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Summary. Several differential systems have their orbits contained in curves
globally defined as common level sets of functions. This is so for instance of
the maximally superintegrable Hamiltonian systems with m degrees of freedom,
where the number of independent first integrals is 2m — 1. The first part of the
article displays one example of interest related to mathematical physics. The
second part presents a perturbation theory to describe the periodic orbits of the
perturbed systems. The main result is the generalization of the algorithm of
the successive derivatives of return mappings for 2-dimensional systems to any
dimension.

1. Introduction

These last years, the dynamics of plane systems was extensively studied and several new
techniques were developed. Some are specific to 2-dimensional systems but mostly often
these methods can be appropriately extended to multidimensional systems. Purpose of
this article is to generalize the algorithm of the successive derivatives of return mappings
([F1, [F2]) to any dimension. The algorithm was derived some years ago to find the first
non-vanishing derivative (relatively to the parameter €) of the return mapping (near the
origin) of a plane vector field Xy + €X; of type:

d
Xo+ eX1 =20/0y —y0/0zr + ¢ Z [a; jz'y?0/0x + b; jx'y? 0/ 0y]. (1)
i,j/i+j=2

The algorithm was then used in the center-focus problem (cf. [FP]), which directly relates
to Hopf bifurcations of higher order and to several other problems on limit cycles of plane
vector fields. In the recent past, several authors emphasized the need for finding systematic
algorithmic methods for studying bifurcation theory of periodic orbits. Such a method is
presented here.
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1°’. The unperturbed dynamical system

Let f = (fi,..+,fa_1) : R* — R"! be a generic submersion (meaning that f is a
submersion outside a critical set f~!(C), where C is a set of isolated points). Let =
dxiAdzoA - - -dx, be a volume form on R"™. Consider the vector field X, such that:

LXOdLEl/\dLE2/\ ce /\d.’En = dfl/\ T /\dfn_l. (2)
The functions f;, (i =1,...,n — 1) are first integrals of the vector field Xy:

dfinex,driNdzaA - - ANdx, = (Xo.fi)dxiNdzaA - - - Adx,, = dfiAdf1Adfa A -+ - Adfp—1 = 0.
(3)
For ¢ varying in a neighborhood of 0, assume that the curves f~!(c) have a compact
connected component .. Let ¥ be a small neighborhood of the zero-section of the normal
bundle to 7y. For ¢ small enough, the curves 7. are closed periodic orbits of Xy and they
cut transversely Y. Choose ¢ as a coordinate on the transverse section ¥ to the flow of
Xy. Lastly, assume that there are 1-forms w; such that:

[,Xowi:dfi;i:L...,n—l. (4)

Depending of the type of regularity of the 1-form w;, this condition may be a conse-
quence of the preceding assumptions.

The appropriated extension of the (*)-property first discussed in [F1, [F2] is presented
in the following

Definition 1. Let f = (f1,...,fn_1) : R® — R™ ! be a generic submersion. Assume
that f=1(c) contains a compact curve .. The application displays the (*)-property if for

all 1-form w such that
/ w=0, (5)
Ye

w = gidf; + -+ + gn—1dfn—1 + dR. (6)

for all c; there exist g;, R such that:

It was proved in [F1, [F2] that the function f; : R? — R f1 : (z1,22) — (2?3 + x3)
displays the (*)-property. Several generalizations were proposed after but the core of the
argument in the computation of the successive derivatives is captured in this notion. The
generalization proposed in this article provides a new presentation of the (*)-property
which seems interesting as well for the 2-dimensional case. Indeed, the definition of the
vector field X given in the preceding introduction yields the

Proposition 2. Let w be a 1-form such that w(Xo) = 0, then there are functions
J1,---,9n—_1 SO that:
w :gldfl +---+gn_1dfn_1. (7)
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Note that the condition w(Xy) = 0, equivalent to wAdfiA---Adfp,—1 = 0, yields w =
g1dfi + -+ - + gn_1df,_1 where the coefficients g; are obtained as ratio of minors of the
Jacobian matrix of the f;.

This displays an alternative to the (*)-property now presented as follows:

Proposition 3. A generic submersion f : R™ — R"~! displays the (*)-property if for any
1-form w such that (5), i.e.
/ w =0,

c

for all c; then there exists a function R such that:

CU(X()) = X() - R. (8)

Such a function R can be (in principle) constructed with the following pattern. Choose R
arbitrarily on the transverse section ¥, then extends R to the whole tubular neighborhood
of 7y saturated by the orbits v, by integration of the 1-form w along the orbits of Xj.

