (ad X) (adY))nth

k,£>0

k+i>1
" ad X)*1 (ad V)2 ... (ad X)*» (ad V)"
Crayase (3 X)M (3 )1 .. (ad X)¥ (ad Yo
Z nET 2 By bt Font DEle .kl ]
n>1 kiyorkn >0
51,-~€nZO
ki+€;>1

=X+Y+ %[X’Y] + %([Xv [X,Y]] - [Y’ [YvXH) +

Proof. Let C(X,Y) := exp (exp X.expY) for X, Y near 0in g, and let C(t) :=
C(tX,Y). Then
T(pexp(fc(t)))% (GXp C(t)) = 6eXp(C(t))C(t)
= Ykzo gy (ad C(1)*C(t) = g(ad C(1)).C(1),

z

where g(z) = < = > k>0 (szkl), We have expC(t) = exp(tX)expY and
exp(—C(t)) = exp(C(t)) ! = exp(~Y) exp(—tX), therefore
T(pexp(fC(t)))% (exp C(t)) = T(pexp(fY)exp( tX)) (exp(tX) eXp Y)
= T(pexp(—tX))T(pexp(—Y))T(pexpY)% exp(tX)
= T(pexp(—tx))-Bx(exp(tX)) = X, by 4.18.4 and 4.11.
X = g(ad C(1)).C(1).
e — Ad(exp C(t)) by 4.25
= Ad(exp(tX)expY) = Ad(exp(tX)). Ad(expY)
md(tX) adY — et.adX.eadY.

=€

t.adX.eadY)

If X, Y, and ¢ are small enough we get ad C(t) = log(e , where

— (="t n
log(z) = 2,51 (z — 1)", thus we have

n

= g(ad C(t)).C(t) = g(log(e' 24X .e21Y)).C(1).
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For z near 1 we put f(z) := k;g_(i) = > >0 (;j_)ln (2 — 1)", which satisfies
g(log(2)).f(z) = 1. So we have
X = g(log(eh 24X 2dY)) () = f(et-2dX ad V)1 i),
C(t) = f(et2aX 2 X,
{ C(0) =Y.

Passing to the definite integral we get the desired formula

C(X,Y)=C(1) = C(0) + /1 C(t)dt
0
_ ' et.adX eadY .
_y+/0 Flet-X YY) X gy

—X+Y+Z(_1)n/1< > kt,—; (adX)’“(adY)f>nX dt. O
0 7]

n+1
n>1 + k,6>0
k+0>1

Remark. If G is a Lie group of differentiability class C?, then we may define
TG and the Lie bracket of vector fields. The proof above then makes sense
and the theorem shows, that in the chart given by exp~! the multiplication
w: G x G — G is C¥ near e, hence everywhere. So in this case G is a real
analytic Lie group. See also remark 5.6 below.

4.30. Convention. We will use the following convention for the rest of the
book. If we write a symbol of a classical group from this section without indi-
cating the ground field, then we always mean the field R — except Sp(n). In
particular GL(n) = GL(n,R), and O(n) = O(n,R) from now on.

5. Lie subgroups and homogeneous spaces

5.1. Definition. Let G be a Lie group. A subgroup H of G is called a Lie
subgroup, if H is itself a Lie group (so it is separable) and the inclusion i : H — G
is smooth.

In this case the inclusion is even an immersion. For that it suffices to check
that T.i is injective: If X € b is in the kernel of T,i, then i o exp™(tX) =
exp?(t.T.i.X) = e. Since i is injective, X = 0.

From the next result it follows that H C G is then an initial submanifold in
the sense of 2.14: If Hy is the connected component of H, then i(Hy) is the Lie
subgroup of G generated by '(h) C g, which is an initial submanifold, and this
is true for all components of H.

5.2. Theorem. Let G be a Lie group with Lie algebra g. If h C g is a Lie
subalgebra, then there is a unique connected Lie subgroup H of G with Lie
algebra . H is an initial submanifold.

Proof. Put E, := {Tc(A\;).X : X € b} C T,G. Then E := || ., E, is a
distribution of constant rank on G, in the sense of 3.18. The set {Lx : X € b}

Electronic edition of: Natural Operations in Differential Geometry, Springer-Verlag, 1993



42 Chapter I. Manifolds and Lie groups

is an involutive set in the sense of 3.23 which spans E. So by theorem 3.25 the
distribution F is integrable and by theorem 3.22 the leaf H through e is an initial
submanifold. It is even a subgroup, since for x € H the initial submanifold A\, H
is again a leaf (since E is left invariant) and intersects H (in z), so A\, (H) = H.
Thus H.H = H and consequently H~! = H. The multiplication . : H x H — G
is smooth by restriction, and smooth as a mapping H x H — H, since H is an
initial submanifold, by lemma 2.17. [

5.3. Theorem. Let g be a finite dimensional real Lie algebra. Then there
exists a connected Lie group G whose Lie algebra is g.

Sketch of Proof. By the theorem of Ado (see [Jacobson, 62] or [Varadarajan, 74,
p. 237]) g has a faithful (i.e. injective) representation on a finite dimensional
vector space V, i.e. g can be viewed as a Lie subalgebra of gl(V) = L(V,V).
By theorem 5.2 above there is a Lie subgroup G of GL(V) with g as its Lie
algebra. [

This is a rather involved proof, since the theorem of Ado needs the struc-
ture theory of Lie algebras for its proof. There are simpler proofs available,
starting from a neighborhood of e in G (a neighborhood of 0 in g with the
Baker-Campbell-Hausdorff formula 4.29 as multiplication) and extending it.

5.4. Theorem. Let G and H be Lie groups with Lie algebras g and b, re-
spectively. Let f : g — b be a homomorphism of Lie algebras. Then there
is a Lie group homomorphism ¢, locally defined near e, from G to H, such
that ¢’ = T.p = f. If G is simply connected, then there is a globally defined
homomorphism of Lie groups ¢ : G — H with this property.

Proof. Let ¢ := graph(f) C gx . Then tis a Lie subalgebra of g x h, since f is a
homomorphism of Lie algebras. g x b is the Lie algebra of G x H, so by theorem
5.2 there is a connected Lie subgroup K C G x H with algebra €. We consider
the homomorphism ¢ := pry oincl : K — G x H — G, whose tangent mapping
satisfies Teg(X, f(X)) = T(c,eypr1.Teincl (X, f(X)) = X, so is invertible. Thus
g is a local diffeomorphism, so g : K — Gy is a covering of the connected
component Gy of e in G. If G is simply connected, g is an isomorphism. Now we
consider the homomorphism v := pro oincl : K — G x H — H, whose tangent
mapping satisfies T.1.(X, f(X)) = f(X). We see that p := o (g|U)"': G D
U — H solves the problem, where U is an e-neighborhood in K such that g|U is a
diffeomorphism. If G is simply connected, ¢ = 1 og~ ! is the global solution. [J

5.5. Theorem. Let H be a closed subgroup of a Lie group G. Then H is a Lie
subgroup and a submanifold of G.

Proof. Let g be the Lie algebra of G. We consider the subset § := {¢/(0) : ¢ €
C*(R,G),c(R) C H,c(0) = e}.

Claim 1. h is a linear subspace.

If (0) € hand t; € R, we define c(t) := c1(t1.t).ca(t2.t). Then ¢'(0) =
Te,eyp-(t1.¢1(0), t2.¢5(0)) = t1.¢1(0) 4 t2.c5(0) € b.

Claim 2. h = {X € g:exp(tX) € H for all t € R}.

Clearly we have ‘O’. To check the other inclusion, let X = ¢/(0) € b and consider
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v(t) := (exp¥)~lc(t) for small t. Then we get X = /(0) = %L|oexp(v(t)) =
v/(0) = limy oo n.v(1). We put t, = L and X, = n.v(1), so that exp(t,,.X,) =
exp(v(1)) = c(2) € H. By claim 3 below we then get exp(tX) € H for all t.
Claim 3. Let X,, > X ing, 0 < t, — 0 in R with exp(¢,X,) € H. Then
exp(tX) € H for all t € R.

Let t € R and take m,, € (% -1, i] NZ. Then t,.m, — t and m,.t,.X, — tX,
and since H is closed we may conclude that exp(tX) = lim,, exp(my,.t,.X,) =
lim,, exp(t,,.X,)™" € H.

Claim 4. Let £ be a complementary linear subspace for § in g. Then there is
an open 0O-neighborhood W in € such that exp(W) N H = {e}.

If not there are 0 # Y3 € ¢ with Y — 0 such that exp(Yy) € H. Choose a
norm | |on gand let X,, =Y,,/|Y,|. Passing to a subsequence we may assume
that X, — X in ¢, then |X| = 1. But exp(|Y,|-Xn) = exp(Y,) € H and
0 < |Y,| — 0, so by claim 3 we have exp(tX) € H for all ¢t € R. So by claim 2
X € b, a contradiction.

Claim 5. Put ¢ : h xt = G, p(X,Y) = expX.expY. Then there are 0-
neighborhoods V in h, W in ¢, and an e-neighborhood U in G such that ¢ :
V x W — U is a diffeomorphism and U N H = exp(V).

Choose V, W, and U so small that ¢ becomes a diffeomorphism. By claim
4 W may be chosen so small that exp(W) N H = {e}. By claim 2 we have
exp(V) CHNU. Let x € HNU. Since x € U we have x = exp X.expY for
unique (X,Y) € V. x W. Then z and exp X € H, so expY € H Nexp(W), thus
Y =0. Sox =expX € exp(V).

Claim 6. H is a submanifold and a Lie subgroup.

(U, (|V x W)~ =: u) is a submanifold chart for H centered at e by claim 5.
For x € H the pair (A;(U),u o A,-1) is a submanifold chart for H centered at
. So H is a closed submanifold of GG, and the multiplication is smooth since it
is a restriction. [J

5.6. Remark. The following stronger results on subgroups and the relation
between topological groups and Lie groups in general are available.

Any arc wise connected subgroup of a Lie group is a connected Lie subgroup,
[Yamabe, 50].

Let G be a separable locally compact topological group. If it has an e-
neighborhood which does not contain a proper subgroup, then G is a Lie group.
This is the solution of the 5-th problem of Hilbert, see the book [Montgomery-
Zippin, 55, p. 107].

Any subgroup H of a Lie group G has a coarsest Lie group structure, but
it might be non separable. To indicate a proof of this statement, consider all
continuous curves ¢ : R — G with ¢(R) C H, and equip H with the final topology
with respect to them. Then the component of the identity satisfies the conditions
of the Gleason-Yamabe theorem cited above.

5.7. Let g be a Lie algebra. An ideal £ in g is a linear subspace £ such that
[e,g] C €. Then the quotient space g/ carries a unique Lie algebra structure
such that g — g/€ is a Lie algebra homomorphism.
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Lemma. A connected Lie subgroup H of a connected Lie group G is a normal
subgroup if and only if its Lie algebra b is an ideal in g.

Proof. H normal in G means xHz~! = conj,(H) C H for all z € G. By remark
4.20 this is equivalent to T¢(conj,)(h) C b, i.e. Ad(x)h C b, for all x € G. But
this in turn is equivalent to ad(X)h C b for all X € g, so to the fact that b is an
ideal in g. O

5.8. Let G be a connected Lie group. If A C G is an arbitrary subset, the
centralizer of A in G is the closed subgroup Z4 := {x € G : xa = ax for all a €
A},

The Lie algebra 34 of Z4 then consists of all X € g such that a.exp(tX).a=! =
exp(tX) foralla € A, ie. 3o ={X €g:Ad(a)X = X for all a € A}.

If A is itself a connected Lie subgroup of G, then 34 = {X € g: ad(Y)X =
0 for all Y € a}. This set is also called the centralizer of a in g. If A = G then
Zc is called the center of G and 3¢ ={X € g: [X,Y] =0 for all Y € g} is then
the center of the Lie algebra g.

5.9. The normalizer of a subset A of a connected Lie group G is the subgroup
Ny={x€G:\(A) =p,(A)} ={z € G : conj,(A) = A}. If A is closed then
N4 is also closed.

If A is a connected Lie subgroup of G then Ny = {z € G : Ad(z)a C a} and
its Lie algebra is ng = {X € g: ad(X)a C a} is then the idealizer of a in g.

5.10. Group actions. A left action of a Lie group G on a manifold M is a
smooth mapping ¢ : G x M — M such that ¢, o {,, = £, and . = Ids, where
lp(2) =Lz, 2).

A right action of a Lie group G on a manifold M is a smooth mapping
r: M x G — M such that r* or¥ = r¥* and r¢ = Idys, where r*(z) = r(z, z).

A G-space is a manifold M together with a right or left action of G on M.

We will describe the following notions only for a left action of G on M. They
make sense also for right actions.

The orbit through z € M is the set G.z = ¢(G,z) C M. The action is called
transitive, if M is one orbit, i.e. for all z,w € M there is some g € G with
g.z = w. The action is called free, if g1.2 = g2.z for some z € M implies already
g1 = g2. The action is called effective, if £, = ¢, implies x =y, i.e. if £: G —
Diff (M) is injective, where Diff (M) denotes the group of all diffeomorphisms of
M.

More generally, a continuous transformation group of a topological space M
is a pair (G, M) where G is a topological group and where to each element z € G
there is given a homeomorphism ¢, of M such that ¢ : Gx M — M is continuous,
and ¢, o {, = {;,. The continuity is an obvious geometrical requirement, but
in accordance with the general observation that group properties often force
more regularity than explicitly postulated (cf. 5.6), differentiability follows in
many situations. So, if G is locally compact, M is a smooth or real analytic
manifold, all £, are smooth or real analytic homeomorphisms and the action is
effective, then G is a Lie group and £ is smooth or real analytic, respectively,
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see [Montgomery, Zippin, 55, p. 212]. The latter result is deeply reflected in the
theory of bundle functors and will be heavily used in chapter V.

5.11. Homogeneous spaces. Let G be a Lie group and let H C G be a closed
subgroup. By theorem 5.5 H is a Lie subgroup of G. We denote by G/H the
space of all right cosets of G, i.e. G/H = {zH :z € G}. Let p: G — G/H
be the projection. We equip G/H with the quotient topology, i.e. U C G/H is
open if and only if p~!(U) is open in G. Since H is closed, G/H is a Hausdorff
space.

G/H is called a homogeneous space of G. We have a left action of G on G/H,
which is induced by the left translation and is given by \,(zH) = zzH.

Theorem. If H is a closed subgroup of G, then there exists a unique structure
of a smooth manifold on G/H such that p : G — G/H is a submersion. So
dimG/H = dim G — dim H.

Proof. Surjective submersions have the universal property 2.4, thus the manifold
structure on G/H is unique, if it exists. Let h be the Lie algebra of the Lie
subgroup H. We choose a complementary linear subspace £ such that g = & ¢.

Claim 1. We consider the mapping f : ¢ x H — G, given by f(X,h) := exp X.h.
Then there is an open 0-neighborhood W in £ and an open e-neighborhood U in
G such that f: W x H — U is a diffeomorphism.

By claim 5 in the proof of theorem 5.5 there are open 0-neighborhoods V' in
h, W' in €, and an open e-neighborhood U’ in G such that ¢ : W/ xV — U’ is a
diffeomorphism, where ¢(X,Y) = exp X.exp Y, and such that U' N H = exp V.
Now we choose W in € so small that exp(W)~.exp(W) C U’. We will check
that this W satisfies claim 1.

Claim 2. f|W x H is injective.

f(X1,h1) = f(X2, h2) means exp X1.h1 = exp Xo.hs, consequently we have
hohT! = (exp Xo) lexp X; € exp(W) lexp(W)NH Cc U NH =expV. So
there is a unique Y € V with hoh;' = expY. But then ¢(X1,0) = exp X} =
exp Xg.hg.hfl =exp Xao.expY = p(Xo,Y). Since ¢ is injective, X; = X5 and
Y:07 SOhlth.

Claim 3. f|W x H is a local diffeomorphism.
The diagram

W v XD A

commutes, and Idy x exp and ¢ are diffeomorphisms. So f|W x (U’ N H) is
a local diffeomorphism. Since f(X,h) = f(X,e).h we conclude that f|W x H

is everywhere a local diffeomorphism. So finally claim 1 follows, where U =
fW x H).
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Now we put g :=po (exp|W): €D W — G/H. Then the following diagram
commutes: f
WxH-——>U

| Jp

w—9 G/H

Claim 4. g is a homeomorphism onto p(U) =: U C G/H.

Clearly g is continuous, and g is open, since p is open. If g(X;) = g(X5) then
exp X1 = exp Xo.h for some h € H, so f(X1,e) = f(X2,h). By claim 1 we get
X1 = Xy, so g is injective. Finally g(W) = U, so claim 4 follows.

For a € G we consider U, = \,(U) = a.U and the mapping u, := g 1 oX,1 :

U,— W CEt

Claim 5. (Uy,uq =g 1o /_\7(171 :f]a — W)aeg is a smooth atlas for G/H.
Let a, b € G such that U, N U, # (). Then

Ug O ub_l =g o1 0Mog:up(U, NTY) — ua(U, N Ty)

g o R0 po (exp V)
=g topodg-1po0 (exp W)

=priof toXc-1,0(exp|W) issmooth. [

5.12. Let £ : G x M — M be a left action. Then we have partial mappings
by M — M and ¢* : G — M, given by £,(z) = ¢*(a) = {(a,z) = a.z.

For any X € g we define the fundamental vector field (x = (¥ € X(M) by
Cx(x) =T, (0%).X = Te. 0y l-(X,02).

Lemma. In this situation the following assertions hold:
(1) ¢:g— X(M) is a linear mapping.
(2) Tola)Cx () = Cad(a)x (@-1).
(3) Rx x 0pr € X(G x M) is L-related to (x € X(M).
4) [Cx, &l = ~(xvy-

Proof. (1) is clear.

(2) Lo 0*(b) = abx = aba"lax = €% conj,(b), so we get Ty ({y).Cx(x)
Tp(la).Te(£7). X =T, (g0 £7).X =T, (7). Ad(a). X = Cad(a)x (az).

(3) Lo (Idxty) = Lo (po xId) : GXx M — M, so we get (x(l(a,x)) =
Tie,az)l-(X,000) = TL.(1d xT'(£s)).(X,0,) = TL(T(pa) x1d).(X, 0,) = TL.(Rx x
0nr) (0, 2).

( ) [RX X Opr, Ry X OM] [Rx,Ry] X 0y = —R[X’y] x 0p7 is f-related to
[Cx,Cy] by (3) and by 3.10. On the other hand —Rx y) x Ops is f-related to
—(ix,y] by (3) again. Since / is surjective we get [(x,Cy] = —(x,y]- O

5.13. Let r : M x G — M be a right action, so 7 : G — Diff (M) is a group
anti homomorphism. We will use the following notation: r* : M — M and
ry : G — M, given by r,(a) = r%(x) = r(z,a) = z.a.

For any X € g we define the fundamental vector field (x = (¥ € X(M) b
Cx (@) = Te(re). X = Tz eyr-(0g, X).
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Lemma. In this situation the following assertions hold:

(1) ¢:g— X(M) is a linear mapping.

(2) T (r")(x(x) = Cad(a—1)x (2-0).

(3) Op X Lx € X(M x G) is r-related to {x € X(M).
)

4) [Cx: ¢l =(xy;- O

5.14. Theorem. Let ¢ : G x M — M be a smooth left action. For x € M let
G, = {a € G : ax = z} be the isotropy subgroup of x in G, a closed subgroup
of G. Then ¢* : G — M factors over p : G — G /G, to an injective immersion
i® : G/G, — M, which is G-equivariant, i.e. £, 0i® = i® o \, for all a € G. The
image of i® is the orbit through .

The fundamental vector fields span an integrable distribution on M in the
sense of 3.20. Its leaves are the connected components of the orbits, and each
orbit is an initial submanifold.

Proof. Clearly ¢* factors over p to an injective mapping i* : G/G, — M; by
the universal property of surjective submersions i* is smooth, and obviously
it is equivariant. Thus T}, (i*).Tpe)(Aa) = Tp(e)(i* © Aa) = Tpe)(lq 0 i) =
Ty (La) Tpe)(i®) for all a € G and it suffices to show that T}, (i") is injective.
Let X € g and consider its fundamental vector field {(x € X(M). By 3.14 and

5.12.3 we have
(1) U(exp(tX),z) = ((FIfX XM (e, 2)) = FIgX ({(e, 2)) = FIg* (2).

So exp(tX) € Gm, ie. X € g,, if and only if (x(z) = 0,. In other words,
= (x(x) = Te(0%).X = Tpe) (i) Tep. X if and only if Top.X = 0,(). Thus i*
is an immersion.

