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A Note on Domain Decomposition
of Singularly Perturbed Elliptic
Problems

A. Auge, A. Kapurkin, G. Lube and F. C. Otto

1 Introduction

Considerable progress can be observed in the design and analysis of parallelizable
domain decomposition methods for singularly perturbed elliptic problems (see
references). The purpose of this paper is to report on some results and problems
with two domain decomposition methods for the advection—diffusion-reaction model.

Reasonable results are now available for overlapping Schwarz methods. In particular,
the overlap can be minized in the singularly perturbed case using certain exponential
decay of Dirichlet data in overlap regions. In Sec. 3 we consider a modified Schwarz
method which is easy to parallelize in case of a simple geometry. We derive error
estimates in the continuous case which can be extended to the discrete case.

Non—overlapping methods are better suited for parallel implementation. The
problem consists in deriving appropriate interface conditions. We consider in Sec. 4
a method with an adaptive interface condition and discuss recent variants. Strong
convergence is proven for the continuous method. We obtained a robust behaviour of
both methods for two— and three—dimensional test problems using stabilized Galerkin
finite element methods as the basic discretization.

2 Preliminaries
Consider the following Dirichlet problem in a bounded domain Q@ C R?, d = 2,3 with
Lipschitzian boundary 9:

Lou:=—-eAu+(a-VIu+cu=f in u=0 on 99 (1)

Of particular interest are singularly perturbed problems with ||a||. > € (advection
dominated case) or ||c||eo > max{||a||oc; €} (reaction dominated case). The latter case
appears e.g. in an implicit time discretization method. We assume sufficiently smooth
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data of the problem satisfying

(H.1) c(x) > ¢ >0, z€Q V-a=0.

Remark 2.1. The condition ¢(z) > c¢o > 0 can be always guaranteed if all
characteristic curves, the solutions of dz(7)/dr = a(z(7)),z(0) € Q, leave Q in finite

time. The incompressibility condition on a is not essential. |
The basic variational problem is: Find u € W = H}(Q), such that for all v € W

B (u,v) := (eVu, Vv)q + (@ - Vu,v)q + (cu,v)q = LY (v) := (f,v)a (2)

Let 7 = {K} be an admissible triangulation and W" C W a finite element space
of piecewise polynomials of degree k > 1. The (unusual) stabilized Galerkin method
[FFLR96] for problem (1) is to find U € W" such that

B3%¢(U,v) = L%%(w) YveWh
B3¢ (u,v) := B%(u,v) =Y g ox(Leu, L)k, (3)
L5¢(v) = L)~ X gox(f,Liv)k,

where L.+ denotes the adjoint operator to L. and ok are suitably chosen parameters.
For a subdomain D C Q set Hj (D) := W N H'(D). B3%(-,-) and L37(-,-) are the
obvious restrictions of B¢(-,-) and L5%(-,-) to D if D consists of finite elements in
T. Then define

Vh(D):= HY(D)nW";, VD) := H}D)nV"D).

By 6D1, 0D~ and 0D° we denote the outflow, inflow and characteristic parts of 6D
where the scalar product a-vp with the outer normal v p is positive, negative or zero,
respectively.

Furthermore we introduce a nonoverlapping admissible partition Q = U;Q; with
Lipschitz 9Q; which aligns with the triangulation 7. Finally, define I'; := 99Q; \ 99
and Fz’k = FM = an N 6Qk

3 An Overlapping Schwarz Method

Overlapping Schwarz methods for elliptic problems guarantee good convergence
properties if the overlap is sufficiently large. On the other hand, they are not easy to
implement. We propose a modified Schwarz method for singularly perturbed problems
which is more appropriate for parallelization and allows minimal overlap [BS91]. A
description in the 2D—case (with obvious modifications in 3D) is as follows: Starting
from the non—overlapping partition Q = U, Q;, we introduce small interface domains
O;r covering the interface I';; between adjacent subdomains with thickness A = kh
and crosspoint regions C of diameter kh each covering a crosspoint. Starting from an
initial guess U° € V{#(Q), the iteration method for problem (3) reads for n € N:

1. Solve in parallel on each subdomain §2;:

BEZ (UM 0) = LT (v), Yo € Vo' (Qu);  UPH = UP € Vi ()
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2. Solve in parallel (redundantly) on each interface domain O = Oj:
BgS (Vo™ v) = Lgf (v), Yo € Vg (0); V5T U™ € 154(0).

