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ON THE GEOMETRICAL THEORY OF HIGHER-ORDER
HAMILTON SPACES

RADU MIRON

ABSTRACT. One investigates the geometrical properties of the Hamilton spaces
of order k > 1, the natural presymplectic and Poisson structures and Hamilton-
Jacobi equations, [2],[9]. An L-duality between the Lagrange spaces of order
k and Hamilton spaces of the same order is pointed out.

INTRODUCTION

The notion of Hamilton space was introduced by the author in [3],[4]. It was
defined as a pair H"™ = (M, H(z,p)), for M a C*°-manifold of dimension n and H :
(v,p) € T**M — H(x,p) € IR a regular Hamiltonian. H™ has a canonical sym-
plectic structure and a canonical Poisson structure. The Hamilton spaces appear
as dual, via Legendre transformation, of the Lagrange spaces L™ = (M, L(x,y)),
[3].

The notion of Lagrange space of order k > 1, L¥)™ = (M, L(x,y™, ..,y™*))) was
defined by author some years ago. Its geometry was showed in the book [7].

A definition of the notion of higher-order Hamilton space H )™ is difficult to get.
This is due to the fact that the space H*)" must have some important properties,
which extend those of H()" = H™ :

a) dim H®" = dim L™,

b) H (F)n has a canonical presymplectic structure.

¢) H*)" has at least one Poisson structure.

d) The spaces H (B)n and L™ to be diffeomorphic via Legendre transformation.

In the paper [5] we solved the above mentioned problem.

Now, in the lecture at the ”Colloquium on Differential Geometry”, July 2000,
Debrecen, I should like to present an abstract of the paper [5], published this year
by the International Journal of Theoretical Physics. Some new results concerning
the L-duality of the spaces L*¥)" and H*)" will be provided. The proofs are
omitted.

1. THE ”"DUAL” BUNDLE OF T* M-BUNDLE.

Let M be a real C*°-manifold, n-dimensional and (T*M, 7%, M) its k-accelera-
tions bundle (k € IN*). It can be identified with k-osculator bundle (Osck M, 7*, M).
A point u € T*M has the coordinates (z,y™1),..,y®), 2 € M and yV, ..,y are
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the ”higher order accelerations”. The local coordinates of u are (z?,y(1)? .. y(¥)7),
The indices 4, j, h,.. run over the set {1,..,n} and summation convention will be
used.

We define "the dual” of (T*M, 7% M) as being (T** M, 7*k, M) where T** M is
the following fibred product:

(1.1) TR M = T M x , T*M

Clearly, (T*='M, k=1 M) is the k — 1-acceleration bundle and (T*M, w*, M)
is the cotangent bundle of the base manifold M.

Tk M is a C>-differentiable manifold and dim T**M = dim T*M = (k-+1)n.
A point u € T**M is of the form u = (z,y™V, .., y*=Y p), 7*%(u) = = and v has
the coordinate (z°,yM?, .. y*=17 p,).

For k = 1,T*'M is identified with T*M.

The following diagram is commutative:

T M

k T
*
Uy
*xk
Th-1 i T*M
k-1 T
M

The changes of local coordinates on T** M can be easily written, [8]. We consider
the following differential forms

w = p;da?

(1.2) 0 = dw = dp; A da’.

Theorem 1.1. 1°. The forms w and 6 are globally defined on the manifold T**M.
2°.d0 =0, rankl||0|| = 2n.
3°. 0 is a canonical presymplectic structure on T**M k > 1.

The proof is not difficult.
Let us consider the bracket:

(1.3) (fgy =20 00 0F %

- Vf,g € F(T**M).
‘We have

0x' Op;  Op; Oxt’

Theorem 1.2. 1°. The bracket {f,g} has a geometrical meaning.
2°. {f, g} is a Poisson structure on T**M.
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Indeed, one proves by a staightforward calculus, using the changes of local co-
ordinates of T*F M, that these brackets are conserved. Then it is shown that

{f, g} is R-linear in every argument,

{f,9} = —{y, f} and Jacobi identity holds,

the mapping {f,-} : F(T**M) — F(T**M) is a derivation in the function
algebra F(T**M).

q.e.d.

Remark 1.1. The following brackets

__0f 99 99 0f
{f7 g}a - ay(a)i Op; 8y(0‘)i 6]?1‘7 (

are Poisson structures on T*F M.

a=1..,k-1),

2. HAMILTONIAN SYSTEM OF ORDER k. THE spaces H(F)n,

A mapping H : T**M — IR is called a differentiable Hamiltonian of order k,

if H is a C*°-function on T**M = T*¥M \ {0} and continuous on the null section
of m*k.

Definition 2.1. An Hamilton system of order k is a triple (T**M,0, H), where
0 is a presymplectic structure on T**M and H is a differentiable Hamiltonian of
order k.

In the case k = 1, and @ a symplectic structure, the triple (T**M, 0, H) is a
classical Hamilton system.
Let us consider the section X of the projection

7 (z,yt, .,y 0) e T M — (2,0,..,0,p) € T*F M.