Since the connected components of the orbits are integral manifolds, the fun-
damental vector fields span an integrable distribution in the sense of 3.20; but
also the condition 3.25.2 is satisfied. So by theorem 3.22 each orbit is an initial
submanifold in the sense of 2.14. [

5.15. A mapping f: M — M between two manifolds with left (or right) actions
¢ and £ of a Lie group G is called G-equivariant if fol, = lyof (or for® = 7o f)
for all a € G. Sometimes we say in short that f is a G-mapping. From formula
5.14.(1) we get

Lemma. If G is connected, then f is G-equivariant if and only if the funda-
mental field mappings are frelated, i.e. Tfo(x = (x o f forall X € g.

Proof. The image of the exponential mapping generates the connected compo-
nent of the unit. [

5.16. Semidirect products of Lie groups. Let H and K be two Lie groups
and let £ : H x K — K be a left action of H in K such that each ¢}, : K — K
is a group homomorphism. So the associated mapping ¢ : H — Aut(K) is a
homomorphism into the automorphism group of K. Then we can introduce the
following multiplication on K x H

(1) (k, ) (K", 1) == (Kl (K'), hI).
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It is easy to see that this defines a Lie group G = K X, H called the semidirect
product of H and K with respect to £. If the action ¢ is clear from the context we
write G = K x H only. The second projection pry : K X H — H is a surjective
smooth homomorphism with kernel K x{e}, and the insertion ins, : H — K x H,
ins.(h) = (e, h) is a smooth group homomorphism with pry o ins, = Idg.
Conversely we consider an exact sequence of Lie groups and homomorphisms

(2) {e} > K LG5 H-{e).

So j is injective, p is surjective, and the kernel of p equals the image of j.
We suppose furthermore that the sequence splits, so that there is a smooth
homomorphism i : H — G with poi =1Idy. Then the rule ¢, (k) = i(h)ki(h~!)
(where we suppress j) defines a left action of H on K by automorphisms. It
is easily seen that the mapping K x, H — G given by (k,h) — ki(h) is an
isomorphism of Lie groups. So we see that semidirect products of Lie groups
correspond exactly to splitting short exact sequences.

Semidirect products will appear naturally also in another form, starting from
right actions: Let H and K be two Lie groups and let  : K x H — K be a right
action of H in K such that each r" : K — K is a group homomorphism. Then
the multiplication on H x K is given by

(3) (h, k)(h, k) := (hh, " (k)k).

This defines a Lie group G = H X, K, also called the semidirect product of H
and K with respect to r. If the action r is clear from the context we write
G = H x K only. The first projection pry : H x K — H is a surjective smooth
homomorphism with kernel {e} x K, and the insertion ins, : H — H x K,
ins.(h) = (h,e) is a smooth group homomorphism with pry o ins, = Idg.

Conversely we consider again a splitting exact sequence of Lie groups and
homomorphisms

{e} =K LG5 H- {e).

The splitting is given by a homomorphism ¢ : H — G with poi¢ = Idg. Then
the rule 7" (k) = i(h~1)ki(h) (where we suppress j) defines now a right action
of H on K by automorphisms. It is easily seen that the mapping H %, K — G
given by (h, k) — i(h)k is an isomorphism of Lie groups.

Remarks

The material in this chapter is standard. The concept of initial submani-
folds in 2.14-2.17 is due to Pradines, the treatment given here follows [Albert,
Molino]. The proof of theorem 3.16 is due to [Mauhart, 90]. The main re-
sults on distributions of non constant rank (3.18-3.25) are due to [Sussman, 73]
and [Stefan, 74], the treatment here follows [Lecomte]. The proof of the Baker-
Campbell-Hausdorff formula 4.29 is adapted from [Sattinger, Weaver, 86], see
also [Hilgert, Neeb, 91]. e
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CHAPTER 11I.
DIFFERENTIAL FORMS

This chapter is still devoted to the fundamentals of differential geometry,
but here the deviation from the standard presentations is already large. In
the section on vector bundles we treat the Lie derivative for natural vector
bundles, i.e. functors which associate vector bundles to manifolds and vector
bundle homomorphisms to local diffeomorphisms. We give a formula for the Lie
derivative of the form of a commutator, but it involves the tangent bundle of the
vector bundle in question. So we also give a careful treatment to this situation.
The Lie derivative will be discussed in detail in chapter XI; here it is presented
in a somewhat special situation as an illustration of the categorical methods we
are going to apply later on. It follows a standard presentation of differential
forms and a thorough treatment of the Frolicher-Nijenhuis bracket via the study
of all graded derivations of the algebra of differential forms. This bracket is a
natural extension of the Lie bracket from vector fields to tangent bundle valued
differential forms. We believe that this bracket is one of the basic structures of
differential geometry (see also section 30), and in chapter III we will base nearly
all treatment of curvature and the Bianchi identity on it.

6. Vector bundles

6.1. Vector bundles. Let p: E — M be a smooth mapping between mani-
folds. By a wvector bundle chart on (E,p, M) we mean a pair (U,v), where U is
an open subset in M and where ¢ is a fiber respecting diffeomorphism as in the
following diagram:

v

N

U.

E|U :=p (V) UxV

Here V is a fixed finite dimensional vector space, called the standard fiber or the
typical fiber, real as a rule, unless otherwise specified.

Two vector bundle charts (Uy, 1) and (Us, ¢2) are called compatible, if 11 o
¥y is a fiber linear isomorphism, i.e. (1 095 ) (z,v) = (x,112(2)v) for some
mapping ¢ 2 : Uy 2 := U1 NUy — GL(V). The mapping 11 o is then unique and
smooth, and it is called the transition function between the two vector bundle
charts.
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A vector bundle atlas (Uy, o )aca for (E,p, M) is a set of pairwise compatible
vector bundle charts (Uy, 1,) such that (U, )aca is an open cover of M. Two
vector bundle atlases are called equivalent, if their union is again a vector bundle
atlas.

A wector bundle (E,p, M) consists of manifolds E (the total space), M (the
base), and a smooth mapping p : E — M (the projection) together with an
equivalence class of vector bundle atlases; so we must know at least one vector
bundle atlas. The projection p turns out to be a surjective submersion.

The tangent bundle (T'M, 7y, M) of a manifold M is the first example of a
vector bundle.

6.2. Let us fix a vector bundle (F,p, M) for the moment. On each fiber E, :=
p~1(x) (for x € M) there is a unique structure of a real vector space, induced
from any vector bundle chart (Uy, ) with x € U,. So 0, € E, is a special
element and 0: M — E, 0(xz) = 0., is a smooth mapping, the zero section.

A section u of (E,p, M) is a smooth mapping u : M — E with powu = Id,.
The support of the section w is the closure of the set {x € M : u(z) # 0,} in
M. The space of all smooth sections of the bundle (E, p, M) will be denoted by
either C*(E) = C®(E,p, M) = C*°(E — M). Clearly it is a vector space with
fiber wise addition and scalar multiplication.

If (Uy,%a)aca is a vector bundle atlas for (E,p, M), then any smooth map-
ping fo : Uy — V (the standard fiber) defines a local section = — ;1 (x, fo(z))
on Uy. If (ga)aca is a partition of unity subordinated to (U, ), then a global
section can be formed by z — Y go(2) - 5 (z, fo(2z)). So a smooth vector
bundle has ‘many’ smooth sections.

6.3. Let (E,p, M) and (F,q, N) be vector bundles. A vector bundle homomor-
phism ¢ : E — F' is a fiber respecting, fiber linear smooth mapping

¥

E———F

1.]

So we require that ¢, : B, — F, () is linear. We say that ¢ covers ¢. If ¢ is
invertible, it is called a vector bundle isomorphism.

The smooth vector bundles together with their homomorphisms form a cate-
gory VB.

6.4. We will now give a formal description of the amount of vector bundles with
fixed base M and fixed standard fiber V', up to isomorphisms which cover the
identity on M.

Let us first fix an open cover (Uy)aca of M. If (E,p, M) is a vector bundle
which admits a vector bundle atlas (U, 1,) with the given open cover, then
we have 1, o wgl(x,v) = (z,%qp(x)v) for transition functions ©ag : Usp =
Uy NUg — GL(V), which are smooth. This family of transition functions
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satisfies

) Yap(x) - Ypy(2) = Yoy (z) for each x € Uygy = Ua NUz N U,
Yaa(r) =€ for all z € U,.

Condition (1) is called a cocycle condition and thus we call the family (¢,g) the
cocycle of transition functions for the vector bundle atlas (Uy, ¥4 ).

Let us suppose now that the same vector bundle (E,p, M) is described by an
equivalent vector bundle atlas (Uy, po) with the same open cover (U,). Then
the vector bundle charts (U, 1¥,) and (U, o) are compatible for each «, so
Yo o b Y (x,v) = (z,74(x)v) for some 7, : Uy, — GL(V). But then we have

(@, Ta(2)ap(2)v) = (Pa 0 3 (@, Yap(2)v) =
= (pa o ,(/)(;1 01thg 0 ¢§1)($av) = (¢a© 1/)51)(357“) =
= (pao9g o ppots)(@,0) = (¥, Pap(x)75(2)v).

So we get

(2) To(2)Vap(z) = pap(x)T(x) for all z € Uyg.

We say that the two cocycles (1o3) and (pap) of transition functions over
the cover (U,) are cohomologous. The cohomology classes of cocycles (o)
over the open cover (U,) (where we identify cohomologous ones) form a set
H'((U,),GL(V)), the first Cech cohomology set of the open cover (Uy,) with
values in the sheaf C*°( ,GL(V)) =: GL(V).

Now let (W;)ier be an open cover of M that refines (U,) with Wi C Uy,
where € : I — A is some refinement mapping. Then for any cocycle (¥ap)
over (U,) we define the cocycle €*(¥o3) =: (¢i;) by the prescription ¢;; =
Ye(i),e(j)|Wizj- The mapping €* respects the cohomology relations and induces
therefore a mapping ¢* : H*((U,), GL(V)) — H'((W;),GL(V)). One can show
that the mapping £* depends on the choice of the refinement mapping € only up
to cohomology (use 7; = Y. (;y,n@i)|Wi if € and 7 are two refinement mappings),
so we may form the inductive limit lim ' (U, GL(V)) =: H (M,GL(V)) over
all open covers of M directed by refinement.

Theorem. There is a bijective correspondence between H'(M,GL(V)) and the
set of all isomorphism classes of vector bundles over M with typical fiber V.

Proof. Let (¢a8) be a cocycle of transition functions g3 : Usg — GL(V') over
some open cover (U,) of M. We consider the disjoint union | |, ,{a} x Uy x V
and the following relation on it: («,z,v) ~ (8,y,w) if and only if x = y and
bpa(2)0 = w.

By the cocycle property (1) of (¢qg) this is an equivalence relation. The space
of all equivalence classes is denoted by E = VB(1ag) and it is equipped with
the quotient topology. We put p : E — M, p[(a, z,v)] = z, and we define the
vector bundle charts (U, %) by ¥a[(a, z,v)] = (z,0), Yo : p7(Uys) =: E|Uy —
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UaxV. Then the mapping iﬁaolﬁgl(% ’U) = ¢a[(6u Z, U)] = wa[(a7 T, ¢aﬁ (1‘)’0)] =
(x,1¥ap(z)v) is smooth, so E becomes a smooth manifold. E is Hausdorff: let
u # v in E; if p(u) # p(v) we can separate them in M and take the inverse
image under p; if p(u) = p(v), we can separate them in one chart. So (E,p, M)
is a vector bundle.

Now suppose that we have two cocycles (1qg) over (U,), and (g;;) over (V;).
Then there is a common refinement (W) for the two covers (Uy) and (V;).
The construction described a moment ago gives isomorphic vector bundles if
we restrict the cocycle to a finer open cover. So we may assume that (1,3)
and (pqag) are cocycles over the same open cover (U,). If the two cocycles are
cohomologous, S0 T, a3 = Pas T 00 Uyg, then a fiber linear diffeomorphism 7 :
VB(ap) — VB(pag) is given by ¢7[(c, z,v)] = (z, 7o (x)v). By relation (2)
this is well defined, so the vector bundles V B(1q3) and V B(pag) are isomorphic.

Most of the converse direction was already shown in the discussion before the
theorem, and the argument can be easily refined to show also that isomorphic
bundles give cohomologous cocycles. [J

Remark. If GL(V) is an abelian group, i.e. if V' is of real or complex dimension
1, then H'(M,GL(V)) is a usual cohomology group with coefficients in the sheaf
GL(V) and it can be computed with the methods of algebraic topology. If GL(V)
is not abelian, then the situation is rather mysterious: there is no clear definition
for H?(M,GL(V)) for example. So H*(M,GL(V)) is more a notation than a
mathematical concept.

A coarser relation on vector bundles (stable isomorphism) leads to the concept
of topological K-theory, which can be handled much better, but is only a quotient
of the whole situation.

6.5. Let (Uy,vq) be a vector bundle atlas on a vector bundle (E,p, M). Let
(ej)le be a basis of the standard fiber V. We consider the section s;(z) :=
¥y (z,ej) for € U,. Then the s; : U, — E are local sections of E such that
(sj(x))§:1 is a basis of E, for each x € U,: we say that s = (s1,...,s;) is a
local frame field for E over U,,.

Now let conversely U C M be an open set and let s; : U — E be local
sections of E such that s = (s1,...,sg) is a local frame field of E over U. Then s
determines a unique vector bundle chart (U, ) of E such that s;(z) = ¢~ (z, e;),
in the following way. We define f : U x R¥ — E|U by f(z,v!,... ,v%) :=
Z§:1 v/s;(z). Then f is smooth, invertible, and a fiber linear isomorphism, so
(U, = f~1) is the vector bundle chart promised above.

6.6. A vector sub bundle (F,p, M) of a vector bundle (E, p, M) is a vector bundle

and a vector bundle homomorphism 7 : F — FE, which covers Id,;, such that
7 : By — F is a linear embedding for each x € M.

Lemma. Let ¢ : (E,p,M) — (E’,q,N) be a vector bundle homomorphism
such that rank(p,, : E, — E;( )) is constant in x € M. Then kerp, given by

x

(ker ), = ker(p,), is a vector sub bundle of (E,p, M).

Proof. This is a local question, so we may assume that both bundles are trivial:
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let E =M x RP and let F = N x R, then ¢(z,v) = (¢(x),p(z).v), where 3 :
M — L(RP,R?). The matrix (z) has rank k, so by the elimination procedure
we can find p— k& linearly independent solutions v;(z) of the equation @(z).v = 0.
The elimination procedure (with the same lines) gives solutions v;(y) for y near
x, so near & we get a local frame field v = (v1,... ,vp_y) for ker p. By 6.5 ker ¢
is then a vector sub bundle. [

6.7. Constructions with vector bundles. Let F be a covariant functor from
the category of finite dimensional vector spaces and linear mappings into itself,
such that F : L(V,W) — L(F(V),F(W)) is smooth. Then F will be called a
smooth functor for shortness sake. Well known examples of smooth functors are
F(V) = A*(V) (the k-th exterior power), or F(V) = ®" V', and the like.

If (E, p, M) is a vector bundle, described by a vector bundle atlas with cocycle
of transition functions ¢pag : Usg — GL(V), where (U,) is an open cover of M,
then we may consider the smooth functions F(¢ag) : © +— F(as(x)), Uss —
GL(F(V)). Since F is a covariant functor, F(p.g) satisfies again the cocycle
condition 6.4.1, and cohomology of cocycles 6.4.2 is respected, so there exists
a unique vector bundle (F(E) := VB(F(pas)),p, M), the value at the vector
bundle (E,p, M) of the canonical extension of the functor F to the category of
vector bundles and their homomorphisms.

If F is a contravariant smooth functor like duality functor F(V) = V*, then
we have to consider the new cocycle f((p;é) instead of F(pags)-

If F is a contra-covariant smooth bifunctor like L(V, W), then the rule

F(VB(Yap), VB(pap)) = VB(F (W3, ap))

describes the induced canonical vector bundle construction, and similarly in
other constructions.

So for vector bundles (E,p, M) and (F,q, M) we have the following vector
bundles with base M: AKE, E @ F, E*, AE = Do ANFE, E®F, L(E,F) =
E*® F, and so on. B

6.8. Pullbacks of vector bundles. Let (E,p, M) be a vector bundle and let
f: N — M be smooth. Then the pullback vector bundle (f*E, f*p, N) with the
same typical fiber and a vector bundle homomorphism

FE p"f >
f *pJ Jp
f

N———M

are defined as follows. Let E be described by a cocycle (¢op) of transition
functions over an open cover (U,) of M, E = VB(ta3). Then (¢og o f) is
a cocycle of transition functions over the open cover (f~1(U,)) of N and the

bundle is given by f*E := VB(iq30f). As a manifold we have f*E=N x FE
(f.M,p)
in the sense of 2.19.
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The vector bundle f*FE has the following universal property: For any vector
bundle (F,gq, P), vector bundle homomorphism ¢ : F — E and smooth g :
P — N such that fog = ¢, there is a unique vector bundle homomorphism

Y F — f*E with ¢ =g and p*fo¢ = .

F S‘J
R
q g2t
Jf*p p

6.9. Theorem. Any vector bundle admits a finite vector bundle atlas.

Proof. Let (E,p, M) be the vector bundle in question, let dim M = m. Let
(Ua,Ya)aca be a vector bundle atlas. Since M is separable, by topological
dimension theory there is a refinement of the open cover (U, )aeca of the form
(Vij)i=1,....m+1;jen, such that V;; N V;, = 0 for j # k, see the remarks at the end
of 1.1. We define the set W; :=J; oy Vi; (a disjoint union) and ¢;[Vi; = ¢a( ),
where o : {1,...,m + 1} x N — A is a refining map. Then (W, 1;)i=1,...m+1 IS
a finite vector bundle atlas of £. [

6.10. Theorem. For any vector bundle (E,p, M) there is a second vector
bundle (F,p, M) such that (E®F,p, M) is a trivial vector bundle, i.e. isomorphic
to M x RY for some N € N.

Proof. Let (U;,1;)?_, be a finite vector bundle atlas for (E,p, M). Let (g;) be
a smooth partition of unity subordinated to the open cover (U;). Let £; : RF —
(R¥)" = R¥ x ... x R¥ be the embedding on the i-th factor, where R* is the
typical fiber of E. Let us define ¥ : E — M x R™ by

P(u) = <p(U), > gip(w)) (tioprz o wi)(U)> ;

i=1

then v is smooth, fiber linear, and an embedding on each fiber, so F is a vector
sub bundle of M x R™¥ via 1. Now we define F, = E; in {z} x R"¥ with respect
to the standard inner product on R™*. Then F — M is a vector bundle and
E@F>=MxR™., O

6.11. The tangent bundle of a vector bundle. Let (E,p, M) be a vector
bundle with fiber addition +g : E x;; E — E and fiber scalar multiplication
mP : E — E. Then (TE, g, E), the tangent bundle of the manifold E, is itself
a vector bundle, with fiber addition denoted by +7r and scalar multiplication
denoted by mI'F.
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If (Ug,%a @ E|Uy — Uy X V)qeca is a vector bundle atlas for E, such that
(Ua, tg) is also a manifold atlas for M, then (E|U,,v¥))aca is an atlas for the
manifold F, where

Py = (ta x Idy) 0 g : BlUs — Ua XV — ua(Us) x VCR™ x V.

[e3

Hence the family (T(E|Uy), TV, : T(E|Us) — T(uq(Us) X V) = ua(Uy) X V' x
R™ x V)qeca is the atlas describing the canonical vector bundle structure of
(TE,ng, E). The transition functions are in turn:

(Ya 05 ') (x,v) = (2,9ap(z)v)  for z € Ung
(a0 uz')(y) = uaply) for y € up(Uap)
(Y © (Ws) ") (Y, v) = (uap(y), Yap(uz' (4))v)
(T 0 T(¥) ™) (5, v3€,w) = (uap(y), Yas(ug ' (y))v; d(uas) (B)E,
(d(thap 0 uz ) Y)E)Y + vap(ug ' (y))w).

So we see that for fixed (y,v) the transition functions are linear in (§,w) €
R™ x V. This describes the vector bundle structure of the tangent bundle
(TE,7g, E).

For fixed (y, £) the transition functions of T'E are also linear in (v, w) € V x V.
This gives a vector bundle structure on (TE,Tp, TM). Its fiber addition will be
denoted by T'(+g) : T(E Xy E) = TE xppy TE — TE, since it is the tangent
mapping of +p. Likewise its scalar multiplication will be denoted by T(mF).
One may say that the second vector bundle structure on T'E, that one over T'M,
is the derivative of the original one on E.

The space {Z € TE : Tp.2 =0 in TM} = (Tp)~1(0) is denoted by VE and is
called the vertical bundle over E. The local form of a vertical vector Zis T/, .2 =
(y,v;0,w), so the transition function looks like (T4, o T'(¢)j5)~ H(y,v;0, w) =
(uag(y),wag(ugl(y))v;O,Qﬁag(ugl(y))w). They are linear in (v,w) € V x V for
fixed y, so VE is a vector bundle over M. It coincides with 0%,(TE,Tp,TM),
the pullback of the bundle TE — T'M over the zero section. We have a canonical
isomorphism vlg : E Xy E — VE| called the vertical lift, given by vlg (ug, v,) :=
dt\ (ug + tv,), which is fiber linear over M. The local representation of the
vertical lift is (T, o vlg o (¢!, x )" ((y,u), (y,v)) = (y,u;0,v).