Then set Ut = Vg"'l on the interface I';; generating O.
3. Solve in parallel (redundantly) on each crosspoint region C

B (Wt v) = Lg% (), Yw e V(C);  WETH — U™ e V(C).

Then set U™ := WC"Jrl on the corresponding interfaces in the crosspoint
region C.
4. Set n — n + 1 and goto step 1.

The Schwarz method is similarly defined for the continuous problem (1). We consider
the convergence of the (continuous) Schwarz method, for simplicity, in the following
model problems in Q = (0,1)? with a very simple flow field @ and substructuring
according to

A: a1(z) > A1 >»e>0, aq2z)=0, z e
(H.1)" B: ai(z)>A4;>€>0, i=1,2 €N
C: ai(z)=0, i=1,2 cz)>cp>e>0 z€Q,

= (0,1)? is split into non—overlapping subdomains §;; :=
(H'2) ((Z - ]‘)H177/H1) X ((J - 1)H27jH2)7 i = 17"'3M17 .7 =
1,...,M2, Hk = ML;C

The crucial point in (H.1)*, (H.2) is a uniform behaviour of sgn(a - ) on the interface
between adjacent subdomains. In case B there exist only inflow and outflow parts
GQ;]- and OQ;';.. In case A we additionally have characteristic parts OQ?J-. In case C we
obtain the trivial case 0€);; = 69%. Assume that the interface regions are generated by

narrow strips in Q;; of thickness A7, A;; or AY; at the inflow outflow or characteristic
part of 81;;. The intersection of the interface strips generates crosspoint regions C.

Theorem 3.1. Assume (H.1)*, (H.2) and set TOL > 0, K = |lu — u%|p=(q).
Furthermore assume that the minimal overlap width of the interface strips satisfies
TOL TOL
+ A- -1 0 -1
AT AL > a e lnﬁ , AL > Ve [In K| (4)

Then we obtain after M + k steps of the modified Schwarz method that
lu — uMH | L) < C(TOL,  C~ M, (5)

with M = My, M = Zle M; and M = 0 in case A, B and C, respectively, and
appropriate e—independent constants o, 3 > 0. a

Outline of the proof: The key of the proof is some exponential decay of presumably
wrong Dirichlet data (appearing during the iteration) in overlapping regions leading
to artificial layers. The proof is based on the barrier function technique using the
following variant of the maximum principle on an arbitrary subdomain G C Q with
Lipschitzian and piecewise C2—boundary: Suppose that for T, S € C2(G)NC(G) holds

|(LT)(2)] < (L:S)(2), = € G, [T(z)| < S(x), = € 0G.
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Then we obtain |T'(z)| < S(z) in G.

Consider now in particular case A: The manifolds 0G~, G+ and IG° for
G = (a,b) x (¢,d) C Q@ = (0,1)? are located at {a} x (c,d), {b} x (c,d) and
[a,b] x {c}U[a, b] x {d}. Let T1,T> € C?(G)NC(G) be solutions of (1). Then T = T; —T>
satisfies

o
IO < ITlmo ) + o |~ dist(z.067)| Il a)

+(1+z1 —a)exp [—'Bdist(m, BGO)] 1T | oo (o0 -
NG
with 0 < a # a(e), 0 < 8 # ((¢). The exponential terms of the barrier function mimic
artificial layers of width O(elog1/e) or 0(v/elog1/e) at OGT and OGP, respectively.
They are small in subdomains of G with appropriate distance to G+ and 8G°. A
corresponding result holds in case B and C.

The idea in case A and B is a downwind correction of the solution from subdomain
to subdomain. The chosen thickness of the interface and crosspoint regions guarantees
the exponential decay of the influence of wrong Dirichlet data in upwind and crosswind
directions. The first iteration cycle 1-4 yields in particular in case A an error of
0(TOL) in subdomains €4, j = 1,..., M>. The next iteration gives an error of 0(TOL)?
there and of 0(TOL) in subdomains Qs;,j = 1, ..., M>. The desired result follows by
induction. The idea is the same in case B. In case C' we have an isotropic propagation of
information. After the first iteration cycle the error is of order TOL in all subdomains
2;;. The result follows then again by induction. O

Remark 3.1. It is possible to extend the result of Theorem 3.1 to 3D and to
more general domains and macro partitions, in particular of singularly perturbed
diffusion—reaction problems (cf. case C). The case of nonsymmetric singularly
perturbed problems is more involved due to the possibly complicated behaviour of
the characteristics at the interface X := Ul';.

