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A Lagrangian Approach to a DDM
for an Optimal Control Problem

Aicha Bounaim

1 Introduction

We give a Lagrangian interpretation to a domain decomposition method for an optimal
control problem governed by an elliptic partial differential equation. We minimize the
cost function and the links between subdomains, the constraints at the interfaces
being treated by augmented Lagrangian techniques. An algorithm is proposed and
illustrated with numerical computations.

We consider the following distributed optimal control problem governed by an
elliptic partial differential equation:

J(u) = inf J Uad, 1
(W= inf J(v), u € Uu ®

where
1

70) = 5[ 00 ~vapda+v [ vds),

with (2 is a bounded smooth open subset of IR?, y, is the desired state given in L2(Q),
U, is a closed convex subset of L2(f2) (space of admissible controls), v is a strictly
positive real number, y(v) is the solution of the system:

—Ay(v) = f4+wv in Q,
{ y(vgj), =0 on I' = 99, 2

and f € L*(Q).

Proposition 1 The problem (1) has a unique solution u and the mapping u — y(u)
is affine continuous from U,q into H'(Q).

Proof. See [Lio68].

Remark 1 In the unconstrained case, the control is given by u = —2 where

p = p(u) is the adjoint state, solution of:
—Ap(u) = y(u) —yain £, 3)
p(u) = 0on r = oN.
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In the general case, the problem (1) is characterized by the following system called
“optimality system”:

e Direct state (1).
o Adjoint state (3).
o Optimality condition: [o(p(u) +vu)(v —uw)de >0 Vv € Usa.

It is also proved in [Lio68] that there exists a unique solution (u,y,p) of the above
optimality system and u is the minimizer of (1).

2 Domain Decomposition for the Optimal Control Problem

We will be interested in a non-overlapping domain decomposition method. Thus, {2 is
decomposed into m subdomains and we introduce the following notations:

Q:U;nleiUE, I'; = 00N o09;,
Uz'j = 691 ﬂ@Q], E = Ulf’l?ﬁjfm O-ija
Vi={yi€ H(Q); yi =0inT; },

where ; are disjoint open sets in R?.

The idea of the domain decomposition method proposed is to define the augmented
Lagrangian associated with the decomposed optimal control problem. Therefore, the
continuity of function value at the interfaces is treated by Lagrangian techniques,
whereas the flux continuity is formulated explicitly in the direct pde on each subdomain
Qi:

—Ay; = fi+twv; in €,

yai =0 on T, (4)
8_.7/7; = Wij on O'z'j,j 7é 1.
where = n;; = —nj; is the unit outward normal to €2; on oy;, for ¢ < j and w;;

is an extra variable introduced to ensure the continuity of the normal derivative and
. 1 . .

satisfies w;; = wj; € H™ % (0y;) for j # 4 and oy # 0.
Then, the cost functional has the new expression:

J (vi, yi) sz:%[/(;

i=1 i

(yi — yfl)zdx + 1//

v? dx] .
Q;

Finally, we obtain a new optimization problem *:

Minimize J(v;,y;)

v; € U;:d (5)
y; and v; linked by (4)

Yyi=y; on oy, jF1i.

1 We use the notation (v;,y;) = ((vs)1<i<ms ¥i)1<i<m)-
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Lagrangian Formulation

Now, we introduce the augmented Lagrangian associated with the above minimization
problem. In order to enforce and to decouple the constraint of the interface continuity,
. 1 . .
we add an extra-variable ¢;; such that: g;; = ;i € H2(0y;), for j #1, 0i; # 0 and
Yi = Yj = Qij ON Ojj (6)

(see [GLIO] for such consideration).
Then, after making explicit the constraint between v; and y;, the augmented
Lagrangian L, is given by 2

Ly (vi, Y3, Pi, wig, Nij, @i5) = J(vis yi) — Z (/ Vy;Vpidz — /Q (fi + Ui)Pidm)

+ Z / wij(pi — pj)doi; +Z Z Aig (vi = @is)dor

1<z<]<m Tij i=1j, g;;#0 " 7ii
+ 35 E E / ng doija
i=1j, 05540 7%

where \;; are the Lagrange multipliers corresponding to the constraint (6) and
r (augmented Lagrangian constant) is a positive real number.

Remark 2 In the L, expression, the w;; can be interpreted as Lagrange multipliers
corresponding to the continuity of the adjoint state on the interface.

Proposition 2 If (u;, yi, Ds, wij, Aij, @) 18 a saddle point of L, when it exists, then,
ui = u/Q, yi =y/Q, pi=p/Q. (7)

where (u,y,p) is the saddle point of the Lagrangian associated with the problem (1)
and u is the minimizer of (1).

Proof. In the proof, we explicit characterization of a saddle point of L,; we denote:
(s.p) = (vi, ¥i, Pi, Wij, Aij, Qj)- As Ly is differentiable in each variable, fori : 1 < i < m,
Jj such that j # i and o0;; # 0, we have:

(G 89 = 0 VeV, ®

(Go(o)d) = 0 Vie Vi )
(gﬁ:(s.p),vi—ui)z 0 Vv €U, (10)

QL (sp)dh) = 0 Vare H E(oy), i # ) (11)

O

(aLT (s.p),dw) = 0 Vdwe H %(0y), i <j (12)

Bwij

(Ol (sp).dg) = 0 VdgeH(oy), i< (13)

0q;;

2 We use short expression of the L, variables: (v;,y;,pi,wij,\ij,qij) instead of
((vi)1<i<ms ¥i)1<i<m, (Pi)1<i<ms (Wij)1<i<j<ms (Nij)1<izj<ms (€ij) 1<izj<m)-
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Let (u,y,p) be the saddle point of the Lagrangian associated with the problem (1).
From (8) and (11), it follows that: y; = y; and gfllj = gTyiij on ;5. So, y; is exactly
the restriction of y on ;.