If (and ouly if) ¢ : (E,p, M) — (F,q,N) is a vector bundle homomorphism,
then we have vipo(pXx ) = Twovly : Exy E — VF CTF. Sovlis anatural
transformation between certain functors on the category of vector bundles and
their homomorphisms.

The mapping vprg := pra o vlgl : VE — FE is called the vertical projection.
Note also the relation pry o vl,}1 =7g|VE.

6.12. The second tangent bundle of a manifold. All of 6.11 is valid
for the second tangent bundle 72M = TTM of a manifold, but here we have
one more natural structure at our disposal. The canonical flip or involution

kar : T2M — T2M is defined locally by
(T*uo ka0 T*u™)(w,&m,¢) = (2,1m:€,¢),
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where (U, u) is a chart on M. Clearly this definition is invariant under changes
of charts (T, equals ], from 6.11).
The flip kps has the following properties:

1) kyoT?f =T?f o ky for each f € C®°(M, N).

2) T(T('M) OCRKM = TTM-

3) TrTM © Ry = T(?TM)

4) /QJ_Ml = KM-

5) kar is a linear isomorphism from the bundle (TTM,T(mp), TM) to
(TTM, 7y, TM), so it interchanges the two vector bundle structures
on TTM.

(6) Tt is the unique smooth mapping TTM — TT M which satisfies

29 c(t,s) = k& Lel(t,s) for each ¢ : R? — M.

All this follows from the local formula given above. We will come back to the
flip later on in chapter VIII from a more advanced point of view.

6.13. Lemma. For vector fields X, Y € X(M) we have
(X, Y] =wvprrpro(TY o X —kpoTX oY),
We will give global proofs of this result later on: the first one is 6.19. Another
one is 37.13.

Proo_f. We prove this locally, so we assume that M is open in R™, X (x) =
(z,X(z)), and Y(z) = (2,Y(x)). By 3.4 we get [X,Y](z) = (v,dY (z).X(z) —
dX(x).Y(x)), and

vprT M © (TYOX — KM OTXOY)(Z‘) =
= wvprras o (TY.(z, X () — kpr o TX.

) Y (x))) =
vprra (.Y (2); X (), dY (2). X (

—~

—rm((z X’(x)yff X(2).Y (2))) =
= vprra(x Y( ); 0 Y (fﬂ) X(f) dX(ff)Y(x )=
= (z,dY (2).X(z) — dX(2).Y (z)). O

6.14. Natural vector bundles. Let Mf,, denote the category of all m-
dimensional smooth manifolds and local diffeomorphisms (i.e. immersions) be-
tween them. A wector bundle functor or natural vector bundle is a functor F'
which associates a vector bundle (F(M),par, M) to each m-manifold M and a
vector bundle homomorphism

| o

f

M ———FN
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to each f : M — N in Mf,,, which covers f and is fiberwise a linear iso-
morphism. We also require that for smooth f : R x M — N the mapping
(t,z) — F(f)(x) is also smooth R x F(M) — F(N). We will say that F maps
smoothly parametrized families to smoothly parametrized families. We shall see
later that this last requirement is automatically satisfied. For a characterization
of all vector bundle functors see 14.8.

Examples. 1. T'M, the tangent bundle. This is even a functor on the category
Mf.

2. T*M, the cotangent bundle, where by 6.7 the action on morphisms is given
by (T*f)z := (T f)~1)* : TyM — T}, )N. This functor is defined on Mf,,
only.

3. AFT*M, AT*M = @)oo AFT* M.

4. QT'MeQ TM =T"M® - -@T*M@TM @ ---® TM, where the
action on morphisms involves T f~! in the 7% M-parts and T'f in the T M-parts.

5. F(TM), where F is any smooth functor on the category of finite dimen-
sional vector spaces and linear mappings, as in 6.7.

6.15. Lie derivative. Let F' be a vector bundle functor on M f,, as described
in 6.14. Let M be a manifold and let X € X(M) be a vector field on M. Then
the flow Flf( , for fixed t, is a diffeomorphism defined on an open subset of M,
which we do not specify. The mapping

F(M) @) F(M)
PMJ JPM
Y FIX Y

is then a vector bundle isomorphism, defined over an open subset of M.
We consider a section s € C*(F(M)) of the vector bundle (F(M),pnr, M)
and we define for ¢t € R

FIX)*s .= F(F1%,) o s o FIX .
t t t

This is a local section of the vector bundle F(M). For each z € M the value
((F1L)*s)(x) € F(M), is defined, if ¢ is small enough. So in the vector space
F (M), the expression %|0((F1;X )*s)(z) makes sense and therefore the section

Lxs = L]o(F5)*s

is globally defined and is an element of C°°(F'(M)). Tt is called the Lie derivative
of s along X.
Lemma. In this situation we have

(1) (FL)*(FI1X)*s = (Flfg_r)*s, whenever defined.

(2) L(FL)*s = (FI))*Lxs = Lx(F1)*s, so

[Lx, (F1¥)*] := Lx o (FI,X)* — (FIX)* o Lx = 0, whenever defined.
(3) (F1;%)*s = s for all relevant t if and only if Lxs = 0.
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Proof. (1) is clear. (2) is seen by the following computations.

HEL) s = 2o (FL)* (FIF)™s = Lx (FIY)"s.
L(FL)s) (@) = 2]o((FI)* (F1Y)*s) ()

(
= deloF (FIX,)(F(FIX,) o s o FL)(FI;' (2))
= F(FI%,) & |o(F(FIX,) 0 5 0 FI)(FI}* (2))
= ((FIy )" Lxs)(@),

since F(FIX,) : F(M)pix (o) — F(M), is linear.
(3) follows from (2). O

6.16. Let Fy, F5 be two vector bundle functors on Mf,,. Then the tensor
product (F} ® Fy)(M) := F1 (M) ® Fo(M) is again a vector bundle functor and
for s; € C°(F;(M)) there is a section s1 ® s3 € C°((Fy ® F»)(M)), given by
the pointwise tensor product.

Lemma. In this situation, for X € X(M) we have
Lx(s1®82) =Lxs1 ® 82+ 51 @ LxSa.

In particular, for f € C°(M,R) we have Lx(fs) =df(X)s+ f Lxs.

Proof. Using the bilinearity of the tensor product we have

Lx(s1® 59) = [o(FIY)* (51 ® 52)
= F1o((FI)*s1 ® (FI)*s5)
= %|0(Flf()*81 ® S92+ 51 X %‘O(Fli{)*SQ
=Lxs1®8s3+ 8 @ Lxse. O

6.17. Let ¢ : I} — F5 be a linear natural transformation between vector bun-
dle functors on M f,,, i.e. for each M € Mf,, we have a vector bundle ho-
momorphism @y @ Fy(M) — F5(M) covering the identity on M, such that
F5(f) o opmr = on o Fi(f) holds for any f : M — N in Mf,, (we shall see in
14.11 that for every natural transformation ¢ : F; — F5 in the purely categorical
sense each morphism @p; : Fy (M) — Fy(M) covers Idyy).

Lemma. In this situation, for s € C*®(Fi(M)) and X € X(M), we have
Lx(pms) = em(Lxs).

Proof. Since )y is fiber linear and natural we can compute as follows.

Lx(pars)(@) = Flo(FL) (par 9))(2) = Flo(Fa(F1X,) 0 oar 0 s 0 FIY ) ()
= ou o g lo(Fi(FIX,) 0 s o FIF ) (2) = (o Lxs)(x). O
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6.18. A tensor field of type (5) is a smooth section of the natural bundle
RIT*M @ ®"TM. For such tensor fields, by 6.15 the Lie derivative along
any vector field is defined, by 6.16 it is a derivation with respect to the tensor
product, and by 6.17 it commutes with any kind of contraction or ‘permutation
of the indices’. For functions and vector fields the Lie derivative was already
defined in section 3.

6.19. Let F be a vector bundle functor on Mf,, and let X € X(M) be a
vector field. We consider the local vector bundle homomorphism F(FL*) on
F(M). Since F(FI) o F(FI)) = F(FI\,) and F(Fly) = Idp() we have
4FFLY) = L1, F(FIY) o FFIX) = X o F(FIY), so we get F(FIX) = FIX,
where X' = %\OF(FI?’) € X(F(M)) is a vector field on F (M), which is called
the flow prolongation or the canonical lift of X to F(M). If it is desirable for
technical reasons we shall also write X = FX.

Lemma.

(1) XT = HMOTX.

(2) [X,Y]" =[XF, V7]

(3) X (F(M),pr, M) — (TF(M),T(pn), TM) is a vector bundle homo-
morphism for the T'(+)-structure.

(4) For s € C*(F(M)) and X € X(M) we have
Lxs=uvprpan(TsoX —XFos).

(5) Lxs is linear in X and s.

Proof. (1) is an easy computation. F(FLX) is fiber linear and this implies (3).
(4) is seen as follows:

(Lxs)(x) = &[o(F(FI%,) 0 s o FIY)(2) in F(M),
= oprpon (Lo(F(FIX,) 0 s o FIX) (z) in VF(M))
= vpreny(—XT 0 s o FIf () + T(F(Fly)) o T's o X (x))
=wvprpon(Tso X — X os)(x).

(5) Lxs is homogeneous of degree 1 in X by formula (4), and it is smooth as a
mapping X(M) — C°(F(M)), so it is linear. See [Frolicher, Kriegl, 88] for the
convenient calculus in infinite dimensions.

(2) Note first that F' induces a smooth mapping between appropriate spaces
of local diffeomorphisms which are infinite dimensional manifolds (see [Kriegl,
Michor, 91]). By 3.16 we have

0= 2|, (F1, oF1¥, o FI} o FL),
X, Y] = L2, (F1Y, o FI¥, 0 FIY 0 FIX
t t t t

2 9t2
FIxY

_Q’
ot 1o
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Applying F to these curves (of local diffeomorphisms) we get

0= 2|, (FIY, oFIX; oFIY oFLX"),
X, YF] =123 (FlY oFIX, oF1Y " oFIX")
:% f loF(F1Y, o FIX, o F1}" o FI}¥)

FEF) =[x, Y7

See also section 50 for a purely finite dimensional proof of a much more general
result. [

6.20. Proposition. For any vector bundle functor F' on Mf,, and X,Y €
X(M) we have

[ﬁx,ﬁy] = ﬁX OEY — Ey Oﬁx = E[XJ/] : COO(F(M)) — COO(F(M))

So L :X(M) — End C*(F(M)) is a Lie algebra homomorphism.
Proof. See section 50 for a proof of a much more general formula. [J

6.21. Theorem. Let M be a manifold, let ' : R x M D U, — M be smooth
mappings for i = 1,...,k where each U,: is an open neighborhood of {0} x M
in R x M, such that each ¢! is a diffeomorphism on its domain, ¢} = Idy;, and
Silowt = Xi € X(M). We put [¢',¢7]¢ = [0}, 1] = (¢1) " o (¢}) 7! 0 ¢ 0 g}
Let F be a vector bundle functor, let s € C°°(F(M)) be a section. Then for
each formal bracket expression P of lenght k we have

0= g—;|op(<ﬂt1,---7<pf)*s for1 <0<k,
Lp(Xy,.,X0)S = klu oeF IoP(got,...,gof)*s € C=(F(M)).

Proof. This can be proved with similar methods as in the proof of 3.16. A
concise proof can be found in [Mauhart, Michor, 92] O

6.22. Affine bundles. Given a finite dimensional affine space A modelled on
a vector space V = ff, we denote by + the canonical mapping A X A - A,
(p,v) — p+uvforpe Aand v € A. If Ay and A, are two affine spaces and
f: A — Ay is an affine mapping, t}Len we denote by f: Ay — A, the linear
mapping given by f(p+v) = f(p) + f(v).

Let p: E — M be a vector bundle and q : Z — M be a smooth mapping
such that each fiber Z, = ¢~ !(z) is an affine space modelled on the vector space
E, =p 1(z). Let A be an affine space modelled on the standard fiber V of E.
We say that Z is an affine bundle with standard fiber A modelled on the vector
bundle E, if for each vector bundle chart ¢ : E|U = p~}(U) — U x V on E
there exists a fiber respecting diffeomorphism ¢ : Z|U = ¢~} (U) — U x A such
that ¢, : Z, — A is an affine morphism satisfying g, = ¢, : B, — V for each
z € U. We also write E = Z to have a functorial assignment of the modelling
vector bundle.

Electronic edition of: Natural Operations in Differential Geometry, Springer-Verlag, 1993



7. Differential forms 61

Let Z — M and Y — N be two affine bundles. An affine bundle morphism
f 1 Z — Y is a fiber respecting mapping such that each f, : Z, — Y}, is an
affine mapping, where f : M — N is the underlying base mapping of f. Clearly
the rule x — f; /N Yf(x) induces a vector bundle homomorphism f: Z-Y
over the same base mapping f.

7. Differential forms

7.1. The cotangent bundle of a manifold M is the vector bundle T*M := (T'M)*,
the (real) dual of the tangent bundle.

If (U,u) is a chart on M, then (52r,...,5%) is the associated frame field
over U of TM. Since 52|, (u/) = du (52 |.) = 6] we see that (du',... ,du™) is
the dual frame field on T*M over U. It is also called a holonomous frame field.
A section of T*M is also called a 1-form.

7.2. According to 6.18 a tensor field of type (’;) on a manifold M is a smooth
section of the vector bundle

p times q times

p q
—— —
QRTMeQQTM=TM®- - STM QT M- T M.

The position of p (up) and ¢ (down) can be explained as follows: If (U, u) is a
chart on M, we have the holonomous frame field

9 g a j j
(m@)m@...@auip ®du31®~'®dujq)

i€{l,...,m}P je{l,... m}a

over U of this tensor bundle, and for any (5 ) -tensor field A we have

i1 .01 o o j j

AU =D Al gum @ O g ©du” @@ dur.
.

The coefficients have p indices up and ¢ indices down, they are smooth functions

on U. From a strictly categorical point of view the position of the indices should

be exchanged, but this convention has a long tradition.

7.3 Lemma. Let ® : X(M) x --- x X(M) = X(M)* — C=°(®"'TM) be a
mapping which is k-linear over C*°(M,R) then ® is given by a (f;)—tensor field.

Proof. For simplicity’s sake we put k =1, £ =0,s0 ® : X(M) — C>*°(M,R) is a
C°(M,R)-linear mapping: ®(f.X) = f.®(X).

Cram 1. If X | U = 0 for some open subset U C M, then we have ®(X) |
U=0.
Let € U. We choose f € C*°(M,R) with f(z) =0 and f | M\ U = 1. Then
fX =X,50 ®(X)(z) =2(f.X)(z) = f(x).2(X)(x) =0.

CLAM 2. If X (x) = 0 then also ®(X)(z) = 0.
Let (U,u) be a chart centered at z, let V be open with x € V. C V C U. Then
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X |U=Y X"2 and X'(z) = 0. We choose g € C*°(M,R) with g | V' =1 and
suppg C U. Then (¢2.X) | V = X | V and by claim 1 ®(X) | V depends only on
X |Vand g>.X = Zi(g.Xi)(g.%) is a decomposition which is globally defined
on M. Therefore we have ®(X)(z) = ®(9%.X)(z) = ® (Z¢(9~Xi)(9~aii ) (z) =
(g X7)(2).B(g. 22 () = 0.

So we see that for a general vector field X the value ®(X)(x) depends only
on the value X (z), for each x € M. So there is a linear map ¢, : T, M — R for
each x € M with ®(X)(z) = ¢(X(x)). Then ¢ : M — T*M is smooth since
¢ |V =3,®(g.5%).du’ in the setting of claim 2. O

7.4. Definition. A differential form or an exterior form of degree k or a k-form
for short is a section of the vector bundle A¥T* M. The space of all k-forms will
be denoted by QF(M). It may also be viewed as the space of all skew symmetric
(2)—tensor fields, i.e. (by 7.3) the space of all mappings

:X(M) x - x X(M) =X(M)* — C>®(M,R),
which are k-linear over C*°(M,R) and are skew symmetric:
(X1, .. Xop) =signo - &(Xq, ..., Xy)
for each permutation o € Sj.
We put QV(M) := C>°(M,R). Then the space

dim M

QM) = P k)
k=0

is an algebra with the following product. For ¢ € QF(M) and o € QY(M) and
for X; in X(M) (or in T, M) we put

(e AU)Xa, . Xigr) =
=n Y. signo - o(Xo1, o, Xok) (KXo (es1)s - s Xo(ore))-

O'Esk+z

This product is defined fiber wise, i.e. (¢ AY), = @, A, for each z € M. Tt
is also associative, i.e. (p AY) AT = A (¥ AT), and graded commutative, i.e.
© Ap = (—1)*p A . These properties are proved in multilinear algebra.

7.5. If f: N — M is a smooth mapping and ¢ € QF(M), then the pullback
f*o € QF(N) is defined for X; € T, N by

(1) (T @)e(Xas o, Xi) = g (Tef Xu,s o T f X).

Then we have f*(@ A1) = f*o A f*1, so the linear mapping f* : Q(M) — Q(N)
is an algebra homomorphism. Moreover we have (gof)* = f*og* : Q(P) — Q(N)
if g: M — P, and (Id]\{)* = IdQ(]w).

So M +— Q(M) = C>°(AT*M) is a contravariant functor from the category
M of all manifolds and all smooth mappings into the category of real graded
commutative algebras, whereas M — AT*M is a covariant vector bundle func-
tor defined only on Mf,,, the category of m-dimensional manifolds and local
diffeomorphisms, for each m separately.
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7.6. The Lie derivative of differential forms. Since M — AFT*M is a
vector bundle functor on M f,,, by 6.15 for X € X(M) the Lie derivative of a
k-form ¢ along X is defined by

Lxp = Lo(FL) .

Lemma. The Lie derivative has the following properties.

(1) Lx(pAWY)=Lxe A+ oA Lx, so Lx is a derivation.
(2) ForY; € X(M) we have

(Lxp)(Y1,... . V) = X(p(Y1,..., Y1) —Zw(yl,...,[xvm...,y,@).

(3) [Lx,Ly]p = Lix y)e-

Proof. The mapping Alt : ®k T*M — AFT*M, given by

(ALtA)(Ya,... Vi) = > sign(0)A(Yor, ... . Yor),

is a linear natural transformation in the sense of 6.17 and induces an algebra
homomorphism from the tensor algebra @, C*(®" T*M) onto Q(M). So
(1) follows from 6.16. -

(2) Again by 6.16 and 6.17 we may compute as follows, where Trace is the
full evaluation of the form on all vector fields:

X(p(Y1,...,Y3)) = Lx oTrace(p @Y, @ --- @ Yy,)
= TraceoLx (@Y1 ® - ®@Yy)
=Trace(Lxp@ Y1 ® - @Ye)+¢@ (X, V1@ @ LxY; @ QYy)).

Now we use LxY; = [X,Y;].
(3) is a special case of 6.20. O
7.7. The insertion operator. For a vector field X € X(M) we define the
insertion operator ix = i(X) : QF(M) — QF~1(M) by
(ZXQO)(YM s aYk—l) = @(Xa Y17 s aYk—l)'

Lemma.

(1) ix is a graded derivation of degree —1 of the graded algebra Q(M), so
we have ix (o A1) =ixe A+ (—1)48Pp Adxap.
(2) [ﬁx,iy] = ﬁX o iy — iy o EX = ’L'[ny].

Electronic edition of: Natural Operations in Differential Geometry, Springer-Verlag, 1993



64 Chapter II. Differential forms

Proof. (1) For ¢ € QF(M) and ¢ € QY(M) we have
(ix, (P A (Xay oo, Xigr) = (@ AP)(X, -5 Xiepe) =
= > _sign(0) o(Xot.- - Xok)V(Xo(er1)s - -+ Xo(rro)-

(ix, 0 AN+ (Do Nix, ) (X, -, Xppe) =
= o ZSlgn O(X1, Xooy s Xor)V(Xoog)s s Xo(hro)) T

+ m ; Slgn(a) QO(X027 e 7Xa(k+1))¢(X17 XU’(k-‘rQ)) . )

Using the skew symmetry of ¢ and 1) we may distribute X; to each position by
adding an appropriate sign. These are k4¢ summands. Since m+m =

’,z,ief, and since we can generate each permutation in Sy in this way, the result

follows.
(2) By 6.16 and 6.17 we have:

Lxiyp = Lx Trace; (Y @ ¢) = Trace; Lx (Y ® ¢)
= Tracel(EXY Rp+Y R Lxp) = ’L'[ny](p +iyLxep. O

7.8. The exterior differential. We want to construct a differential operator
QF (M) — QFFL(M) which is natural. We will show that the simplest choice will
work and (later) that it is essentially unique.