Furthermore, a result corresponding to Theorem 3.1 can be derived for the energy
norm |||- ||| := /BSC(, ). The proof of similar results for the discrete Schwarz method
depends strictly on the discretization method. Some ideas and technical details for
the streamline upwind method which is closely related to (3) can be found in [RZ95],
[Zho95)]. In particular, a discrete maximum principle is not available. O

4 An Adaptive Non—overlapping Method

Consider again a non-overlapping partition Q = U, Q;. The results of Sec. 3 indicate
that a transition to a non-overlapping method should be possible with appropriate
interface conditions at ¥ := U; ;. A first insight is given with the fictitious
overlapping method [LeT94]. Consider in the (continuous) overlapping method of Sec.
3 with overlap width A at Ty, a first order Taylor expansion of the solution at T';.
This leads to the non—overlapping Schwarz Method proposed by P. L. Lions [Lio89).
Set pir, = z-. Starting from an initial guess u?, the iterative procedure reads: Solve
(in parallel) on Q;

L =f in Q; u' =0 on 89;N 8N, (6)

k3
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with interface condition

6“?4_1 n+1 8“2 n
€ B, + piru; eayk + piruy; on Iy (7

A first convergence result was given by P.L. Lions [Lio89] for the fictitious overlapping
method. Assume (H.1) and that no crosspoints occur (strip partitions of Q):

u™ = u strongly in L2 (G), G CC Q;; u"™ — u weakly in L2 (99;) (8)

Remark 4.1. A modified approach leading to (6),(7) is the three—field formulation
of [BBM92] which consists of finding u = {u;} with u; € Hjo(Q:) and Lagrange
multipliers for the Neumann and Dirichlet data on the interface. After using an
augmented Lagrangian technique [LeT94] this formulation can be decoupled iteratively
ending up with the method (6),(7). O

The result of [Lio89] gives no indication for the design of p; in the interface condition
(7). Generalizing an idea of [Nat96] we propose the following modification of (7)

_ 1
Pik = P; = _5(0’ Vi _Zi|rik) = p;ci_ = %(a"uk +Zk|F¢k) (9)

with Z; a strictly positive function on I';. We analyze the convergence of the adaptive
method (6),(7), (9) applied to (1).

Theorem 4.1 Assume (H.1) (or ¢ — 1V -a > 0 and 8Q; N 9Q # 0 Vi) and
aa—{ji ri, € L2(Tik) for the solution of (1). Then the sequence u™ = {ul'} generated
by algorithm (6),(7),(9) converges for n — oo with u? — u strongly in H(€;).

Outline of the proof: First of all we observe that algorithm (6), (7), (9) is well
0 n

defined provided that giui,- € L?(T;). This implies gZ"i € L2(T;) for all n € No.

The key step is a modification of Lemma 4.4 in [Nat96]: A function u € H&}Q(Qi) with

Leu =0 in L2(Q;) and aa—ﬂi € L*(T;) satisfies

) 1 o N7 _/ 1 o \.T
|||u|||z~+/ri2zi eayi p; Ju| ds= . 27 eaui—i-pi uw| ds w0)

with the outer unit normal v; on I'; and

1
ull? = el Vula, + IAuld), #:=c— 5V a, Z >z >0ae ol

The error e™t! := u; — u*! satisfies Lee™™ = 0 in Q;, hence

1 B 2 1 B 2
2 — — + W‘H = R - ﬂ+1
A C R E I 3 (€ s Ea

Using (7),(9), we obtain

et I, + > lef ™R, = Y Iler]
k(i) k(i)

e+

2
ik
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1 d 2
n2 . _ ot n
Ile?]lg,, = /F“c 27, [<€6w P; ) ez] ds.

Summing over the subdomains yields

where

2
Tik

N N
Z e B, + ™R = [e"]E ™z =D" D llef]

=1 i=1 k(i)

where ¥ := UY | I';. Summation over n implies strong H®—convergence of {e"} to zero
due to the equivalence of norms. O
Remark 4.2. Possible choices of Z;: (i) The choice Z; = y/(a - v;)? + 4ec was derived
in [Nat96] from an zeroth order approximate factorization of the elliptic operator Le.
But this choice failed in case ¢ = 0 if the flow field is parallel to some I';; . In the original
proof ([Nat96], Th. 4.1) Robin-type boundary conditions on 9 were assumed.