2. Examples of unperturbed systems of interest in mathematical physics

Let H : V2™ — R be a Hamiltonian system defined on a symplectic manifold V2™ of
dimension 2m equipped with a symplectic form w. Recall that H is said to be integrable in
Arnol’d-Liouville sense if H displays m generically independent first integrals (one of these
maybe the Hamiltonian itself) which are in involution for the Poisson bracket associated
with the symplectic form w. A vector field X on a manifold V of dimension n defines a
flow and a dynamical system. The vector field (not necessarily Hamiltonian) is classically
said to be maximally superintegrable if it has n — 1 generically independent global first
integrals fi,..., fn_1. The orbits of X are then contained in the connected components
of the common level sets of the functions f;,2 =1,...,n — 1. Some Hamiltonian systems
are known to be maximally superintegrable and so they display 2m — 1 first integrals. A
discussion of the rational Calogero-Moser system with an external quadratic potential is
provided now as a featuring example. The system is described by the Hamiltonian:

H= (/)Y 0 +"Y (mi—a)) 2+ (0/2) Yo ©

Introduce the matrix function:
L(w, )/ Lij = yidi; + gi(wi — ;)7 (1 = 0i3), (10)
and observe that the time evolution of this matrix function L(z,y) along the flow is:

L=[L,M] - \2X. (11)
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This equation is supplemented with the equation:
X =[X,M]+L, (12)
displayed by the diagonal matrix X:
X(z,y)/Xij = zi6ij. (13)
The classical approach consists in introducing the matrices:

7 = L+iAX, (14a)
W =L —i\X. (14b)

These matrices undergo the time evolution:

Z =i\Z + [Z, M], (15a)
W = iAW + [W, M]. (15b)

It was then observed ([F1, [F2]) that the matrix P = ZW defines a Lax matrix for the
system:

P =[P, M]. (16)
Here, we note that the functions:
Fy, = tr(ZP"), (17a)
Gy = tr(WPF), (17b)
yield:
Fj, = i\Fy, (18a)
G = i\Gy. (18b)

Appropriated combinations of these functions provide the first integrals of the flow of the
Hamiltonian system Xy. All the orbits of X, are periodic and thus this is an example of
system to which the preceding approach applies.

3. The successive derivatives of the holonomy of the perturbed system

Now perturb Xy into X, = Xy + €X;. Let M be a point of ¥ close to 0 and let . be
the trajectory of X, passing by the point M. The next first intersection point of v, with
Y. defines the so-called Poincaré return mapping (or holonomy) of X, relatively to the
transverse section X: ¢ — L(c,€). The mapping L is analytic and it displays a Taylor
development (in €):

L(c,e) = c+€eLi(c) +---+ " Ly(c) + O(e)* . (19)
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The expression of the first coefficient L;(c) is classical and belongs to the lore of bifurcation
theory. With the vector field X, and the 1-forms w; (cf. [F1, [F2]), introduce the 1-forms:

LX Wi = LX,Wwi + €Lx,w; = df; + €Lx, w;. (20)
Recall that the parameter ¢ chosen as coordinates on the transverse section ¥ is the

restriction of the functions f = (f1,..., fn_1) to the section.
Then the i**-component of L;(c) is equal to:

Lii(c) = L i (21)

Assume now that the first derivative L;(c) vanishes identically and that the submersion f
displays the (*)-property then there exist g;; and R; such that:

v wi = Y gijdf; + dR;. (22)
J
Following the lines of the algorithm of the successive derivatives, the expression (22) yields:
Laile) == [ 3 oo (23)
RCI

This is indeed the second step of a general recursive scheme which displays as follows:
Assume that all the kP-first derivatives of the holonomy of the perturbed vector field
vanish identically. This yields:

Ly i(c) = / ngj_lLXij =0. (24)
T 4

The (*)-property yields new functions gf;, R* such that:

> gk hxwi = ghdf; + dR”. (25)
J J

This yields the following expression of the (k + 1)*-derivative of the holonomy of the
perturbation:

L@ = [ Sabinie; (26)
Y 4
From the general perturbation theory of Bautin’s type (cf. [FY], [LTZ]), it now follows:
Theorem 4. Let Xy + €X1 be an analytic perturbation of the vector field Xy. Assume

that the vector field Xy preserves n — 1 functions f = (f1,..., fn—1) and that f defines
an analytic submersion which displays the (*)-property. Assume that the perturbation X,
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depends of finitely many parameters (typical example is given by a polynomial perturbation
of fixed degree). Then, there exists a uniform bound to the number of isolated periodic
orbits of Xo + €X1 which intersects the transverse section ¥ in the neighborhood of 0.
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