So let U be open in R”, let ¢ € Q¥(R™). Then we may view ¢ as an element
of C*=(U, L¥,(R",R)). We consider Dy € C°°(U, L(R", Lk, (R",R))), and we
take its canonical image Alt(Dyp) in C*(U, LY (R™ R)). Here we write D for
the derivative in order to distinguish it from the exterior differential, which we

define as dp := (k + 1) Alt(D¢), more explicitly as

(1) (d(p>m(X07 o an) = % Z sign(a) D(p(x)(XUO)(XUL e ;Xak)

k
=> (-1 X)(Xo, .. Xay o, X),
=0
where the hat over a symbol means that this is to be omitted, and where X; € R".
Now we pass to an arbitrary manifold M. For a k-form ¢ € QF(M) and
vector fields X; € X(M) we try to replace Dp(z)(X;)(Xo,...) in formula (1)
by Lie derivatives. We differentiate X;(¢(z)(Xo,...)) = Do(z)(X;)(Xo,...) +
Y o<j<kjzi P(@)(Xo, ..., DX;(z)X;,...), so inserting this expression into for-
mula (1) we get (cf. 3.4) our working definition

k

(2) dp(Xo,..., Xp) =Y _(=1)'Xi(¢(Xo, ..., Xi, ..., X))
i=0

+3 ()X, X, X0, Xy X X,

1<J
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dp, given by this formula, is (k+1)-linear over C°°(M, R), as a short computation

involving 3.4 shows. It is obviously skew symmetric, so by 7.3 dy is a (k + 1)-

form, and the operator d : Q¥(M) — QF1(M) is called the exterior derivative.
If (U,u) is a chart on M, then we have

(,0|U - Z Piy,... ,ikduil Ao A duik,

i< <ip
where ¢;, i, = @(Miﬁ, e —83k ). An easy computation shows that (2) leads
to
(3) delU=">" dpj, .. i Ndu Ao Adu'™,
i <o <ig

so that formulas (1) and (2) really define the same operator.

7.9. Theorem. The exterior derivative d : Q% (M) — QF*1(M) has the follow-
ing properties:

(1) d(eAtp) = do N+ (—1)48Pp Adip, so d is a graded derivation of degree

1.

(2) Lx =ix od+ doix for any vector field X.

(3) & =dod=0.

(4) f*od=do f* for any smooth f : N — M.

(5) Lx od=do Lx for any vector field X .

Remark. In terms of the graded commutator
[Dh DQ} = D1 o D2 ( )deg(Dl) deg(Dg)D2 [0} D1

for graded homomorphisms and graded derivations (see 8.1) the assertions of
this theorem take the following form:

()Ex—[lxad]
(3) [dd}—o
()[ ,d] = 0.
()[ﬁx, dl =0.

This point of view will be developed in section 8 below.

Proof. (2) For ¢ € QF(M) and X; € X(M) we have
(Lxop) (X1, Xp >:X0< (X1, Xg))+
+Z 1) o([Xo, X;], X1, .., X, ..., Xg) by 7.6.2,
(ix,dp)(X1,...,Xg) = d(p(XO,... , X&)

k
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+ Y (UM (X X)L Xos - Xy, X X,

0<i<y
k —_~
(dixy@)(X1, .o, Xk) =Y (=D Xi((ix,0) (X1, Xiy o, Xi))+
1=1
+ 3 (D) ix, o) (X0, X, X, X X X))
1<i<y
k —_
= (-1 Xi(p(Xo, X, Xiy o X)) —
i=1

- Z Z+] XMX}XOale"'?S(\ia"'aj(;a"'7Xk)'
1<i<y

By summing up the result follows.

(1) Let ¢ € QP(M) and ¢ € Q4(M). We prove the result by induction on
p+q.
p+q=0:d(f-g)=df-g+f-dg.
Suppose that (1) is true for p+ ¢ < k. Then for X € ¥(M) we have by part (2)
and 7.6, 7.7 and by induction

ixd(eN) =Lx (A1) —dix(pAY)
=LxpANp+oNLxp—dlixe A+ (=1)Pp ANixy)
=ixdp ANV +dixp AN+ ANixdy+ o Ndixy) —dixe ANy
— (=D lixp Ady — (=1)Pdp Nixy — o Adixp
= ix(de A+ (1) A dp)).
Since X is arbitrary, (1) follows.

(3) By (1) d is a graded derivation of degree 1, so d> = 1[d,d] is a graded
derivation of degree 2 (see 8.1), and is obviously local. Since Q(M) is locally
generated as an algebra by C°(M,R) and {df : f € C*°(M,R)}, it suffices to
show that d? f = 0 for each f € C>°(M,R) (d®f = 0is a consequence). But this is
easy: d2f(X,Y) = Xdf (V)= Ydf(X)—df([X,Y]) = XY f—Y X f—[X,Y]f = 0.

(4) f*: Q(M) — Q(N) is an algebra homomorphism by 7.6, so f* o d and
do f* are both graded derivations over f* of degree 1. By the same argument
as in the proof of (3) above it suffices to show that they agree on g and dg for
all g € C°(M,R). We have (f*dg),(Y) = (dg)su)(TyfY) = (T, fY)(9) =
Y(go f)(y) = (df*g),(Y), thus also df*dg = ddf*g = 0, and f*ddg = 0.

(5) dLx =dixd+ddix =dixd+ixdd=Lxd. O
7.10. A differential form w € QF(M) is called closed if dw = 0, and it is called
ezact if w = dy for some p € QF~1(M). Since d?> = 0, any exact form is closed.
The quotient space
ker(d : QF(M) — QFFL(M))

im(d : QF—1(M) — Qk(M))
is called the k-th De Rham cohomology space of M. We will not treat cohomol-
ogy in this book, and we finish with the

H*(M) =
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Lemma of Poincaré. A closed differential form is locally exact. More pre-
cisely: let w € QF(M) with dw = 0. Then for any * € M there is an open
neighborhood U of x in M and a ¢ € Q*~Y(U) with dp = w|U.

Proof. Let (U, u) be chart on M centered at = such that u(U) = R™. So we may
just assume that M = R™.
We consider a : RxR™ — R™, given by a(t,x) = ay(x) = tx. Let I € X(R™)
be the vector field I(z) = z, then a(e?, ) = F1 (z). So for t > 0 we have
%a:w = %(Flllogt)*w = %(Flllogt)*‘clw
= Lof (irdw + dijw) = 1dojiw.

Note that T}, (ay) = ¢t.Id. Therefore

(%afijw)x(Xg, ‘e ,Xk) = %(i[&))tm(tX27 [N ,th)

= %wm(tx,th, “en ,th) = wm(l‘,tXQ, “- ,th).
So if k > 1, the (k—1)-form 1ajisw is defined and smooth in (¢, z) for all ¢ € R.
Clearly ajw = w and ajw = 0, thus

1
w=ajw—ajw = / %afu}dt
0

1 1
= / d(tafijw)dt =d (/ %a;“hwdt) =dp. O
0 0

7.11. Vector bundle valued differential forms. Let (E,p, M) be a vector
bundle. The space of smooth sections of the bundle A*T*M ® E will be denoted
by QF(M; E). Its elements will be called E-valued k-forms.

If V is a finite dimensional or even a suitable infinite dimensional vector space,
QOF(M;V) will denote the space of all V-valued differential forms of degree k.
The exterior differential extends to this case, if V' is complete in some sense.

8. Derivations
on the algebra of differential forms
and the Frolicher-Nijenhuis bracket

8.1. In this section let M be a smooth manifold. We consider the graded
commutative algebra Q(M) = ffaM QF (M) = @2 QF(M) of differen-
tial forms on M, where we put Q¥(M) = 0 for k¥ < 0 and k > dim M.
We denote by Der, Q(M) the space of all (graded) derivations of degree k,
i.e. all linear mappings D : Q(M) — Q(M) with D(QY(M)) c QF¢(M) and
D(¢ Avp) = D(p) A+ (=1)*p A D(¥) for ¢ € Q°(M).
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Lemma. Then the space Der Q(M) = @, Dery Q(M) is a graded Lie alge-
bra with the graded commutator [Dy, Ds] := Dj o Dy — (—1)¥1%2Dy 0 D; as
bracket. This means that the bracket is graded anticommutative, [Dy, D3] =
—(=1)**2[Dy, Dy], and satisfies the graded Jacobi identity [Dy,[D2, D3]] =
[[Dl,DQ],Dg] + (71)]61162 [DQ,[Dl,Dg,H (SO that ad(Dl) = [Dl, ] is itself a
derivation of degree k).

Proof. Plug in the definition of the graded commutator and compute. [

In section 7 we have already met some graded derivations: for a vector field

X on M the derivation ix is of degree —1, Lx is of degree 0, and d is of
degree 1. Note also that the important formula Lx = dix + ix d translates to
Lx = [ix,d].
8.2. A derivation D € Dery Q(M) is called algebraic if D | Q°(M) = 0. Then
D(fw) = f.D(w) for f € C>°(M,R), so D is of tensorial character by 7.3. So D
induces a derivation D, € Dery AT M for each z € M. It is uniquely determined
by its restriction to 1-forms D,|T} M : T} M — A*T1T*M which we may view as
an element K, € A¥'T*M ® T, M depending smoothly on = € M. To express
this dependence we write D = i = i(K), where K € C®°(A*'T*M @ TM) =:
QFFL(M;TM). Note the defining equation: i (w) = wo K for w € QY (M). We
call Q(M, TM) = ?ZHE)M QF(M,TM) the space of all vector valued differential
forms.

Theorem. (1) For K € Q*1(M, TM) the formula

(’in)(X17 . ,XkJrg) =
= m Z signo .wW(K(Xs1,. .., Xoht1)) Xo(hta)s---)

UGSkJrz

for w € QY (M), X; € X(M) (or T,M) defines an algebraic graded derivation
i € Der, Q(M) and any algebraic derivation is of this form.

(2) By i([K,L]") = [ik,iL] we get a bracket [ , ]" on Q*T'(M,TM)
which defines a graded Lie algebra structure with the grading as indicated, and
for K € QY (M, TM), L € QT (M, TM) we have

[K, L) =igL — (—1)*i K,

where ig(w® X) 1= ig(w) ® X.

[ , " is called the algebraic bracket or the Nijenhuwis-Richardson bracket,
see [Nijenhuis-Richardson, 67].

Proof. Since AT}M is the free graded commutative algebra generated by the
vector space TXM any K € QFH1(M,TM) extends to a graded derivation. By
applying it to an exterior product of 1-forms one can derive the formula in (1).
The graded commutator of two algebraic derivations is again algebraic, so the
injection i : Q**1(M,TM) — Der,(Q(M)) induces a graded Lie bracket on
QL (M, TM) whose form can be seen by applying it to a 1-form. [
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8.3. The exterior derivative d is an element of Dery Q(M). In view of the formula
Lx = [ix,d] =ixd+ dix for vector fields X, we define for K € QF(M;TM)
the Lie derivation L = L(K) € Dery Q(M) by Lk := [ik,d).

Then the mapping £ : Q(M,TM) — DerQ(M) is injective, since Lxf =
igdf =df o K for f € C*°(M,R).

Theorem. For any graded derivation D € Dery Q(M) there are unique K €
QF(M;TM) and L € QY (M;TM) such that

D="Lkg+ip.
We have L = 0 if and only if [D,d] = 0. D is algebraic if and only if K = 0.
Proof. Let X; € X(M) be vector fields. Then f — (Df)(X1,...,Xs) is a

derivation C*°(M,R) — C*(M,R), so by 3.3 there is a unique vector field
K(Xi,...,Xy) € X(M) such that

(DH( Xy, ..., Xp)=K(Xy,..., Xp)f =df (K(Xy,...,Xk))-

Clearly K(Xq,...,X}) is C°(M,R)-linear in each X; and alternating, so K is
tensorial by 7.3, K € QF(M;TM).

The defining equation for K is Df = df oK = igdf = L f for f € C>°(M,R).
Thus D — Lk is an algebraic derivation, so D — Lx = iy by 8.2 for unique
L € QMY (M; TM).

Since we have [d,d] = 2d*> = 0, by the graded Jacobi identity we obtain
0= lig,[d,d)] = [irx,d),d + (=1)*"1[d, [ix,d]] = 2[Lk,d]. The mapping K
[ir,d] = Lk is injective, so the last assertions follow. [

8.4. Applying i(Idras) on a k-fold exterior product of 1-forms we see that
i(Idrar)w = kw for w € QF(M). Thus we have L(Idra)w = i(Idpar)dw —
di(Idry)w = (k+ 1)dw — kdw = dw. Thus L(Idry) = d.

8.5. Let K € QF(M;TM) and L € QY(M;TM). Then obviously [[Lx, L], d] =
0, so we have
(LK), £(L)] = L([K, L])

for a uniquely defined [K, L] € Q*+¢(M;TM). This vector valued form [K, L] is
called the Frolicher-Nijenhuis bracket of K and L.

Theorem. The space Q(M;TM) = 21%1\4 QOF(M;TM) with its usual grading
is a graded Lie algebra for the Frolicher-Nijenhuis bracket. So we have
K, L] = —(-D™[L, K]
(K1, [K2, K3]] = [[K1, K], Ks] + (—1)""2[Ka, [K1, K]
Idry € QY(M;TM) is in the center, i.e. [K,Idry] = 0 for all K.
L:(QM;TM),[ , ]) — DerQ(M) is an injective homomorphism of gra-

ded Lie algebras. For vector fields the Frolicher-Nijenhuis bracket coincides with
the Lie bracket.

Proof. df o [X,Y] = L([X,Y])f =[Lx,Ly]f. The rest is clear. O
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8.6. Lemma. For K € QF(M;TM) and L € Q"1 (M;TM) we have

[Lr,ip) = i([K, L) — (~D)L(iLK), or
lir, Lx] = LK) + (=1)Fi([L, K]).

This generalizes 7.7.2.
Proof. For f € C*°(M,R) we have [iy, Lx]f = irixdf —0 = ir(df o K) =

df o (it K) = L(irK)f. So [ir, Lx] — L(iL K) is an algebraic derivation.

lir, L] d] = [ir, [Lxe,d]] = (=1)*[L, [ir, d]] =
=0 — (=D)*L(K, L) = (=" [i((L, K]), d].
Since [ ,d] kills the £’s and is injective on the ¢’s, the algebraic part of [i, Lk]
is (~1)*4i([L,K]). O

8.7. The space Der Q(M) is a graded module over the graded algebra Q(M)
with the action (w A D)y = w A D(¢), because (M) is graded commutative.

Theorem. Let the degree of w be q, of ¢ be k, and of 1) be (. Let the other
degrees be as indicated. Then we have:

(1) [wA Dy, Dy] = w A [Dy, Dy] — (=1) TRk Dy () A Dy

(2) i(wAL)=wANi(L)

(3) wALg =L(wAK)+ (=1)TFYi(dw A K).

(4) [wA Ly, Ly] = w A [Ly, L] —
— (=)@t DE=N LYW A Ly

(5) [wA K1, K] =wA Ky, Ko — (=1 @0k 20 A Ky
+ (=) Fdw A i (K K.

(6) [P X, pRY]=pA)p[X,Y]

— (iydp ANYp @ X — (-D)*ixdp Ap®Y)

— (dlivp A ) @ X — (=1)*d(ix A p) @Y)
=p ANV [X,Y]+oALxY QY — Ly Ay @ X
+ (=D (dp Nixp @Y +iyp Adip @ X).

Proof. For (1), (2), (3) write out the definitions. For (4) compute i([wALq, La]").
For (5) compute L([w A K7, K3]). For (6) use (5) . O

Electronic edition of: Natural Operations in Differential Geometry, Springer-Verlag, 1993



8. Derivations on the algebra of differential forms and the Frolicher-Nijenhuis bracket 71

8.8. Theorem. For K € QF(M;TM) and w € Qf(M) the Lie derivative of w
along K is given by the following formula, where the X; are vector fields on M.

(‘CKw)(Xla e 7Xk+f) =
= mn >_signo LIK(Xo1,. . Xor))(@(Xo(es1)s - > Xo(hro))

+ wrey Z sigh o W([K (Xo1, -+ s Xok)s Xo(er1))s Xo(hr)s---)

(—1)F—1
+ = 1)‘(@ 2 ZSIgnO’W XUl7XO'2]7XO'37'")7Xo'(k}+2)7"')'

Proof. Tt suffices to consider K = ¢ ® X. Then by 8.7.3 we have L(p ® X) =
oA Lx — (=1)*tdp Nix. Now use the global formulas of section 7 to expand
this. O
8.9. Theorem. For K € QF(M;TM) and L € QY(M;TM) we have for the
Frélicher-Nijenhuis bracket [K, L] the following formula, where the X; are vector
fields on M.

K, L|(X1,... , Xgye) =

signo [K(Xo1, .. Xok), L(Xo(et1ys -+ s Xo(hrn))]

+ mre Zsigna LK (Xo1s- - s Xok)s Xo(rp 1)) Xo(hr2)s---)
+ (k_ll)]:; Zslgno K([L(Xo1,- - s Xo0), Xo@41))s Xo(eg2)s - -+ )
+ = 13'1(; 1)12' Z&gna L(K([X51, Xo2], Xo3, - ), Xo(ks2)s---)

1y (-1
+ (k 1),(5 1),2,251gnaK Xo1, Xoal, Xo3, )y Xo(egays - -+ )-

Proof. Tt suffices to consider K = ¢ ® X and L = ¢ ®Y, then for [p @ X, ¥ QY]
we may use 8.7.6 and evaluate that at (X1,... , Xiy¢). After some combinatorial
computation we get the right hand side of the above formula for K = ¢ ® X and
L=¢yxY. O

There are more illuminating ways to prove this formula, see [Michor, 87].

8.10. Local formulas. In a local chart (U,u) on the manifold M we put
K|U=YKd"®0, L|U=3YL,d 0, andw | U = Y w,d", where
a=(1<a <az < <a, <dimM)is a form index, d* = du®* A...Adu®*,
0; = % and so on.

Plugging X; = 0;, into the global formulas 8.2, 8.8, and 8.9, we get the
following local formulas:

. (07
igw| U= § g Wiagptantet @
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KLU =3 (Ko, Py
() EDEDLE Ky, ) 90
Lrw | U= Z(Kgqak aiwak+1~~-ak+2
() Do Ky ay,) Wi )
K L) U =3 (K 0Ly

— (DMLY, o, K

Qpp1---QXftp

- kK(‘ll...ak,ﬂ; ao‘kLzlkH,l.“qu,g
ke j % e
+ (_1) gL]al...az,li aalKOée+1...Ozk+[> d“® aj

8.11. Theorem. For K; € QF (M;TM) and L; € Q¥+ (M;TM) we have
(1) (L, +ir,, Ly +ir,] =
= L ([Ky, Ko +in, Ko — (—1)**2ip K
+i ([L1, Lo) + [K1, L] — (—1)"%2[Ky, L)) .

FEach summand of this formula looks like a semidirect product of graded Lie
algebras, but the mappings

i QM;TM) — End(QM;TM),[ , ]
ad : Q(M; TM) — End(Q(M; TM),[ , ")

do not take values in the subspaces of graded derivations. We have instead for
K € QF(M;TM) and L € Q*FY(M;TM) the following relations:

(2) in[Ky, Ko] = [ip K1, K] + (—1)M* Ky, i K]
— (-1, D K — (1) ORi((K, LK)
(3) [Ka [L1, LQ]/\] = [[Kv Ll]ﬂ L2]/\ + (_l)kkl [L1, [K7 LQHA_

— (DL, Lo) = (~)®F0%i(Lo) K, L))

The algebraic meaning of the relations of this theorem and its consequences in
group theory have been investigated in [Michor, 89]. The corresponding product
of groups is well known to algebraists under the name ‘Zappa-Szep’-product.

Proof. Equation (1) is an immediate consequence of 8.6. Equations (2) and (3)
follow from (1) by writing out the graded Jacobi identity, or as follows: Consider
L(ir[K1, K2]) and use 8.6 repeatedly to obtain £ of the right hand side of (2).
Then consider i([K, [L1, L2]"]) and use again 8.6 several times to obtain 7 of the
right hand side of (3). O
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8.12. Corollary (of 8.9). For K, L € QY(M;TM) we have

[K,L)(X,Y) = [KX,LY] - [KY, LX]
— L(KX,Y] - [KY, X])
— K([LX,Y] - [LY, X])
+ (LK + KL)[X,Y].