Yo is an imersed submanifold of the manifold T**M. The restrictions 6, =
Ozy; Ho = Hjx, together of ¥y determine an Hamiltonian system of order 1,
(X0, 60, Hp). In this case, 6y is a symplectic structure on Xg.

It is not difficult to prove the following theorem:

Theorem 2.1. 1°. The triple (3o, 00, Ho) is an Hamiltonian system, 0y being a
symplectic structure on the manifold 3.

2°. There exists an unique vector field X, on X with the property
(2.1) 111,00 = —dHy.

3°. The integral curve of the vector field X, are given by the canonical equations
(Hamilton - Jacobi eq.):
dt — 9p;’ dt 9zt
4°. The following equations hold:

(2.3) {f7g} = H(vaxg)’ Vf,g € F(Xo).

(2.2)
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Now, for a differentiable Hamiltonian H (z, yM y(k_l),p), we consider its Hes-
sian with respect to p;. Its matrix has the elements:
1 0*H
) OpiOp;’
We can prove that g is a distinguished tensor field (shortly a d-tensor) on

T** M, symmetric and contravariant.
We say that H is regular if

(2.4) 9"

—_~—

(2.5) rank||g¥|| =n = dim M on T**M.

Definition 2.2. An Hamilton space of order k, (k € IN1#st) s a pair H®" =
(M, H(z,yD, ..,y * =D p)) formed by a C®-manifold M, n-dimensional and a reg-
ular Hamiltonian of order k, H with the property that the d-tensor field g” has a

constant signature on T**M.

In the paper [5], we proved the existence of the Hamilton spaces of order k over
the paracompact manifolds M.
In order to prove the duality between the Lagrange spaces of order k,

L®™ = (M, L(z,y™, .., y* =D,y ™))
and the Hamilton spaces of order k,
H®™ = (M, H(z,y, . y* Y, p)
we consider the Legendre mapping, defined by
Leg: LW — gkm
given by
(26)  Leg: (w,y™, .,y D yW) e TEM — (2,9, .y Y p) € T M

where
(2.7) i

‘We obtain:

Theorem 2.2. The mapping Leg, (2.6), (2.7) is a local diffeomorphism of the
manifolds TFM and T** M.

1 0L

- - 7= _ (1) (k—1) , (k)
23y(k)1 yo Y Y )

wi(x,y

Indeed, the determinant of the Jacobian matrix of the mapping Leg coincides

2
L
0 . This is different

1
with the determinant of matrix ||a;;||, where a;; = 3 BRI
Y Y

of zero.
q.e.d.

Concluding, the properties a)-d) enunciated in the introduction hold.
The geometry of the higher-order Hamilton spaces H®)" can be investigsted as
a natural extension of the geometry of Hamilton spaces H™.



ON THE GEOMETRICAL THEORY OF HIGHER-ORDER HAMILTON SPACES 235

3. L-DUALITY BETWEEN THE SPACES L(¥)" anp H(*)",
Assuming that the Lagrange space of order k,
LR — (M,L(x,y(l), “7y(k)))
is given and a nonlinear connection ]if on the manifold T*~1M is apriori given,
too, we can determine a regular Hamiltonian such that the pair
HO™ = (M, L(z,y", ., y* ™, p))

is an Hamilton space of order k. The application £ : L¥)* — H®" will be called
L-duality.
Let us consider the local inverse Leg™

Leg™' i (z,yM, . y* Y p) e THM — (2,9, ., y* Dy B e T M

! of the Legendre transformation (2.6):

where

(3.1) y B = (@, y W,y p).
It follows:
o€t |
3.2 =a"
(32) o

where a% is the contravariant tensor of the fundamental tensor of space L(*)".

Let us consider an apriori given nonlinear connection K] on T*=1M, having the
dual coefficients M*;,.., M*; depending, evidently, by (z,yD,..,y*=1D)). Then
1) (k—1)
the k-Liouville d-vector field z(*)* on T*M is well defined:
kM = gyt (k= 1) My R 4 MOy,
(1) (k—1)

Consequently, the d-vector field
(3.3) 20 = Wi,y B i,y Ly py)

can be considered.
We define the function
(3.4)
H(z,y™,..y* Y, p) = 2p, 20" — L,y y* D, 6w,y ™,y p)).
We can prove that H is an Hamiltonian defined on an open set of the manifold
Tk M.
So, the construction is a local one.
The following theorem holds:

Theorem 3.1. The pair H®" = (M, H) with H from (3.4) is an Hamilton space
having the fundamental tensor

glj(x7y(1)7 "7y(k_1)’p) = alj(x7 y(1)7 "7y(k_1)7£i(x7 y(1)7 “’y(k:_l)’p))'
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We can use this £-duality to transform the main geometrical object fields of the
space L") in the main geometrical object fields of the space H*)™,

In the case k£ = 1, we obtain the classical £-duality between the Lagrange space
L" = (M, L(z,y)) and Hamilton spaces H" = (M, H(z,p)).
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