As for p;, from (9), (12) and (13), we obtain both the continuity and the flux
continuity of the adjoint state. Thus, p; = p/Q;.

Finally, using the optimality of w; (10) and the equation for p;, we deduce
(pi + vui,vi — ui)r2,) > 0, Yu; € U};d and get the optimality condition in the
global domain.

Solution Algorithm

Due to the above proposition, we have just to search a saddle point of L,. So, we
propose a modification of the algorithm ALG3 in [GL89b]:
Algorithm

Step 1. Initialization: uj given in L?*(), (wj)ic; and (A};)iz; given in
H_%(Uij) and (gf;)i<; given in H%(Uij).

Step 2. Iteration: For n = 1,2,..., compute y' and p} such that y € V;,

p; € V; and
oyr . X
T = Wl on 0y, jFi
“Aph = g in Q
e = Ay +r(yp — gt on oy, A

e Compute the gradient g7 of L,(v;,...), g7 = pI' + vu}

. u?“ = u? +t"d}, t" > 0 minimization along the descent direction d'
computed from g by BFGS formula.

e Update the Lagrange multipliers and ¢;: p" >0, p; > 0

1
wi = Wi+ oLl —pj)
+_ —_
AP o= AL+ — g
n _ "+% "+% n n
rg; = ()‘ijl + X5 %)yl +y})
+_
At = AT 4"y — q)

Remark 3 In the above algorithm, eliminating Aj; and gj; for the case where p" =
pl =r, the p;-boundary conditions on o;; are transformed into

ap; 1 Pj

——=t eyt = L ey ooy

O ’ onji ! Y
These are precisely the conditions of algorithm Alg2 in [Ben94], where transmission
conditions of [Lio90] are applied to the optimal control problem. The y;-boundary
conditions on o;; are written as

oy Oy}’
— +rpl = =L +rp? on oy
onij P onji Ps “
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which are close (but not identical) to those given in Alg2.

3 Numerical Results

As a test example, we consider a boundary optimal control problem given in [BGL73]
defined by its direct state equation:

—Ay(U) = f in Q:
y(v) =0 on T'3UTy, (14)
8%—("") = v on T';UT,.

and we want to minimize over U,q = L?(I'; UT'2), the function

J(v) = %(/Q(y(v) — ya)?d + V/MFZ v2do).

In the computations, we take Q =]0,4[x]0,1[, f(z,y) = 2(—z% — y? + 4z + y) and
ya(z,y) = (y — y*)(a? — 4z) — 8v, for (z,y) € Q.

We split the domain 2 into m subdomains (see Fig. 1). A finite difference scheme is
used to discretize both the direct and the adjoint state systems. We run the proposed
algorithm with p” = p = r. The descent direction is computed from the gradient
vector of the Lagrangian L, with respect to the control, the line search process and
BFGS formula are carried out similarly to M 1Q N3 algorithm [GL89a]. The iterations
of the algorithm are stopped when the norm of the gradient is small enough. For
v = 1.25, r = 0.85 and for different values of h (discretization step) and m (subdomain
number), the relative L2-error on the direct state and the interface error average are
worked out. In Table 1, we define

Sl = veill2ag,) \ 2 1 &
erry = ( i ( )) ) erTyij = EZ S = vl

m 2
Zi=1 ”ye’”LQ(Qi) i=1 j>i, 6,70

where y* is the computed solution on ; at the nth iteration when the stopping
criterion is attained and ye; = ye/Q; with ye(z,y) = (v* — y)(z® — 4z), for(z,y) € Q,
is the analytic solution to the global problem. For m = 1, the minimization of J is
done by the M1QN3 algorithm. Table 1 shows that the domain splitting into two
subdomains does not affect much the convergence results of our algorithm and the
y; connect very well on the interface because of the symmetry of this problem. The
convergence is attained in few iterations and depends on the ‘quasi-optimal’ choice of
r.

4 Conclusion

Using domain decomposition, the original optimal control problem is transformed into
a saddle point problem. We have used augmented Lagrangian techniques studied by
Fortin and Glowinski[FFG82], Glowinski and Le Tallec|GL89b]. We have combined a
descent method with a multipliers one. The proposed algorithm gives different ways of
dealing with constraints on interfaces. Moreover, it is well suited to parallel processors.
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Figure 1 The decomposed domain of the test example (m
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Direct State Results. h: step discretization, m: subdomain number.

(A | m ]

ETTy

erryij

16

1.2226217904E-06

3.5817536178E-05

1.5060315952E-06

1.4511406491E-02

1.5495620667E-02

8.7904304272E-02

8.6599163711E-02

64

1.0268570911E-06

1.3455085083E-05

1.3616281608E-06

1.1562970614E-02

1.5400098264E-02

7.9211773115E-02

8.0130822639E-02
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