8.13. Curvature. Let P € QY(M;TM) satisfy Po P = P, i.e. P is a pro-
jection in each fiber of TM. This is the most general case of a (first order)
connection. We may call ker P the horizontal space and im P the vertical space
of the connection. If P is of constant rank, then both are sub vector bundles of
TM. If im P is some primarily fixed sub vector bundle or (tangent bundle of) a
foliation, P can be called a connection for it. Special cases of this will be treated
extensively later on. The following result is immediate from 8.12.

Lemma. We have ~
[P,P] = 2R+ 2R,

where R, R € Q%(M;TM) are given by R(X,Y) = P[(Id—P)X, (Id —P)Y] and

R(X,Y) = (Id—P)[PX, PY].

If P has constant rank, then R is the obstruction against integrability of the
horizontal bundle ker P, and R is the obstruction against integrability of the
vertical bundle im P. Thus we call R the curvature and R the cocurvature of the
connection P. We will see later, that for a principal fiber bundle R is just the
negative of the usual curvature.

8.14. Lemma (Bianchi identity). If P € Q'(M;TM) is a connection (fiber
projection) with curvature R and cocurvature R, then we have

[P,R+ R} =0
[R,P| =ipR+igR.

Proof. We have [P, P] = 2R + 2R by 8.13 and [P, [P, P]] = 0 by the graded
Jacobi identity. So the first formula follows. We have 2R = P o [P, P] = ip p| P.
By 8.11.2 we get ifp p|[P, P] = 2[ijp,p)P, P] — 0 = 4[R, P]. Therefore [R, P] =
1ip,p) [P, P] = i(R+ R)(R+ R) = irR + izR since R has vertical values and
kills vertical vectors, so ig R = 0; likewise for R. [

8.15. f-relatedness of the Frolicher-Nijenhuis bracket. Let [ : M —
N be a smooth mapping between manifolds. Two vector valued forms K €
QF(M;TM) and K' € QF(N;TN) are called f-related or f-dependent, if for all
X; € T, M we have

(1) oy (Lof - Xu, oo Tof - X)) = Tof - Ko(Xa,..., Xy).
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Theorem.

(2) If K and K’ as above are f-related then iy o f* = f* oigs : Q(N) —

(3) Ifixg o f* | BY(N) = f*oig: | BY(N), then K and K' are f-related,
where B! denotes the space of exact 1-forms.

(4) If K; and K are f-related for j = 1,2, then ix, Ky and iy Kj are
f-related, and also [K1, Ko]" and [K}, K] are f-related.

(5) If K and K' are f-related then Ly o f* = f*o L/ : Q(N) — Q(M).

(6) If Lo f* | QU(N) = f* o Ly | Q°(N), then K and K’ are f-related.

(7) If K; and K j/ are f-related for j = 1,2, then their Frélicher-Nijenhuis
brackets [K1, K] and [K{, K}] are also f-related.

Proof. (2) By 8.2 we have for w € Q4(N) and X; € T, M:

(i [ w)e(X1,. o Xgpro1) =
= i 2 Sign o (f*w)e (Ka(Xo1, -, Xok)y Xo(rin)s- )

= o=y 2 Sign o wie) (T f - Ko(Xot, ), Tof - Xoriays- )

= o=y D Sien o Wiy (K oy (Tef - Xots ), Tof - Xo(hiys---)
= (f*ZK/w)'c(Xla v 7Xq+k—1)

(3) follows from this computation, since the df, f € C°°(M,R) separate
points.

(4) follows from the same computation for Ky instead of w, the result for the
bracket then follows 8.2.2.

(5) The algebra homomorphism f* intertwines the operators iy and igs by
(2), and f* commutes with the exterior derivative d. Thus f* intertwines the
commutators [ix,d] = Lx and [ig/,d] = Lg.

(6) For g € Q°(N) we have L f*g = ixdf*g = ix f*dg and f*Lxrg =
f*ir dg. By (3) the result follows.

(7) The algebra homomorphism f* intertwines Lx, and £ K thus also their
graded commutators, which are equal to L([K7, K»]) and L([K7, K}]), respec-
tively. Then use (6). O

8.16. Let f : M — N be a local diffecomorphism. Then we can consider the
pullback operator f*: Q(N;TN) — Q(M;TM), given by
(1) (P RK)2(X1, ., X)) = (T f) 'Ky (Tof - X1, Tof - Xi).

Note that this is a special case of the pullback operator for sections of natural
vector bundles in 6.15. Clearly K and f*K are then f-related.

Theorem. In this situation we have:
(2) fr[K, L] =[f"K, f*L].
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(3) ffixgL =ifx f*L.

(4) [ K L)" = [ K, fr L)

(5) For a vector field X € X(M) and K € Q(M;TM) by 6.15 the Lie
derivative LxK = %|0 (FIX)*K is defined. Then we have LxK =
[X, K], the Frolicher-Nijenhuis-bracket.

This is sometimes expressed by saying that the Frolicher-Nijenhuis bracket,
[ , |V, ete. are natural bilinear concomitants.

Proof. (2) — (4) are obvious from 8.15. They also follow directly from the geo-
metrical constructions of the operators in question. (5) Obviously £x is R-linear,
so it suffices to check this formula for K = ¢ @Y, ¥ € Q(M) and Y € X(M).
But then

Lx(WRY)=Lxyp@Y +9¢y®LxY by6.16
=LxY QY +9[X,Y]
=[X,v®Y] by&76. O

8.17. Remark. At last we mention the best known application of the Frolicher-
Nijenhuis bracket, which also led to its discovery. A vector valued 1-form J €
QYM;TM) with JoJ = —1d is called a almost complex structure; if it exists,
dim M is even and J can be viewed as a fiber multiplication with /=1 on TM.
By 8.12 we have

7, J)(X,Y) = 2([JX,JY] - [X,Y] — J[X, JY] — J[JX,Y)).

The vector valued form 3[J, J] is also called the Nijenhuis tensor of J, because
we have the following result:

A manifold M with an almost complex structure J is a complex
manifold (i.e., there exists an atlas for M with holomorphic chart-
change mappings) if and only if [.J, J] = 0. See [Newlander-Nirenberg,
57].

Remarks
The material on the Lie derivative on natural vector bundles 6.14-6.20 appears
here for the first time. Most of section 8 is due to [Frolicher-Nijenhuis, 56], the

formula in 8.9 was proved by [Mangiarotti-Modugno, 84] and [Michor, 87]. The
Bianchi identity 8.14 is from [Michor, 89a].
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CHAPTER III.
BUNDLES AND CONNECTIONS

We begin our treatment of connections in the general setting of fiber bundles
(without structure group). A connection on a fiber bundle is just a projection
onto the vertical bundle. Curvature and the Bianchi identity is expressed with
the help of the Frolicher-Nijenhuis bracket. The parallel transport for such a
general connection is not defined along the whole of the curve in the base in
general - if this is the case for all curves, the connection is called complete. We
show that every fiber bundle admits complete connections. For complete con-
nections we treat holonomy groups and the holonomy Lie algebra, a subalgebra
of the Lie algebra of all vector fields on the standard fiber.

Then we present principal bundles and associated bundles in detail together
with the most important examples. Finally we investigate principal connections
by requiring equivariance under the structure group. It is remarkable how fast
the usual structure equations can be derived from the basic properties of the
Frolicher-Nijenhuis bracket. Induced connections are investigated thoroughly -
we describe tools to recognize induced connections among general ones.

If the holonomy Lie algebra of a connection on a fiber bundle is finite dimen-
sional and consists of complete vector fields on the fiber, we are able to show,
that in fact the fiber bundle is associated to a principal bundle and the connec-
tion is induced from an irreducible principal connection (theorem 9.11). This is
a powerful generalization of the theorem of Ambrose and Singer.

Connections will be treated once again from the point of view of jets, when
we have them at our disposal in chapter IV.

We think that the treatment of connections presented here offers some di-
dactical advantages besides presenting new results: the geometric content of a
connection is treated first, and the additional requirement of equivariance under
a structure group is seen to be additional and can be dealt with later - so the
reader is not required to grasp all the structures at the same time. Besides that
it gives new results and new insights. There are naturally appearing connec-
tions in differential geometry which are not principal or induced connections:
The universal connection on the bundle J! P/G of all connections of a principal
bundle, and also the Cartan connections.

9. General fiber bundles and connections

9.1. Definition. A (fiber) bundle (E,p, M, S) consists of manifolds E, M, S,
and a smooth mapping p : E — M; furthermore it is required that each x € M
has an open neighborhood U such that E | U := p~(U) is diffeomorphic to
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U x S via a fiber respecting diffeomorphism:

Elv—Y uxs

N A

E is called the total space, M is called the base space, p is a surjective submersion,
called the projection, and S is called standard fiber. (U,v) as above is called a
fiber chart or a local trivialization of E.

A collection of fiber charts (U,, s ), such that (Uy,) is an open cover of M,
is called a (fiber) bundle atlas. If we fix such an atlas, then (1o 095~ ') (z,5) =
(x,%ap(z,8)), where o : (Uy NUg) x S — S is smooth and ¢ug(z, ) is a
diffeomorphism of S for each x € U,g := U, N Ug. We may thus consider
the mappings a3 : Usp — Diff(S) with values in the group Diff(S) of all
diffeomorphisms of S; their differentiability is a subtle question, which will not
be discussed in this book, but see [Michor, 88]. In either form these mappings
Yap are called the transition functions of the bundle. They satisfy the cocycle
condition: Yag(x)otgy(z) = Yay(x) for & € Uy, and Ya(z) = Idg for z € U,,.
Therefore the collection () is called a cocycle of transition functions.

Given an open cover (U,) of a manifold M and a cocycle of transition func-
tions (¢as) we may construct a fiber bundle (E,p, M, S) similarly as in 6.4.

9.2. Lemma. Let p: N — M be a proper surjective submersion (a fibered
manifold) which is proper (i.e. compact sets have compact inverse images) and
let M be connected. Then (N,p, M) is a fiber bundle.

Proof. We have to produce a fiber chart at each g € M. So let (U,u) be
a chart centered at zop on M such that w(U) = R™. For each x € U let
& (y) = (Tyu)~tu(x), then &, € X(U), depending smoothly on = € U, such
that w(F15* u=1(2)) = z + t.u(x), so each &, is a complete vector field on U.
Since p is a submersion, with the help of a partition of unity on p~!(U) we may
construct vector fields 1, € X(p~!(U)) which depend smoothly on 2 € U and are
prelated to &, Tp.ny = & o p. Thus po FI7* = FI5* op by 3.14, so FI7* is fiber
respecting, and since p is proper and &, is complete, 1, has a global flow too.
Denote p~*(zg) by S. Then ¢ : U x S — p~}(U), defined by ¢(x,y) = F17*(y),
is a diffeomorphism and is fiber respecting, so (U, ¢ ~!) is a fiber chart. Since M
is connected, the fibers p~1(x) are all diffeomorphic.

9.3. Let (E,p,M,S) be a fiber bundle; we consider the tangent mapping T'p :
TE — TM and its kernel ker Tp =: V E which is called the vertical bundle of
E. The following is special case of 8.13.

Definition. A connection on the fiber bundle (E,p, M, S) is a vector valued 1-
form ® € Q'(E; V E) with values in the vertical bundle VE such that o ® = &
and Im® = V E; so ® is just a projection TE — V E.

If we intend to contrast this general concept of connection with some special
cases which will be discussed later, we will say that ® is a general connection.
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Since ker ® is of constant rank, by 6.6 ker ® is a sub vector bundle of TE, it is
called the space of horizontal vectors or the horizontal bundle and it is denoted
by HE. Clearly TE = HE ® VE and T,EF = H,E ® V,E for u € E.

Now we consider the mapping (T'p,7g) : TE — TM x5 E. We have by
definition (Tp, 7))~ (Op(u),u) = VuE, so (Tp,ng) | HE : HE — TM x5 E is
fiber linear over E and injective, so by reason of dimensions it is a fiber linear
isomorphism: Its inverse is denoted by

C:=((Tp,mg) | HE)™' :TM xy E — HE — TE.

So C:TM xp E — TFE is fiber linear over E and is a right inverse for (T'p, 7g).
C is called the horizontal lift associated to the connection ®.

Note the formula ®(&,) = &, — C(Tp.&y,u) for &, € T, E. So we can equally
well describe a connection ® by specifying C. Then we call ® the vertical pro-
jection (no confusion with 6.11 will arise) and x := idpg —® = C o (Tp, ) will
be called the horizontal projection.

9.4. Curvature. Suppose that ® : TE — V E is a connection on a fiber bundle
(E,p, M,S), then as in 8.13 the curvature R of ® is given by

2R = [®,®] = [Id —®,Id -] = [x, x] € Q*(E;VE)

(The cocurvature R vanishes since the vertical bundle V E is integrable). We
have R(X,Y) = 1[®,®|(X,Y) = ®[xX,xY], so R is an obstruction against
integrability of the horizontal subbundle. Note that for vector fields &,n €
X(M) and their horizontal lifts C¢, Cn € X(E) we have R(CE, Cn) = [CE, Cn) —
C(le. ).

Since the vertical bundle V' F is integrable, by 8.14 we have the Bianchi iden-
tity [®, R] = 0.

9.5. Pullback. Let (E,p, M, S) be a fiber bundle and consider a smooth map-
ping f: N — M. Since p is a submersion, f and p are transversal in the sense
of 2.18 and thus the pullback N X as ) E exists. It will be called the pullback
of the fiber bundle E by f and we will denote it by f*E. The following diagram
sets up some further notation for it:

rE-PS g

‘I

f

N ——— M.

Proposition. In the situation above we have:

(1) (f*E, f*p,N,S) is again a fiber bundle, and p*f is a fiber wise diffeo-
morphism.

(2) If ® € QY(E;TE) is a connection on the bundle E, then the vector valued
form f*®, given by (f*®),(X) := T, (p* f)~1.®.T,(p* f).X for X € T,E,
is a connection on the bundle f*E. The forms f*® and ® are p* f-related
in the sense of 8.15.

(3) The curvatures of f*® and ® are also p* f-related.
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Proof. (1) If (Uy, %) is a fiber bundle atlas of (E,p, M,S) in the sense of
9.1, then (f~Y(Uy),(f*p,pra o e o p*f)) is visibly a fiber bundle atlas for
(f*E, f*p,N,S), by the formal universal properties of a pullback 2.19. (2) is
obvious. (3) follows from (2) and 8.15.7. O

9.6. Let us suppose that a connection ® on the bundle (E,p, M,S) has zero
curvature. Then by 9.4 the horizontal bundle is integrable and gives rise to the
horizontal foliation by 3.25.2. Each point u € E lies on a unique leaf L(u) such
that T, L(u) = H,E for each v € L(u). The restriction p | L(u) is locally a
diffeomorphism, but in general it is neither surjective nor is it a covering onto
its image. This is seen by devising suitable horizontal foliations on the trivial
bundle pro : R x St — St

9.7. Local description. Let ® be a connection on (F,p, M, S). Let us fix a
fiber bundle atlas (U, ) with transition functions (¢g), and let us consider the
connection ((1,)~1)*® € QY (U, x S;U, x TS), which may be written in the
form

()™ @) (&xymy) = —T*(&s,y) +ny for & € T,U, and 1), € T,

since it reproduces vertical vectors. The I'* are given by

(02, T% (&, 9)) = _T(¢a)-®~T(¢a)71-(€wa Oy)-

We consider I'* as an element of the space Q' (U,; X(9)), a 1-form on U with
values in the infinite dimensional Lie algebra X(S) of all vector fields on the
standard fiber. The I'* are called the Christoffel forms of the connection ® with
respect to the bundle atlas (Uy, ¥4 ).

Lemma. The transformation law for the Christoffel forms is

Ty(Yap(, ))~Fﬂ(§zay):Fa(ézv¢aﬂ(mvy))_Tz(¢aﬁ( Y))Ea

The curvature R of ® satisfies
(Y1) R =dl* + 1[0, T3 s)-

Here dI'® is the exterior derivative of the 1-form T'® € Q' (U,; X(S)) with
values in the complete locally convex space X(S5). We will later also use the
Lie derivative of it and the usual formulas apply: consult [Frolicher, Kriegl, 88|
for calculus in infinite dimensional spaces. By [I'*,I'*|x(g) we just mean the
2-form (§,n) = [[*(£),T%(n)]x(s). See 11.2 for the more sophisticated notation
%[FO‘,F"‘}/\ for this.

The formula for the curvature is the Maurer-Cartan formula which in this
general setting appears only in the level of local description.

Proof. From (14 0 (¥3) ') (z,y) = (z,Yap(x,y)) we get that
T(d’oz © (7/’,6)71)-(556777?;) = (fraT(z,y)(¢aﬂ)'(§m7ny)) and thus:

T(15")-(02, 7 (&) = —®(T(15 ") (2, 0y)) =
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= —®(T (") T (a0 tbg").(62,0y)) =
= —0(T(3 ") (s Tiwy) (Pap) (Ex, 0y))) =
= = (T3 ") (s Oy () — (T (V5 ) (0 Tz s (€5 0y))) =
=T (1) (00, T (&as Yap(2,9)) = T(00 ) (0n, Te(ap( 1)) -Ex)-

This implies the transformation law.
For the curvature R of ® we have by 9.4 and 9.5.3

(W) R((Eh Y, (€%,1%) =
= (Yo ) @ [(Id (v, )@)€, '), (Id = (v ) @) (€%, 7°)] =
= (P 1) @[(E",T(Eh)), (€%, T(e?))] =
(%1) ([€',€70,6'T(&?) — 2T (eh) + [T(€1), T(&?)]) =
To([eh,€%)) + €'T(€?) — 2T (€h) + [T (€1), T (%)) =
= dr (¢! 75 )+ [0(€), T ()] x(s). O

9.8. Theorem (Parallel transport). Let ® be a connection on a bundle
(E,p,M,S) and let ¢ : (a,b) — M be a smooth curve with 0 € (a,b), ¢(0) = x.
Then there is a neighborhood U of E, x {0} in E, X (a,b) and a smooth
mapping Pt. : U — E such that:
(1) p(Pt(c, ug,t)) = c(t) if defined, and Pt(c, uy,0) = uy.
(2) ®(<% Pt(c,uy,t)) = 0 if defined.
(3) Reparametrisation invariance: If f : (a/,b') — (a,b) is smooth with
0 € (a',V'), then Pt(c, uy, f(t)) = Pt(co f,Pt(c, us, f(0)),t) if defined.
(4) U is maximal for properties (1) and (2).
(5) If the curve ¢ depends smoothly on further parameters then Pt(c, us,t)
depends also smoothly on those parameters.

First proof. In local bundle coordinates @(% Pt(c,usz,t)) = 0 is an ordinary
differential equation of first order, nonlinear, with initial condition Pt(c, u,,0) =
Uugz. So there is a maximally defined local solution curve which is unique. All
further properties are consequences of uniqueness.

Second proof. Consider the pullback bundle (¢*E, ¢*p, (a,b), S) and the pullback
connection ¢*® on it. It has zero curvature, since the horizontal bundle is 1-
dimensional. By 9.6 the horizontal foliation exists and the parallel transport just
follows a leaf and we may map it back to F, in detail: Pt(c,u,,t) = p*c((c*p |

L(uz)) =" (2)).
Third proof. Consider a fiber bundle atlas (Uy, %) as in 9.7. Then we have
Ya(Pte, 5 (2, 9),)) = (c(t),7(y, 1)), where

0= (") ®) (Le(t), Lr(y, 1) = —T° (Le(t),v(y. 1) + Lr(y, 1),
so v(y, t) is the integral curve (evolution line) through y € S of the time depen-
dent vector field I'* (%c(t)) on S. This vector field visibly depends smoothly

on c¢. Clearly local solutions exist and all properties follow. For (5) we refer to
[Michor, 83]. O
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9.9. A connection ® on (E,p, M, S) is called a complete connection, if the par-
allel transport Pt along any smooth curve ¢ : (a,b) — M is defined on the whole
of Ecy x (a,b). The third proof of theorem 9.8 shows that on a fiber bundle
with compact standard fiber any connection is complete.

The following is a sufficient condition for a connection ® to be complete:

There exists a fiber bundle atlas (Uy, 1, ) and complete Riemannian met-
rics g, on the standard fiber S such that each Christoffel form I'* €
QOY(U,,X(9)) takes values in the linear subspace of g,-bounded vector
fields on S.

For in the third proof of theorem 9.8 above the time dependent vector field
I*(4¢(t)) on S is go-bounded for compact time intervals. So by continuation
the solution exists over ¢~ (U, ), and thus globally.

A complete connection is called an Ehresmann connection in [Greub, Halperin,
Vanstone I, 72, p. 314], where it is also indicated how to prove the following
result.

Theorem. Fach fiber bundle admits complete connections.