(ii) We suggest Z; = /(a - v;)? + e with some arbitrary positive parameter A. Then
even if ¢ = 0 no restriction to the flow field is necessary. Thus the Theorem is also
applicable to the Poisson problem and improves the result of [Lio89].

(iii) With Z; =| a - v; | one obtains the so-called adaptive Robin-Neumann algorithm
[CQI5], [Tro96], [GGQ]. Then Theorem 4.1 is applicable only if | @ - »; |> 0. In
case of two subdomains [GGQ] prove weak H!—convergence under the more general
assumption that | @ - v; | can vanish in a finite number of points. O
The result of Theorem 4.1 means that the corresponding Poincare-Steklov operator
is strictly non—expansive and gives no information on the convergence rate.

On the other hand, with our choice for Z; very reasonable results are obtained for a
discrete version of the adaptive non—overlapping method: Instead of (6),(7),(9) one
has to solve for n € Ny (in parallel for i = 1,...,I)

BE (WUt o)+ Y (pFUMT = AR v) = LgS(), WweVd, (1)
k(#i)
AR = (pF +p7 ) Ut — AR, = ZaUPT — AL (12)

Here we present some numerical results for 2D-problems satisfying (H.1)*, (H.2).
Examples: We choose € = 1074, a M; x M,-partition of  and a sequence of different
values of h. The (continuous) solution is always w = sinwz; (exp (3 — z2) — 1), hence
f = Lew. More precisely, we consider the advection dominated case with (B) and
without (A) characteristic interfaces and the reaction dominated case (C) (cf. also
Th. 3.1 for the weakly overlapping method).

L, rel-error 1/h=24 L, rel-error — " 1/h=24
10° ———— 1/h=48 10° ———— 1/h=48
10" ——v—— 1/h=96 10% ——v—— 1/h=96

———— 1/h=192 ———— 1/h=192
107 1/h=384 10° ——<+—— 1/h=384
10°F 10°
10°EF 10*
10°® 10°
-6 L L L | -6 L L L ]
10 5 10 15 20 10 5 10 15 20
case A case B
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3 L, rel-error 1/h=24
il e Here we show the convergence

= — Y 1/h=96
10 — e ih=192 history of the relative discrete L*-
107 T lh=384 norm vs. the iteration number
10°F for the test cases A, B and C
104k for different values of h. For the
ool @ parameter A in our formula for Z;
we have chosen 100, 100 and 10 for

Clgse Cé 76 75 30 case A,B and C respectively.

Case A: a = %(2,1)%0:0 and M; = My =3
Case B:a=(0,1)T,c=0and M; =4, M> =1
Case C: a = (0,007, c=1and M1 = M, =3

The convergence history is similarly as predicted by Theorem 3.1 for the weakly
overlapping Schwarz method: In case A, we observe an initial phase of downwind
propagation of information, then we obtain reasonable linear convergence until
the discretization error level is reached. In cases B and C, no initial advective
propagation of information appears. Reasonable linear convergence is again obtained.
The algorithm is only slightly sensitive w. r. t. A.

A heuristic explanation of the favourable convergence properties of the discrete
algorithm can be given by means of singular perturbation arguments. In cases A and
C, wrong interface data cause artificial layers of exponential (and essentially 1D-) type
for the flux eVu-v. The analysis is more involved in case B. Wrong interface data cause
artificial layers which are of parabolic type for the flux. A higher order factorization
of the operator L, would better represent the advective transport along the interface
[Nat96]. Fortunately, the diffusive interface transport involved in the transmission
condition (7), (9) is obviously sufficient to guarantee convergence. Nevertheless, further
theoretical foundation of the convergence properties of the discrete algorithm (6), (7)
is neccesary.

5 Summary and Open Problems

Two parallelizable methods are considered for singularly perturbed elliptic problems.
We obtain linear convergence for the overlapping method in the continuous case. The
overlap width can be minimized for advection and/ or reaction dominated problems.
The non—overlapping method with properly problem adapted interface condition of
Robin type gives strong H! —convergence in the continuous case. The method applied
to the discrete problem provides reasonable performance in the range from diffusion
to advection (or reaction) dominated problems. Nevertheless, there are still open
problems concerning the convergence analysis even for scalar elliptic problems. The
application to incompressible flow problems is considered in a forthcoming paper.
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