Proof. Let dimM = m. Let (Uy,%s) be a fiber bundle atlas as in 9.1. By
topological dimension theory [Nagata, 65] the open cover (U,) of M admits a
refinement such that any m + 2 members have empty intersection, see also 1.1.
Let (U,) itself have this property. Choose a smooth partition of unity (fs)
subordinated to (Uy). Then the sets V,, := {x : fo(x) > ﬁ } C U, form still
an open cover of M since Y fo(x) = 1 and at most m + 1 of the f,(x) can be
nonzero. By renaming assume that each V,, is connected. Then we choose an
open cover (W,,) of M such that W, C V.

Now let g1 and go be complete Riemannian metrics on M and S, respectively
(see [Nomizu - Ozeki, 61] or [Morrow, 70]). For not connected Riemannian
manifolds complete means that each connected component is complete. Then
91|Uqs X g2 is a Riemannian metric on U, x S and we consider the metric g :=
> fati(g1|1Uq X g2) on E. Obviously p : E — M is a Riemannian submersion
for the metrics g and ¢g;. We choose now the connection ® : TE — VE as the
orthonormal projection with respect to the Riemannian metric g.

Claim. ® is a complete connection on E.

Let ¢ : [0,1] — M be a smooth curve. We choose a partition 0 = ¢y <
t; < .-+ < tgp = 1 such that ¢([t;,t;11]) C V,, for suitable «;. It suffices to
show that Pt(c(ti+ ), ucqu,),t) exists for all 0 < ¢t < ;41 —t; and all ug,),
for all ¢+ — then we may piece them together. So we may assume that ¢ :
[0,1] — V,, for some . Let us now assume that for some (z,y) € V, x S
the parallel transport Pt(c, ¥, (z,y),t) is defined only for ¢t € [0,t') for some
0 < t' < 1. By the third proof of 9.8 we have Pt(c, Vo (z,y),t) = ¥ (c(t),v(t)),
where v : [0,#) — S is the maximally defined integral curve through y € S

of the time dependent vector field I'*(<Lc(t), ) on S. We put go := (¥3')*g,
then (ga)(a:,y) = (gl)az X (Zﬁ f,@(x)wﬁa(xa )*92)y~ Since pry : (Va xS, ga) -

(Vi, 91|Va) is a Riemannian submersion and since the connection (1, 1)*® is also
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given by orthonormal projection onto the vertical bundle, we get

t/
o0 > gi-lengthf (c) = ga-length(c,v) = / (< (£), Lr(1))]g., dt =
0

= | VI OR, + Sl (). = a) G (0) dr(e) de >

t’ 1 t’
> [ V) 0> <= [ 1t

So go-lenght() is finite and since the Riemannian metric g on S is complete,
lim;_,y y(t) =: y(t') exists in S and the integral curve v can be continued. O

9.10. Holonomy groups and Lie algebras. Let (F,p, M, S) be a fiber bun-
dle with a complete connection ®, and let us assume that M is connected. We
choose a fixed base point o € M and we identify E,, with the standard fiber S.
For each closed piecewise smooth curve ¢ : [0,1] — M through xo the parallel
transport Pt(c, ,1) =: Pt(e,1) (pieced together over the smooth parts of ¢)
is a diffeomorphism of S. All these diffeomorphisms form together the group
Hol(®, zg), the holonomy group of ® at xg, a subgroup of the diffeomorphism
group Diff(S). If we consider only those piecewise smooth curves which are ho-
motopic to zero, we get a subgroup Holg(®, ), called the restricted holonomy
group of the connection ® at zg.

Now let C' : TM xj; E — TFE be the horizontal lifting as in 9.3, and let R
be the curvature (9.4) of the connection ®. For any z € M and X, € T, M
the horizontal lift C(X,) := C(X,, ): E, — TFE is a vector field along F,.
For X, and Y, € T,M we consider R(CX,,CY,) € X(E,). Now we choose
any piecewise smooth curve ¢ from xy to = and consider the diffeomorphism
Pt(c,t) : S = E,, — E, and the pullback Pt(c, 1)*R(CX,,CY,) € X(S5). Let
us denote by hol(®, z() the closed linear subspace, generated by all these vector
fields (for all x € M, X, Y, € T,,M and curves ¢ from zg to z) in X(S) with
respect to the compact C*°-topology (see [Hirsch, 76]), and let us call it the
holonomy Lie algebra of ® at xg.

Lemma. hol(®,x) is a Lie subalgebra of X(5).

Proof. For X € ¥(M) we consider the local flow FIC* of the horizontal lift of
X. It restricts to parallel transport along any of the flow lines of X in M. Then
for vector fields X, Y, U,V on M the expression

Lo (FIS%)*(FIT ) (F1IC5) " (FI?)*R(CU, OV) | By,
= (F1I*)*[CY, (F1N)* (FIS%)* R(CU, CV)]| By,
= [(FIS%)*CY, (FISZ)* R(CU, CV)]| By,

is in hol(®, ), since it is closed in the compact C*°-topology and the derivative
can be written as a limit. Thus

[(F1I9%)* [CY1, CYa), (FISZ)* R(CU, CV)]|Ey, € hol(®, 2)
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by the Jacobi identity and
[(FISX)*C[Y1, Ya], (FIS?)*R(CU,CV)]|Ey, € hol(®, z),
so also their difference
[(FIT)" R(CY:, COY2), (FI?) " R(CU, CV)| By,

is in hol(®,z¢). O

9.11. The following theorem is a generalization of the theorem of Ambrose
and Singer on principal connections. The reader who does not know principal
connections is advised to read parts of sections 10 and 11 first. We include this
result here in order not to disturb the development in section 11 later.

Theorem. Let ® be a complete connection on the fibre bundle (E,p, M, S) and
let M be connected. Suppose that for some (hence any) xg € M the holonomy
Lie algebra hol(®, x) is finite dimensional and consists of complete vector fields
on the fiber E,

Then there is a principal bundle (P, p, M, G) with finite dimensional structure
group G, an irreducible connection w on it and a smooth action of G on S such
that the Lie algebra g of G equals the holonomy Lie algebra hol(®, xq), the fibre
bundle E is isomorphic to the associated bundle P[S], and ® is the connection
induced by w. The structure group G equals the holonomy group Hol(®,z). P
and w are unique up to isomorphism.

By a theorem of [Palais, 57] a finite dimensional Lie subalgebra of X(FE,,)
like hol(®, ) consists of complete vector fields if and only if it is generated by
complete vector fields as a Lie algebra.

Proof. Let us again identify F,, and S. Then g := hol(®, z) is a finite dimen-
sional Lie subalgebra of X(5), and since each vector field in it is complete, there
is a finite dimensional connected Lie group Gy of diffeomorphisms of S with Lie
algebra g, see [Palais, 57].

Claim 1. Gy contains Holy(®, x¢), the restricted holonomy group.

Let f € Holg(®,x0), then f = Pt(c, 1) for a piecewise smooth closed curve ¢
through xg, which is nullhomotopic. Since the parallel transport is essentially
invariant under reparametrisation, 9.8, we can replace ¢ by c o g, where g is
smooth and flat at each corner of ¢. So we may assume that c itself is smooth.
Since ¢ is homotopic to zero, by approximation we may assume that there is a
smooth homotopy H : R?* — M with H1|[0,1] = ¢ and Ho|[0,1] = xo. Then
fr :=Pt(Hy, 1) is a curve in Holg(®, zp) which is smooth as a mapping Rx S — S.
The rest of the proof of claim 1 will follow.

Claim 2. (L f)o f; " =:Z, isin g for all £.
To prove claim 2 we consider the pullback bundle H* E — R? with the induced
connection H*®. It is sufficient to prove claim 2 there. Let X = dis and Y = %
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be the constant vector fields on R2, so [X,Y] = 0. Then Pt(c, s) = FI* |S and
so on. We put

frs = FIF o FI€Y o FISX 0 FIFY 1 § — S,

so fe1 = fi- Then we have in the vector space X(.5)

(i fes) o fid = —(FITX)"CY + (FIT) " (FI7 )" (FIET) €Y,

1
o fil = [ & (G o 1) ds
1
= [ (-meyiox.ov)+ () ox. Y (R oY
—(FI9%)*(FICY ) (FI°X)*[OX, CY]) ds.

Since [X,Y] = 0 we have [CX,CY] = ®[CX,CY]|=R(CX,CY) and

(FIC¥)*CY = c((F1§‘)*Y) +<1>(( 10Xy cy)

i
:C’Y+/ LPFITX) Oy dt
0

t
= CY+/ ®(FI)* [CX,CY] dt
0
t
= CY+/ O(FICN)*R(CX,CY) dt
0
t
=CY + / (FICX)*R(CX,CY) dt.
0

The flows (F1¢ X,)* and its derivative at 0 Lox = [CX, ] do not lead out of
g, thus all parts of the integrand above are in g. So (%ft,l) o ftjll is in g for all
t and claim 2 follows.

Now claim 1 can be shown as follows. There is a unique smooth curve g(t)
in G satisfying Te(pyt))Z: = Zi-g(t) = g(t) and g(0) = e; via the action of
Go on S the curve g(t) is a curve of diffeomorphisms on S, generated by the
time dependent vector field Z;, so g(t) = f: and f = f1 is in Gy. So we get
HOlo((I),lL'()) Q Go.

Claim 3. Holy(®, zp) equals Gy.

In the proof of claim 1 we have seen that Holg(®, o) is a smoothly arcwise
connected subgroup of Gy, so it is a connected Lie subgroup by the results cited

5.6. It suffices thus to show that the Lie algebra g of G is contained in the
Lie algebra of Holy(®, x0), and for that it is enough to show, that for each ¢ in a
linearly spanning subset of g there is a smooth mapping f : [-1,1] x S — S such
that the associated curve f lies in Holy(®, o) with f/(0) = 0 and f”(0) = €.

By definition we may assume § = Pt(c, 1)*R(CX,,CYy) for X,, Y, € T, M
and a smooth curve ¢ in M from xy to . We extend X, and Y, to vector fields
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X and Y € X(M) with [X,Y] = 0 near . We may also suppose that Z € X(M)
is a vector field which extends ¢/(t) along ¢(t): if ¢ is simple we approximate it
by an embedding and can consequently extend ¢/ () to such a vector field. If ¢
is not simple we do this for each simple piece of ¢ and have then several vector
fields Z instead of one below. So we have

¢ = (FIY?)*R(CX,CY) = (FI{?)*[CX,CY] since [X,Y](z) =0

= (FISZ) L& (FICY o FIZY o FICY o FIZY) by 3.16
= L& | o (FIZ o FIZ) o FIZX o FIEY o FITX 0 FITZ),

where the parallel transport in the last equation first follows ¢ from x( to x, then
follows a small closed parallelogram near x in M (since [X,Y] = 0 near x) and
then follows ¢ back to xg. This curve is clearly nullhomotopic.

Step 4. Now we make Hol(®,z() into a Lie group which we call G, by taking
Holp(®, z9) = G as its connected component of the identity. Then the quotient
group Hol(®, z()/ Holg(®, zg) is countable, since the fundamental group 71 (M)
is countable (by Morse theory M is homotopy equivalent to a countable CW-
complex).

Step 5. Construction of a cocycle of transition functions with values in G. Let
(Uasue @ Uy — R™) be a locally finite smooth atlas for M such that each
Uy : Uy — R™) is surjective. Put z, := u;'(0) and choose smooth curves ¢, :
[0,1] = M with ¢, (0) = z¢ and ¢4 (1) = x,. For each x € U, let ¢Z : [0,1] — M
be the smooth curve ¢t — u_!(t.u(z)), then ¢ connects z, and x and the
mapping (z,t) — ¢Z(t) is smooth U, x [0,1] — M. Now we define a fibre bundle
atlas (Un, Yo @ E|Uy — Uq x S) by ¥ 1 (2, 5) = Pt(c%, 1) Pt(ca, 1) s. Then 1, is
smooth since Pt(cZ, 1) = FIZ*= for a local vector field X, depending smoothly
on x. Let us investigate the transition functions.

wawﬁ_l(x, s) = (a:, Pt(cq, 1)t Pt(c®,1)7! Pt(cj, 1) Pt(cg, 1) s)

= (2, Pt(cg.ch.(ch) " (ca) ™ 4) 5)
=: (z,¢¥ap(x)s), where 15 : Uyg — G.

Clearly 934 : Ugq x S — S is smooth which implies that g, : Ugey — G is
also smooth. (t,3) is a cocycle of transition functions and we use it to glue
a principal bundle with structure group G over M which we call (P, p, M, Q).
From its construction it is clear that the associated bundle P[S] = P xS equals
(E,p,M,S).

Step 6. Lifting the connection ® to P.

For this we have to compute the Christoffel symbols of & with respect to the
atlas of step 5. To do this directly is quite difficult since we have to differentiate
the parallel transport with respect to the curve. Fortunately there is another
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way. Let ¢:[0,1] — U, be a smooth curve. Then we have

Yo (Pt(c, t)¢;1<c(0)7 S)) =
- (c(t), Pt((ca)~ L, 1) PH((c©) 1, 1) Pt(e, £) Pt(c2©, 1) Pt(ca, 1)5)
= (c(t),7(t)-s),

where 7(t) is a smooth curve in the holonomy group G. Let I'* € QY (U,, X(S))
be the Christoffel symbol of the connection ® with respect to the chart (Uy, %y ).
From the third proof of theorem 9.8 we have

o (Pt(e, )15 (c(0), 5)) = (e(t), 7(t, 9)),

where (¢, s) is the integral curve through s of the time dependent vector field
I*(4c(t)) on S. But then we get

s)) = &7(ts) = F(v(t).5) = (F(1))-s,
P (fe®) = (Fr(1) o)™ € g.

So I'* takes values in the Lie sub algebra of fundamental vector fields for the
action of G on S. By theorem 11.9 below the connection ® is thus induced by a
principal connection w on P. Since by 11.8 the principal connection w has the
‘same’ holonomy group as ® and since this is also the structure group of P, the
principal connection w is irreducible, see 11.7. [

10. Principal fiber bundles and G-bundles

10.1. Definition. Let G be a Lie group and let (E,p, M, S) be a fiber bundle
as in 9.1. A G-bundle structure on the fiber bundle consists of the following
data:

(1) A left action £: G x S — S of the Lie group on the standard fiber.

(2) A fiber bundle atlas (Uy,1q) whose transition functions (¢ag) act on S
via the G-action: There is a family of smooth mappings (¢as : Usg — G)
which satisfies the cocycle condition pag(2)@sy () = pay(x) for = €
Uagy and @aq(x) = e, the unit in the group, such that ¢¥.s(z,s) =
U(pap(x),s) = ap(z).s.

A fiber bundle with a G-bundle structure is called a G-bundle. A fiber bundle
atlas as in (2) is called a G-atlas and the family (@) is also called a cocycle of
transition functions, but now for the G-bundle. G is called the structure group
of the bundle.

To be more precise, two G-atlases are said to be equivalent (to describe the
same G-bundle), if their union is also a G-atlas. This translates as follows to
the two cocycles of transition functions, where we assume that the two coverings
of M are the same (by passing to the common refinement, if necessary): (¢as)
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and (i, 5) are called cohomologous if there is a family (7, : Uy — G) such that
vap(z) = Ta(:zz)*l.gogﬁ(a:).m(x) holds for all x € U,g, compare with 6.4.

In (2) one should specify only an equivalence class of G-bundle structures
or only a cohomology class of cocycles of G-valued transition functions. The
proof of 6.4 now shows that from any open cover (U,) of M, some cocycle of
transition functions (p.s : Uag — @) for it, and a left G-action on a manifold
S, we may construct a G-bundle, which depends only on the cohomology class
of the cocycle. By some abuse of notation we write (F,p, M,S,G) for a fiber
bundle with specified G-bundle structure.

Examples. The tangent bundle of a manifold M is a fiber bundle with structure
group GL(m). More general a vector bundle (E,p, M,V) as in 6.1 is a fiber
bundle with standard fiber the vector space V' and with GL(V')-structure.

10.2. Definition. A principal (fiber) bundle (P,p, M,G) is a G-bundle with
typical fiber a Lie group G, where the left action of G on G is just the left
translation.

So by 10.1 we are given a bundle atlas (Uy,¢n : PlUs, — U, x G) such
that we have Lpagpgl(a:, a) = (z, pap(x).a) for the cocycle of transition functions
(pap : Uap — G). This is now called a principal bundle atlas. Clearly the
principal bundle is uniquely specified by the cohomology class of its cocycle of
transition functions.

Each principal bundle admits a unique right action r : P x G — P, called the
principal Tight action, given by ¢, (r(¢5 (z,a),g)) = (x,ag). Since left and right
translation on G commute, this is well defined. As in 5.10 we write r(u, g) = u.g
when the meaning is clear. The principal right action is visibly free and for any
uy € P, the partial mapping r,, = r(uz, ):G — P, is a diffeomorphism onto
the fiber through u,, whose inverse is denoted by 7, : P, — G. These inverses
together give a smooth mapping 7 : P x;; P — G, whose local expression is
(o7 (w,a), 5 (2,b)) = a~1.b. This mapping is also uniquely determined by
the implicit equation r(ug, 7(uyz,v:)) = v, thus we also have 7(u,.g,ul.g") =
g L7 (ug,ul).g" and 7(ug, ug) = e.

When considering principal bundles the reader should think of frame bundles
as the foremost examples for this book. They will be treated in 10.11 below.

10.3. Lemma. Letp: P — M be a surjective submersion (a fibered manifold),
and let G be a Lie group which acts freely on P from the right such that the
orbits of the action are exactly the fibers p~1(x) of p. Then (P,p, M,G) is a
principal fiber bundle.

If the action is a left one we may turn it into a right one by using the group
inversion if necessary.

Proof. Let s, : U, — P belocal sections (right inverses) for p : P — M such that
(U,) is an open cover of M. Let ¢! : U, x G — P|U, be given by ¢_1(r,a) =
Sa(x).a, which is obviously injective with invertible tangent mapping, so its
inverse @, : P|U, — U, x G is a fiber respecting diffeomorphism. So (U,, ¥4 )
is already a fiber bundle atlas. Let 7 : P x;; P — G be given by the implicit
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equation r(ug, 7(ug,ul)) = ul, where r is the right G-action. 7 is smooth
by the implicit function theorem and clearly we have 7(ug,ul.g) = 7(ug,u).g
and ¢q(uy) = (2, 7(sa(x),uy)). Thus we have goagogl(x,g) = pu(sp(x).g) =
(x,7(sa(x),58(2).9)) = (x,T(sa(x),s3(x)).g) and (Ua, ¢a) is a principal bundle
atlas. O

10.4. Remarks. In the proof of lemma 10.3 we have seen, that a principal
bundle atlas of a principal fiber bundle (P, p, M, @) is already determined if we
specify a family of smooth sections of P, whose domains of definition cover the
base M.

Lemma 10.3 can serve as an equivalent definition for a principal bundle. But
this is true only if an implicit function theorem is available, so in topology
or in infinite dimensional differential geometry one should stick to our original
definition.

From the lemma itself it follows, that the pullback f* P over a smooth mapping
f: M’ — M is again a principal fiber bundle.

10.5. Homogeneous spaces. Let G be a Lie group with Lie algebra g. Let K
be a closed subgroup of G, then by theorem 5.5 K is a closed Lie subgroup whose
Lie algebra will be denoted by €. By theorem 5.11 there is a unique structure
of a smooth manifold on the quotient space G/K such that the projection p :
G — G/K is a submersion, so by the implicit function theorem p admits local
sections.

Theorem. (G,p,G/K,K) is a principal fiber bundle.

Proof. The group multiplication of G restricts to a free right action p: Gx K —
G, whose orbits are exactly the fibers of p. By lemma 10.3 the result follows. [

For the convenience of the reader we discuss now the best known homogeneous
spaces.

The group SO(n) acts transitively on S"~! C R™. The isotropy group of the
‘north pole’ (1,0,...,0) is the subgroup

(o so¢-1)

which we identify with SO(n —1). So S"~! = SO(n)/SO(n — 1) and we have a
principal fiber bundle (SO(n),p, S"~1,SO0(n — 1)). Likewise
(O(n)7p7 Sn_la O(n - 1));
(SU(n)7p7 S2n—17 SU(n - 1))7
(U(n),p,S*1,U(n —1)), and
(Sp(n),p, S*"=1 Sp(n — 1)) are principal fiber bundles.

The Grassmann manifold G(k,n;R) is the space of all k-planes containing 0
in R”. The group O(n) acts transitively on it and the isotropy group of the
k-plane R¥ x {0} is the subgroup

(8 oun):
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therefore G(k,n;R) = O(n)/O(k) x O(n — k) is a compact manifold and we get
the principal fiber bundle (O(n), p, G(k,n;R),O(k) x O(n — k)). Likewise
(SO(n), p, G(k,n;R), SO(k) x SO(n — k)),

(U(n),p, G(ka n; (C)a U(k) X U(Tl - k))a and

(Sp(n),p, G(k,n; H), Sp(k) x Sp(n — k)) are principal fiber bundles.

The Stiefel manifold V(k,n;R) is the space of all orthonormal k-frames in
R™. Clearly the group O(n) acts transitively on V(k,n;R) and the isotropy
subgroup of (e1,...,ex) is Iy x O(n — k), so V(k,n;R) = O(n)/O(n — k) is a
compact manifold and (O(n),p, V(k,n;R), O(n—k)) is a principal fiber bundle.
But O(k) also acts from the right on V(k,n;R), its orbits are exactly the fibers
of the projection p : V(k,n;R) — G(k,n;R). So by lemma 10.3 we get a prin-
cipal fiber bundle (V(k,n,R),p, G(k,n;R), O(k)). Indeed we have the following
diagram where all arrows are projections of principal fiber bundles, and where
the respective structure groups are written on the arrows:

om) — 2=k )
(a) O(k)J JO(k)
Vin—knR) G(k,n;R)

O(n —k)

It is easy to see that V (k,n) is also diffeomorphic to the space { A € L(R¥ R") :
At A =T}, i.e. the space of all linear isometries R¥ — R™. There are further-
more complex and quaternionic versions of the Stiefel manifolds.

Further examples will be given by means of jets in section 12.

10.6. Homomorphisms. Let x : (P,p, M,G) — (P',p’, M',G) be a principal
fiber bundle homomorphism, i.e. a smooth G-equivariant mapping x : P — P’.
Then obviously the diagram

X

pP—2—— P

(a) pJ Jp’

M — M’
commutes for a uniquely determined smooth mapping x : M — M'. For each

x € M the mapping x, := x|P: : Pr — P)I((.T) is G-equivariant and therefore a

diffeomorphism, so diagram (a) is a pullback diagram. We denote by PB(G) the
category of principal G-bundles and their homomorphisms.

But the most general notion of a homomorphism of principal bundles is the
following. Let ® : G — G’ be a homomorphism of Lie groups. x : (P,p, M,G) —
(P',p', M' @) is called a homomorphism over ® of principal bundles, if x : P —
P’ is smooth and y(u.g) = x(u).®(g) holds for all u € P and g € G. Then x is
fiber respecting, so diagram (a) makes again sense, but it is no longer a pullback
diagram in general. Thus we obtain the category PB of principal bundles and
their homomorphisms.
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If x covers the identity on the base, it is called a reduction of the structure
group G’ to G for the principal bundle (P’,p’, M’,G’) — the name comes from
the case, when @ is the embedding of a subgroup.

By the universal property of the pullback any general homomorphism y of
principal fiber bundles over a group homomorphism can be written as the com-
position of a reduction of structure groups and a pullback homomorphism as
follows, where we also indicate the structure groups:

(P,G) —— (X*P/7 G)—(P,G"

) \ J 4

M # M.
10.7. Associated bundles. Let (P,p, M,G) be a principal bundle and let
£:G xS — S be a left action of the structure group G on a manifold S. We
consider the right action R : (P x S) x G — P x S, given by R((u,s),g) =
(u.g,97".5).
Theorem. In this situation we have:

(1) The space P x¢ S of orbits of the action R carries a unique smooth
manifold structure such that the quotient map q: P xS — P xg S is a
submersion.

(2) (Px¢S,p, M, S,G) is a G-bundle in a canonical way, wherep : PxgS —
M is given by

PXSLPXGS

(a) me pj

PLM.

In this diagram q, : {u} xS — (P xg S)p) is a diffeomorphism for each
u e P.
(3) (PxS,q,P x¢S,G) is a principal fiber bundle with principal action R.
(4) If (Uy, 90 : PlUy — U, x G) is a principal bundle atlas with cocycle
of transition functions (pag : Uag — @), then together with the left
action ¢ : G x S — S this cocycle is also one for the G-bundle (P X¢
S,p, M, S,G).

Notation. (P x¢ S,p, M, S,G) is called the associated bundle for the action
¢:GxS — S. We will also denote it by P[S,¢] or simply P[S] and we will
write p for p if no confusion is possible. We also define the smooth mapping
75 =71 Pxp PS, 0] = S by T(ug,ve) == q; ' (v,). It satisfies 7(u, q(u, s)) = s,
q(ug, T(Ug, v2)) = vz, and 7(ug.g,v2) = g~ 1.7 (ug, v,). In the special situation,
where S = G and the action is left translation, so that P[G]| = P, this mapping
coincides with 7 = 7¢ considered in 10.2. We denote by {u,s} € P xg S the
G-orbit through (u,s) € P x S.
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Proof. In the setting of the diagram in (2) the mapping p o prq is constant on
the R-orbits, so p exists as a mapping. Let (Uy, o : P|lUy — Uy X G) be a
principal bundle atlas with transition functions (¢as : Uss — G). We define
Pyl iU xS — p Y Us) C PxgSby iz, s) =q(p,!(x,e),s), which is fiber
respecting. For each orbit in p~!(z) C P x¢g S there is exactly one s € S such
that this orbit passes through (¢ (x,€),s), namely s = 7% (ug, o5 (7, €))7 1.8
if (ug, s') is the orbit, since the principal right action is free. Thus ¢, (z, ):
S — p~1(x) is bijective. Furthermore

U5 (2,8) = qleg (x,€), 5)

q
1(pa (2, 0ap(x).€), 5) = a(05" (2, €)-Pap(x), )
q =

(@;1(x7€)790a5(x)'8) gl(mvwaﬁ(x)'8)7

SO wawgl(x,s) = (2, pap(x).s) So (Ua,a) is a G-atlas for P x¢ S and makes
it into a smooth manifold and a G-bundle. The defining equation for v, shows
that ¢ is smooth and a submersion and consequently the smooth structure on
P x¢g S is uniquely defined, and p is smooth by the universal properties of a
submersion.

By the definition of 1, the diagram

p‘l(Ua)xS%‘—XI(i>Ua><G><S

(b) qJ JId x
— wa

P (Uy) ————— Uy x S

commutes; since its lines are diffeomorphisms we conclude that ¢, : {u} x S —
p1(p(u)) is a diffeomorphism. So (1), (2), and (4) are checked.
(3) follows directly from lemma 10.3. O

10.8. Corollary. Let (E,p, M, S,G) be a G-bundle, specified by a cocycle of
transition functions (¢.g) with values in G and a left action ¢ of G on S. Then
from the cocycle of transition functions we may glue a unique principal bundle
(P,p, M, Q) such that E = P[S,¢. O

This is the usual way a differential geometer thinks of an associated bundle.
He is given a bundle E, a principal bundle P, and the G-bundle structure then
is described with the help of the mappings 7 and q. We remark that in standard
differential geometric situations, the elements of the principal fiber bundle P play
the role of certain frames for the individual fibers of each associated fiber bundle
E = PI[S,{]. Every frame u € P, is interpreted as the above diffeomorphism
Gu:S — E,.

10.9. Equivariant mappings and associated bundles.

1. Let (P,p, M,G) be a principal fiber bundle and consider two left actions
of G,/ :GxS — Sand V' : Gx S — S Let furthermore f : S — S’ be
a G-equivariant smooth mapping, so f(g.s) = g.f(s) or fol, = {; o f. Then
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Idp xf : Px S — P xS’ is equivariant for the actions R: (Px S)xG — P x S
and R’ : (PxS’")xG — P xS and is thus a homomorphism of principal bundles,
so there is an induced mapping

PxS Id xf PxS

[

PxGSMPxGS',

—
&
Nay

which is fiber respecting over M, and a homomorphism of G-bundles in the sense
of the definition 10.10 below.

2. Let x : (P,p, M,G) — (P',p’, M, G) be a homomorphism of principal fiber
bundles as in 10.6. Furthermore we consider a smooth left action £ : G x .S — S.
Then x xIdg : P x S — P’ x S is G-equivariant (a homomorphism of principal
fiber bundles) and induces a mapping x X gIdgs : PxgS — P’/ xS, which is fiber
respecting over M, fiber wise a diffeomorphism, and again a homomorphism of
G-bundles in the sense of definition 10.10 below.

3. Now we consider the situation of 1 and 2 at the same time. We have two
associated bundles P[S, ¢] and P'[S’,¢']. Let x : (P,p, M,G) — (P',p’, M',G) be
a homomorphism principal fiber bundles and let f : S — S’ be an G-equivariant
mapping. Then x X f: P x S — P’ x 8 is clearly G-equivariant and therefore
induces a mapping x X¢ f : P[S,¢] — P'[S’,¢'] which again is a homomorphism
of G-bundles.

4. Let S be a point. Then P[S] = P x¢ S = M. Furthermore let y € S’ be
a fixed point of the action ¢’ : G x S — S’ then the inclusion i : {y} — S’ is
G-equivariant, thus Idp xi induces the mapping Idp xgi : M = P[{y}] — P[5],
which is a global section of the associated bundle P[S’].

If the action of G on S is trivial, so g.s = s for all s € S, then the associ-
ated bundle is trivial: P[S] = M x S. For a trivial principal fiber bundle any
associated bundle is trivial.

10.10. Definition. In the situation of 10.9, a smooth fiber respecting mapping
v : P[S, 0] — P'[S', V'] covering a smooth mapping v : M — M’ of the bases is
called a homomorphism of G-bundles, if the following conditions are satisfied:
P is isomorphic to the pullback ~*P’, and the local representations of 7 in
pullback-related fiber bundle atlases belonging to the two G-bundles are fiber
wise G-equivariant.

Let us describe this in more detail now. Let (U, /) be a G-atlas for P'[S’, (']
with cocycle of transition functions (7, 5), belonging to the principal fiber bundle
atlas (UL, ¢!) of (P',p’, M’,G). Then the pullback-related principal fiber bundle
atlas (Uy =71 (U)), ¢a) for P =~y*P" as described in the proof of 9.5 has the
cocycle of transition functions (pas = ¢/,5 ©7); it induces the G-atlas (Ua, %a)
for P[S,¢]. Then (¢!, oyoy ) (z,s) = (y(x),Val(x,s)) and vo(z, ): S — 5
is required to be G-equivariant for all o and all z € U,.
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Lemma. Let v : P[S,{] — P'[S’,{'] be a homomorphism of G-bundles as de-
fined above. Then there is a homomorphism x : (P,p, M,G) — (P',p', M’, Q)
of principal bundles and a G-equivariant mapping f : S — S’ such that v =
X X f: P[S,¢] — P'[S", ¢].

Proof. The homomorphism x : (P,p, M,G) — (P’,p', M',G) of principal fiber
bundles is already determined by the requirement that P = v*P’, and we have
~ = x. The G-equivariant mapping f : S — S’ can be read off the following
diagram which by the assumptions is seen to be well defined in the right column:

S
P xy P[S] —T—— S

(a) Y ar 'yJ Jf

S
PIXM/P/[S/]T—>S/ (]

So a homomorphism of G-bundles is described by the whole triple (x : P —
P,f: S — 8 (G-equivariant),y : P[S] — P’[S]), such that diagram (a)
commutes.

10.11. Associated vector bundles. Let (P,p, M, G) be a principal fiber bun-
dle, and consider a representation p : G — GL(V) of G on a finite dimensional
vector space V. Then P[V, p| is an associated fiber bundle with structure group
G, but also with structure group GL(V'), for in the canonically associated fiber
bundle atlas the transition functions have also values in GL(V'). So by section 6
P[V, p] is a vector bundle.

Now let F be a covariant smooth functor from the category of finite dimen-
sional vector spaces and linear mappings into itself, as considered in section
6.7. Then clearly Fop : G — GL(V) — GL(F(V)) is another representa-
tion of G and the associated bundle P[F(V),F o p] coincides with the vector
bundle F(P[V,p]) constructed with the method of 6.7, but now it has an ex-
tra G-bundle structure. For contravariant functors F we have to consider the
representation F o p o v, similarly for bifunctors. In particular the bifunctor
L(V, W) may be applied to two different representations of two structure groups
of two principal bundles over the same base M to construct a vector bundle
L(PV. ), P'[V",p')) = (P s P)[L(V,V"), Lo (pov) x o).

If (E,p, M) is a vector bundle with n-dimensional fibers we may consider
the open subset GL(R™, E) C L(M x R™ E), a fiber bundle over the base M,
whose fiber over x € M is the space GL(R", E,) of all invertible linear map-
pings. Composition from the right by elements of GL(n) gives a free right
action on GL(R™, E) whose orbits are exactly the fibers, so by lemma 10.3 we
have a principal fiber bundle (GL(R", E),p, M, GL(n)). The associated bundle
GL(R"™, E)[R"] for the standard representation of GL(n) on R™ is isomorphic
to the vector bundle (E,p, M) we started with, for the evaluation mapping
ev: GL(R" E) x R" — E is invariant under the right action R of GL(n), and
locally in the image there are smooth sections to it, so it factors to a fiber linear
diffeomorphism GL(R™, E)[R"] = GL(R", E) Xgrn) R" — E. The principal
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bundle GL(R™, E) is called the linear frame bundle of E. Note that local sec-
tions of GL(R", E) are exactly the local frame fields of the vector bundle E as
discussed in 6.5.

To illustrate the notion of reduction of structure group, we consider now
a vector bundle (E,p, M,R™) equipped with a Riemannian metric g, that is
a section g € C°(S?E*) such that g, is a positive definite inner product on
E, for each x € M. Any vector bundle admits Riemannian metrics: local
existence is clear and we may glue with the help of a partition of unity on
M, since the positive definite sections form an open convex subset. Now let
s'=(sh,...,s)) € C*(GL(R",E)|U) be a local frame field of the bundle F
over U C M. Now we may apply the Gram-Schmidt orthonormalization pro-
cedure to the basis (s1(z),...,s,(x)) of E, for each x € U. Since this proce-
dure is smooth (even real analytic), we obtain a frame field s = (s1,...,8,)
of E over U which is orthonormal with respect to g. We call it an orthonor-
mal frame field. Now let (U,) be an open cover of M with orthonormal frame

fields s* = (s§,...,s%), where s* is defined on U,. We consider the vector
bundle charts (U,, %o : E|Uy — U, x R™) given by the orthonormal frame
fields: ¥ (x,0l, ... 0") = Y s%(x)0t = sY(z).w. For z € Uyp we have

s¢(x) = Zsf(x)ggaf(:r) for C*°-functions gas? : Uss — R. Since s*(x) and
s7(z) are both orthonormal bases of E,, the matrix gos(z) = (gag? (x)) is an
element of O(n). We write s* = s.gs, for short. Then we have w;l(x,v) =
sP(2)v = $%x).gap(r).v = Y5 (2, gap(x).v) and consequently wawgl(x,v) =
(2, gap(x).v). So the (gas : Uap — O(n)) are the cocycle of transition functions
for the vector bundle atlas (Uq, %4 ). So we have constructed an O(n)-structure
on E. The corresponding principal fiber bundle will be denoted by O(R™, (E, g));
it is usually called the orthonormal frame bundle of E. It is derived from the
linear frame bundle GL(R", E) by reduction of the structure group from GL(n)
to O(n). The phenomenon discussed here plays a prominent role in the theory
of classifying spaces.

10.12. Sections of associated bundles. Let (P, p, M,G) be a principal fiber
bundle and £ : G x S — S a left action. Let C°°(P,S)“ denote the space
of all smooth mappings f : P — S which are G-equivariant in the sense that
f(u.g) = g7t.f(u) holds for g € G and u € P.

Theorem. The sections of the associated bundle P[S, /] correspond exactly
to the G-equivariant mappings P — S; we have a bijection C*>(P,S)¢ =
C>(P[S)).

Proof. If f € C°°(P,S)¢ we get sy € C°°(P[S]) by the following diagram:
(1d, f)
P——=5PxS

7

M plg]
which exists by 10.9 since graph(f) = (Id, f) : P — P x S is G-equivariant:
(Id, f)(u.g) = (u.g, f(u.g)) = (u.g,g~".f(uw)) = ((Id, f)(u)).g.
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If conversely s € C>°(P[S]) we define f, € C*(P,S)% by f, := ro(Idp x8) :
P =P xy M — P xpy P[S] — S. This is G-equivariant since fs(ug.g) =
T(ug-g,8(2)) = g7 .7 (ug, s(x)) = g7 1. fs(uz) by 10.7. The two constructions are
inverse to each other since we have fys)(u) = 7(u, s¢(p(u))) = 7(u, q(u, f(u))) =
() and s o) (p(u)) = (s £3(w)) = @, 7(, 5(p(w))) = 5(p(a)). D

The G-mapping fs : P — S determined by a section s of P[S] will be called
the frame form of the section s.

10.13. Theorem. Consider a principal fiber bundle (P,p, M,G) and a closed
subgroup K of G. Then the reductions of structure group from G to K corre-
spond bijectively to the global sections of the associated bundle P[G/K,)\] in a
canonical way, where \ : G x G /K — G /K is the left action on the homogeneous
space from 5.11.

Proof. By theorem 10.12 the section s € C°(P[G/K]) corresponds to fs €
C>(P,G/K)%, which is a surjective submersion since the action A : G x G/K —
G/K is transitive. Thus Py := f;1(€) is a submanifold of P which is stable under
the right action of K on P. Furthermore the K-orbits are exactly the fibers of
the mapping p : P — M, so by lemma 10.3 we get a principal fiber bundle
(Ps,p, M, K). The embedding P; < P is then a reduction of structure groups
as required.

If conversely we have a principal fiber bundle (P’,p’, M, K') and a reduction of
structure groups x : P’ — P, then x is an embedding covering the identity of M
and is K-equivariant, so we may view P’ as a sub fiber bundle of P which is stable
under the right action of K. Now we consider the mapping 7 : P x; P — G
from 10.2 and restrict it to P x; P’. Since we have 7(ug, vy.k) = 7(ugz, vy).k
for k € K this restriction induces f: P — G/K by

PX]L[P/;)G

| i

P=PxuyP/K—a/K;

and from 7(uy.g,v;) = g 1.7(usz,v,) it follows that f is G-equivariant as re-
quired. Finally f~1(e) = {u € P: T(U,Pé(u)) C K} = P/, so the two construc-
tions are inverse to each other. [J

10.14. The bundle of gauges. If (P,p, M,G) is a principal fiber bundle we
denote by Aut(P) the group of all G-equivariant diffeomorphisms x : P — P.
Then p o x = x op for a unique diffeomorphism x of M, so there is a group
homomorphism from Aut(P) into the group Diff(M) of all diffecomorphisms of
M. The kernel of this homomorphism is called Gau(P), the group of gauge
transformations. So Gau(P) is the space of all x : P — P which satisfy poy = p
and x(u.g) = x(u).g.

Theorem. The group Gau(P) of gauge transformations is equal to the space
O (P, (G, conj)) = C*(P[G, conj]).
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Proof. We use again the mapping 7 : P Xy P — G from 10.2. For y €
Gau(P) we define f,, € C*(P, (G, conj)) by f, :=7o0 (Id,x). Then f,(u.g) =
7(u.g, x(u.g9)) = g~ .7 (u, x(u)).g = conj,—1 fy(u), so fy is indeed G-equivariant.

If conversely f € C*(P,(G,conj))¢ is given, we define y; : P — P by
Xr(u) == u.f(u). It is easy to check that x; is indeed in Gau(P) and that the
two constructions are inverse to each other. [J

10.15. The tangent bundles of homogeneous spaces. Let G be a Lie
group and K a closed subgroup, with Lie algebras g and €, respectively. We
recall the mapping Adg : G — Autpie(g) from 4.24 and put Adg g = Adg | K :
K — Autri(g). For X € ¢t and k € K we have Adg (k)X = Adg(k)X =
Adg (k)X € ¢ so tis an invariant subspace for the representation Adg g of K
in g, and we have the factor representation Ad* : K — GL(g/¢). Then

(a) 0—t—g—g/t—0

is short exact and K-equivariant.
Now we consider the principal fiber bundle (G, p, G/ K, K) and the associated
vector bundles G[g/¢, Ad*] and G[¢, Adg].

Theorem. In these circumstances we have

T(G/K) = Gla/t, Ad™] = (G xx 9/t,p, G/ K, g/t).
The left action g — T(\,) of G on T(G/K) corresponds to the canonical left
action of G on G x i g/t. Furthermore G[g/t, Ad]®G[e, Adg] is a trivial vector
bundle.

Proof. For p: G — G/K we consider the tangent mapping T.p : g — T:(G/K)
which is linear and surjective and induces a linear isomorphism T.p : g/t —
T:(G/K). For k € K we have poconj, = poA,ops—1 = Apop and consequently
TepoAdG,K(k) = T.poT,(conj,) = TeApoT,.p. Thus the isomorphism T,p : g/t —
T:(G/K) is K-equivariant for the representations Ad and Tu\ : k — TsAg.
Now we consider the associated vector bundle GIT; (G/K) T\ = (G xx
T:(G/K),p,G/K,Ts(G/K)), which is isomorphic to G[g/t, Ad*], since the rep-
resentation spaces are isomorphic. The mapping Th\ : G x Te(G/K) — T(G/K)
(where Ty is the second partial tangent functor) is K-invariant and therefore
induces a mapping 1 as in the following diagram:

G xT:(G/K)

e \G/K

This mapping 1 is an isomorphism of vector bundles.

(b) G xx T:(G/K)
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It remains to show the last assertion. The short exact sequence (a) induces a
sequence of vector bundles over G/K:

G/K x 0 — G[e, Adx] — Glg, Adg k] — Glg/t, Adt] — G/K x 0

This sequence splits fiberwise thus also locally over G/K, so G[g/t, Ad*] @
Glt, Adk] = G[g, Adg, k] and it remains to show that G[g, Adg, k] is a trivial vec-
tor bundle. Let ¢ : Gxg — G x g be given by ¢(g, X) = (g, Adg(g)X). Then for
k € K we have o((g9,X).k) = ¢(gk,Adg (k™) X) = (gk,Adg(g.k.k1)X) =
(gk,Adg(g)X). So ¢ is K-equivariant from the ‘joint’ K-action to the ‘on the
left’ K-action and therefore induces a mapping ¢ as in the diagram:

P

Gxg Gxg
d |
(c) Gxkg L2 G/K x g

G/K
The map ¢ is a vector bundle isomorphism. O

10.16. Tangent bundles of Grassmann manifolds. From 10.5 we know
that (V(k,n) = O(n)/O(n — k),p,G(k,n),0O(k)) is a principal fiber bundle.
Using the standard representation of O(k) we consider the associated vector
bundle (Ej, := V(k,n)[R¥],p, G(k,n)). Tt is called the universal vector bundle
over G(k,n). Recall from 10.5 the description of V'(k,n) as the space of all linear
isometries R¥ — R"™; we get from it the evaluation mapping ev : V(k,n) x R¥ —
R™. The mapping (p, ev) in the diagram

V(k,n) x R¥

) g w)

V(k,n) xox) R — G(k,n) x R"

is O(k)-invariant for the action R and factors therefore to an embedding of
vector bundles v : E, — G(k,n) x R™. So the fiber (E})w over the k-plane W
in R™ is just the linear subspace W. Note finally that the fiber wise orthogonal
complement Ej.* of Ej in the trivial vector bundle G (k,n) x R™ with its standard
Riemannian metric is isomorphic to the universal vector bundle E,,_j, over G(n—
k,n), where the isomorphism covers the diffecomorphism G(k,n) — G(n — k,n)
given also by the orthogonal complement mapping.

Corollary. The tangent bundle of the Grassmann manifold is

TG(k,n) = L(Ey, E,b).
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Proof. We have G(k,n) = O(n)/(O(k) x O(n —k)), so by theorem 10.15 we get

TG(k,n) = O(n) O(k)xg(n_k)(sa(n)/(so(k) x so(n —k))).

On the other hand we have V(k,n) = O(n)/O(n — k) and the right action of
O(k) commutes with the right action of O(n — k) on O(n), therefore

V(k,n)[R*] = (O(n)/O(n —k)) x R* =0(n)

X RF,
O(k) O(k)xO(n—Fk)

where O(n — k) acts trivially on R¥. Finally

L(Ey, Ext) =L (O(n) X R*,O(n) X R”‘k>
O(k)xO(n—k) O(k)xO(n—k)

=0(n) X L(RF,R"™F),
O(k)xO(n—k)

where the left action of O(k) x O(n—k) on L(R* R"~*) is given by (4, B)(C) =
B.C.A7!. Finally we have an O(k) x O(n — k) - equivariant linear isomorphism
L(RF R"=*) — s0(n)/(so(k) x so(n — k)), as follows:

so(n)/(so(k) x so(n—k)) =

(4 ) e}

0 skew

10.17. The tangent group of a Lie group. Let G be a Lie group with
Lie algebra g. We will use the notation from 4.1. First note that TG is
also a Lie group with multiplication Tu and inversion T, given by (see 4.2)
T(a,b)/’é'(gaanb) = Ta(pb)~§a + Tb()\a)~77b and Taufa = _Te()\afl)-Ta(pafl)-ga-

Lemma. Via the isomomorphism Tp:gx G — TG, Tp.(X,g) = Te(pg). X, the
group structure on T'G looks as follows: (X,a).(Y,b) = (X + Ad(a)Y, a.b) and
(X,a) ! = (=Ad(a 1) X,a™!). So TG is isomorphic to the semidirect product
g X G, see 5.16.

Proof. Tiaqpp-(Tpa-X,Tpp.Y) =Tpp.Tpa. X +TAg.Tpp.Y =
=Tpap-X +TppTpa.Tpa—1.TA.Y =Tpap(X + Ad(a)Y).
Tov.Tpe.X = —Tpa-—1.TAg-1.Tpe. X = —Tp,—1.Ad(a"1)X. O

Remark. In the left trivialisation TA : G x g — TG, TA.(g,X) = Te(N\y). X,
the semidirect product structure is: (a, X).(b,Y) = (ab,Ad(b~1)X +Y) and
(@, X)"' = (a7, — Ad(a)X).

Lemma 10.17 is a special case of 37.16 and also 38.10 below.

10.18. Tangent bundles and vertical bundles. Let (E,p, M, S) be a fiber
bundle. The subbundle VE = {{ € TE : Tp.§ = 0} of TE is called the
vertical bundle and is denoted by (VE,7g, E).
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Theorem. Let (P,p, M,G) be a principal fiber bundle with principal right ac-
tionr: PxG — P. Let { : G xS — S be a left action. Then the following
assertions hold:
(1) (TP, Tp,TM,TQG) is again a principal fiber bundle with principal right
action Tr : TP x TG — TP.
(2) The vertical bundle (VP,, P,g) of the principal bundle is trivial as a
vector bundle over P: VP = P X g.
(3) The vertical bundle of the principal bundle as bundle over M is again a
principal bundle: (VP,pomw, M,TG).
(4) The tangent bundle of the associated bundle P[S, (] is given by
T(P[S,¢) =TP[TS,TY).
(5) The vertical bundle of the associated bundle P[S,{] is given by
V(P[S,f)) = P[TS,Txf] = P xg TS, where Ty is the second partial
tangent functor.

Proof. Let (Uy,@a : PlUsy — Uy x G) be a principal fiber bundle atlas with
cocycle of transition functions (¢ag : Usg — G). Since T is a functor which
respects products, (TU,,Tys : TP|TU, — TU, x TG) is again a principal
fiber bundle atlas with cocycle of transition functions (T'pag : TUsp — TG),
describing the principal fiber bundle (TP, Tp, TM,TG). The assertion about
the principal action is obvious. So (1) follows. For completeness sake we include
here the transition formula for this atlas in the right trivialization of T'G:

T(‘)Ooc o @El)(ga?;Te(pg)'X) = (facvTe(pgaag(a:).g)'(&paﬁ(gx) + Ad((pag(x))X)),

where §pa5 € Q1 (Uap; g) is the right logarithmic derivative of .3, see 4.26.
(2) The mapping (u, X) = Te(ry). X = T(y,e)r-(0u, X) is a vector bundle iso-
morphism P x g — VP over P.

(3) Obviously Tr : TP x TG — TP is a free right action which acts transitive on
the fibers of Tp: TP — TM. Since VP = (Tp)~*(0ar), the bundle VP — M is
isomorphic to TP|0y; and T'r restricts to a free right action, which is transitive
on the fibers, so by lemma 10.3 the result follows.

(4) The transition functions of the fiber bundle P[S, ¢] are given by the expression
lo(papxIdg) : Uy xS — GxS — S. Then the transition functions of T'(P[S, {])
are T (0o (pap x Idg)) =Tl o (Tpap X Idpg) : TUap X TS — TG x TS — TS,
from which the result follows.

(5) Vertical vectors in T'(P[S, ¢]) have local representations (05, 7s) € TUasxT'S.
Under the transition functions of T'(P[S,¢]) they transform as T(f o (¢ag X
1ds))-(0z,m5) = T.(0p ) Ms) = T(lypos@) s = Tol.(ap(z),ms) and this
implies the result. [

11. Principal and induced connections

11.1. Principal connections. Let (P,p, M,G) be a principal fiber bundle.
Recall from 9.3 that a (general) connection on P is a fiber projection ® : TP —
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V P, viewed as a 1-form in Q(P; TP). Such a connection ® is called a principal
connection if it is G-equivariant for the principal right action r : P x G — P, so
that T'(r9).® = ®.T(r9), i.e. ® is rI-related to itself, or (r9)*® = & in the sense
of 8.16, for all g € G. By theorem 8.15.7 the curvature R = %.[@, ®] is then also
r9-related to itself for all g € G.

Recall from 10.18.2 that the vertical bundle of P is trivialized as a vector
bundle over P by the principal action. So we have w(X,,) := T.(r,) " 1.®(X,) € g
and in this way we get a g-valued 1-form w € Q!(P;g), which is called the
(Lie algebra valued) connection form of the connection ®. Recall from 5.13 the
fundamental vector field mapping ¢ : g — X(P) for the principal right action.
The defining equation for w can be written also as ®(X,) = (u(x,)(u).

Lemma. If ® € QY(P;VP) is a principal connection on the principal fiber
bundle (P,p, M,G) then the connection form has the following properties:

(1) w reproduces the generators of fundamental vector fields, so we have
w(Cx(u)) =X for all X € g.
(2) w is G-equivariant, so ((r9)*w)(X,) = w(T,(r9).X,) = Ad(g™1).w(X,)
for all g € G and X,, € T, P.
(3) For the Lie derivative we have L w = —ad(X).w.
Conversely a 1-form w € QY(P,g) satisfying (1) defines a connection ® on P
by ®(X,) = Te(ry).w(Xy), which is a principal connection if and only if (2) is
satisfied.
Proof. (1) Te(ru)w(Cx (u) = ®((x(u)) = (x(u) = Te(ry).X. Since Te(ry) :

g — V,, P is an isomorphism, the result follows.
(2) Both directions follow from

Te(rug)'w(Tu(rg)-Xu) = Cw(Tu(rg).Xu)(u.g) = (T, (r). Xu)
Te(rug).- Ad(g™ ") w(Xy) = CAd(g—1).w(x,)(ug) =
= T (1) .Cu(x) (1) = Ty (r?). (Xy).

(3) is a consequence of (2). O

11.2. Curvature. Let @ be a principal connection on the principal fiber bundle
(P,p, M,G) with connection form w € Q'(P;g). We already noted in 11.1 that
the curvature R = 1[®, @] is then also G-equivariant, (r9)*R = R for all g € G.
Since R has vertical values we may again define a g-valued 2-form Q € Q2(P; g)
by Q(Xy,Yy) := —Tu(ry,) *.R(Xy, Yy), which is called the (Lie algebra-valued)
curvature form of the connection. We also have R(X,,Yy) = —Co(x,, v, (u). We
take the negative sign here to get the usual curvature form as in [Kobayashi-
Nomizu I, 63].

We equip the space Q(P;g) of all g-valued forms on P in a canonical way
with the structure of a graded Lie algebra by

[V, 0A(X1,... ., Xpyq) =

1 .
=T > signo [(U(Xo1,. ., Xop), O(Xopi1)s -+ » Xopra)la
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or equivalently by [ ® X,0®Y |5 := Yy ANO®[X,Y]. From the latter description
it is clear that d[¥, 0], = [d¥, O], + (—1)4&¥[¥ dO],. In particular for w €
Q' (P; g) we have [w,w]A(X,Y) = 2[w(X),w(Y)],.

Theorem. The curvature form ) of a principal connection with connection
form w has the following properties:

(1) Q is horizontal, i.e. it kills vertical vectors.

(2) Q is G-equivariant in the following sense: (r9)*Q = Ad(g~1).Q. Conse-
quently L¢, Q = —ad(X).Q.

(3) The Maurer-Cartan formula holds: Q = dw + [w,w]x.

Proof. (1) is true for R by 9.4. For (2) we compute as follows:

Te(rug)-((r?) Q) ( Xy, Yy) = Te(rug) UTu(r?). Xy, T, (17).Y,) =
= —Ryy(T,(r9). Xy, T, (r9).Yy) = =T, (r?).((r9)"R)(X,, Y,) =
= —Tu(r?).R(Xy,Yy) = TU(TQ)'CQ(X,“YH)(“) =
= CAd(g—1).Q(X.,v,) (ug) =
=T.(rug)-Ad(g71).Q(Xu, Ys), by 5.13.

(3) For X € g we have i¢c, R =0 by (1), and using 11.1.(3) we get

. 1 . 1. 1 )
icx (dw + Sw, w]n) = iy dw + §[l<xw,w]A - §[W>Z<xw]/\ =

2
=Leyw+ [X,wlp = —ad(X)w + ad(X)w = 0.

So the formula holds for vertical vectors, and for horizontal vector fields X,Y €
C*(H(P)) we have

R(X,Y)=®[X —®X,Y — ®Y] = [X,Y] = C(x.v)

(dw + %[w7w])(X7Y) = XwY) - YwX) -w(X,Y]) = —w(X,Y]). O

11.3. Lemma. Any principal fiber bundle (P,p, M,G) admits principal con-
nections.

Proof. Let (Uy, pa : PlUs — U,y X G), be a principal fiber bundle atlas. Let
us define v, (To5t (&2, TeAg. X)) = X for & € T,U, and X € g. An easy
computation involving lemma 5.13 shows that v, € Q'(P|U,;g) satisfies the
requirements of lemma 11.1 and thus is a principal connection on P|U,. Now
let (fa) be a smooth partition of unity on M which is subordinated to the open
cover (U,), and let w := 3" _(fa ©p)7Ya. Since both requirements of lemma 11.1
are invariant under convex linear combinations, w is a principal connection on
pP. O
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11.4. Local descriptions of principal connections. We consider a principal

fiber bundle (P, p, M, G) with some principal fiber bundle atlas (Uy, ¢q : P|Uy —

Uy x G) and corresponding cocycle (pag : Uag — G) of transition functions.

We consider the sections s, € C*°(P|U,) which are given by ¢, (sa(z)) = (z,€)

and satisfy sq.¢0as = 3.

(1) Let © € QY(G,g) be the left logarithmic derivative of the identity,

ie. O(ng) = Ty(Ag-1).ng. We will use the forms O3 = pas*O €
ot (UaBQ 9)-

Let ® = (ow € QY(P;VP) be a principal connection with connection form

w € NY(P;g). We may associate the following local data to the connection:

(2) wa = 84w € Q1 (Uy; g), the physicists version of the connection.
(3) The Christoffel forms T'* € QY(U,; X(G)) from 9.7, which are given by

(02,76, 9)) = —T(9a)-2.T(0a) " (&, 0g)-
(4) Yo = (p1)*w e QY (U, x G; g), the local expressions of w.

Lemma. These local data have the following properties and are related by the
following formulas.

(5) The forms w, € 2 (Uy; g) satisfy the transition formulas
Wa = Ad(gog;)um + O34,

and any set of forms like that with this transition behavior determines a
unique principal connection.

(6) We have Y (&, TAg-X) = Yu(0,0g) + X = Ad(g~ 1w (&) + X.

(7) We have T2 (&, 9) = —To(Ag)Va(érr0p) = ~Te(hg). Ad(g ™ wa(6r) =
—T(pg)wa(&e), 50 (&) = =Ry, (¢,), @ right invariant vector field.

Proof. From the definition of the Christoffel forms we have
(02, T%(€2,.9)) = ~T(¢a)- . T(a) " (&, 09)
= _T(‘Pa)-Te(Tcpgl(ga,g))WT(SOa)_l(fmOg)
(e 07yt )0 T () (€ Oy)
= 0z, Te(Ag)w.T(¢a) ™" (&2, 0g)) = = (0, Te(Ng)Va(&xs Og))-
This is the first part of (7). The second part follows from (6).
Ya(€a: TAg-X) = Ya(&s,0g) +Va 0z, TAg. X)
= Ya(€a, 0g) + w(T(0a) ™ (02, TAg. X))
= Ya(&e: 0g) + w(Cx (95" (2, 9))) = Ya(Es,0g) + X.
So the first part of (6) holds. The second part is seen from
Yol 0g) = Ta€s Tel(p)00) = (w0 T(pa) " 0 T(Idy xpy))(Eas 0c) =
= (WoT(r"op;h)) (&, 0.) = Ad(g™Hw(T (¢ ") (éx, 0))
= Ad(g7") (50" w) (&) = Ad(g™Hwa(&e)-

Via (7) the transition formulas for the w, are easily seen to be equivalent to the
transition formulas for the Christoffel forms in lemma 9.7. [
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11.5. The covariant derivative. Let (P,p, M, G) be a principal fiber bundle
with principal connection ® = ( o w. We consider the horizontal projection
x = Idpp—® : TP — HP, cf. 9.3, which satisfies x o x = x, imx = HP,
kery =V P,and x oT(r9) =T(r9) o x for all g € G.

If W is a finite dimensional vector space, we consider the mapping x* :
Q(P; W) — Q(P; W) which is given by

@)l X5 X)) = ou(x(X1), - x (X))

The mapping x* is a projection onto the subspace of horizontal differential forms,
i.e. the space Qo (P; W) :={tp € Q(P; W) :ixt¢ = 0 for X € VP}. The notion
of horizontal form is independent of the choice of a connection.

The projection x* has the following properties where in the first assertion one
of the two forms has values in R:

X (p AY) = X" AX),

XTox"=x"
X o (r)) =) ox” for all g € G,
X'w=0

X" o L(Cx) =L(Cx)ox"

They follow easily from the corresponding properties of x, the last property uses
that FI§X) = pexptX,

Now we define the covariant esterior derivative d,, : Q¥ (P; W) — QFL(P; W)
by the prescription d, := x* o d.

Theorem. The covariant exterior derivative d,, has the following properties.

(1) du(pAY) =du(@) A+ (=1)%8ex*p Ad,, () if ¢ or 1) is real valued.

) L(Cx)od, =d, o L((x) for each X € g.
) (r9)* od,, =d, o (r9)* for each g € G.
) dyop* =dop*=p od: QM;W) — Qpor(P; W).

) dyw = €, the curvature form.

) d,Q =0, the Bianchi identity.

) dyox* —d, =x"0i(R), where R is the curvature.

) dyod, =x"0i(R)od.

) Let Qnor(P,g)¢ be the algebra of all horizontal G-equivariant g-valued
forms, i.e. (r9)*¢ = Ad(g~)y. Then for any ¢ € Qyor(P,g)¢ we have
dop = dip + [WM/J]A-

(10) The mapping 1 +— Cy, where Cy(X1,. .., Xi)(u) = Cpixy .., x0)(w) (1), 18

an isomorphism between Quo.(P, )¢ and the algebra Qyo.(P,VP)¢ of
all horizontal G-equivariant forms with values in the vertical bundle V P.
Then we have (4 = —[P, (]

Proof. (1) through (4) follow from the properties of x*.

Electronic edition of: Natural Operations in Differential Geometry, Springer-Verlag, 1993
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(5) We have

(dow)(§,m) = (X dw)(§,m) = dw(x§, xn)
= (x&w(xn) — (xmw(x€) — w(x&: xnl)
= —w([x¢&, xn]) and

—C(U&m) = R(&,n) = @[XE, x1] = Cu(ixexm)-

(6) Using 11.2 we have
doQ = d(dw + [w,w]n)

= X"ddw + 5x"dlw, w]x
= 3X* ([dw, W] — [w, dw] ) = X" [dw, ]
= [x"dw, x*w]r = 0, since x*w = 0.

(7) For ¢ € Q(P; W) we have

(dux"¢)(Xo, ..., Xi) = (dx" @) (x(Xo), - - -, X(Xk))
= 3 (FDNXNOCR) X)X (K, X(K)

0<i<k
+Z D () (I(Xa), x(X5)], x(Xo), - .-
= 3 (D XD OO(Xo), -+ (K)o X(X)))
0<i<k
()X (X)) = (X)X ()] (Ko

—

(XD (X)), )
= (de)(x(Xo), - - -, x(Xk)) + (ire) (x(X0), - - -, X(Xk))
= (dw + x"ir)(¢)(Xo, - - , X).
(8) dudy, = x*dx*d = (x*ir + x*d)d = x™ird holds by (7).

(9) If we insert one vertical vector field, say (x for X € g, into d,v¢, we
get 0 by definition. For the right hand side we use ic, ¢ = 0 and L¢ ¢ =

21, (FI$¥)*qp = 2|, (roP )y = 2| Ad(exp(—tX))yh = —ad(X) to get

iCX (dQ/J + [WW]A) = i(xdw + dZCX¢ + [iCXw7¢] - [wJCxw]
=L ¥+ [X, 9] = —ad(X)y + [X,¢] = 0.

Let now all vector fields &; be horizontal, then we get

(dwtp) (o, -+ &k) = (X dY) (G0, - -+, &k) = dp (o, - - 5 k),
(d + [w, P1a) (Cos -+ 1 &k) = d(So, - -+ 5 Ek)-
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