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1 Introduction

The modal synthesis of a structure that is decomposed into substructures is a Rayleigh-
Ritz approximation of the global eigenvalue problem over a space spanned by a
few eigenmodes of each substructure in addition to some functions, called coupling
modes describing the interfacial displacements. Different methods based on intrinsic
choices of such coupling modes are presented. In particular, extension operators from
the boundary of each subdomain to the whole interface are introduced in view of
defining, both in a continuous and in a discrete setting, “generalized” Neumann-
Neumann preconditioners, the eigenfunctions of which are used as coupling modes
for approximating the global eigenvalue problem.

Let us consider the model problem of a vibrating three-dimensional body €. The
family of eigenpairs {Ag, uk}k“:i , arranged in nondecreasing order of the eigenvalues
Ak, solve the eigenvalue problem

—div(Ae(u)) = Apu in Q (1.1)
u = 0 on 01,

where e(u) denotes the linearized strain tensor associated with the displacement field
u, A the tensor of elastic moduli, p the mass density, and 99 the boundary of Q2. The
structure is assumed to be clamped for the sake of simplicity, but any set of boundary
conditions yielding a symmetric variational formulation like traction free, mixed, or
third kind boundary conditions may lead to the same conclusions. Other models like
membrane or plate models can also be considered.
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The domain Q is partitioned into p nonoverlapping subdomains €4,..., {2, which
are separated by an interface I'. For modal synthesis with overlap see [CDVMO96,

CDVM95]. The fixed interface eigenpairs {)\;,u;};—j of subdomain ; solve the
problem

—div(Ae(u)) = Mpu in (1.2)
u = 0 on 0%,

The eigenfunctions uj- are extended by zero outside 2; and are thus defined on the
whole domain 2. Therefore, these so-called fized interface modes can be used as trial
functions in a Rayleigh-Ritz approximation of problem (1.1.1). Of course, they must
be supplemented by a family of trial functions wr, that do not identically vanish
on the interface I' between the subdomains. We call them coupling modes. The basic
modal synthesis method thus amounts to a Galerkin approximation of problem (1.1.1)
over the space

VN = Span { U (u;)jvzl U (wm)fzvzrl} (1.3)

for some numbers N;, 1 < ¢ < p, and Nr. Therefore, in its original version,
modal synthesis is not an iterative algorithm, in contrast to those proposed in
[Mal92, Mal96, SC96, CL96, Lui%, dV96], but rather a method of approximation.
However, the approximate eigenpairs may be enhanced by postprocessing as in [Cha83]
or more specifically in [Bal96], and generally speaking they may serve as good starting
points for iterative domain decomposition correction algorithms.

Modal synthesis methods have been introduced in aerospace engineering in the
sixties in order to save memory storage when analyzing the dynamics of large
structures. These methods are now used in particular by nuclear, off-shore, automobile,
and aerospace industries. The advantages of such methods are potentially numerous.
Of course, they are amenable to parallel implementation. This point will be made
clearer in the third and fourth sections. Furthermore, they can include experimental
measurements on the substructures. Moreover, parametric studies involving local
perturbations in view of sensitivity analysis or reanalysis can be performed cheaply
[Tra96]. Finally, the substructuring concept extends to fluid-structure interaction
[MOT79], soil-structure interaction [Clo93], and buckling [Val82]. There exists a
wide variety of methods, depending on the boundary conditions imposed to each
substructure, and on the coupling strategy. In particular, many hybrid methods have
been proposed and discussed; see, e.g., [MN71, Des89, DO96, J85, Tra92b, Tra92a).
They correspond to other kinds of boundary conditions for the definition of the local
modes. To a large extent, their numerical analysis is open. They fall in the general
class of non-conforming methods since, at the continuous level at least, the continuity
across the interface cannot be imposed if for example the local modes are associated
with boundary conditions of Neumann type along the interface. General expositions
on modal synthesis can be found in [Imb79, Mei80, Cra85, J85, Mas88, Gib8s, Tra92b].

This paper aims first at reviewing a priori error estimates for such methods and
second at exploring new coupling strategies. In the next section, we revisit the
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pioneering work of [Hur65]. The third section is devoted to more recent methods
involving coupling modes defined as the eigenfunctions of the Poincaré-Steklov operator
[Bou92, Bd92b, Bd92a]. Since the computation of these coupling modes may be
expensive when the interface is large and complex, cheaper coupling modes are
introduced in section four. To this end, new operators of Neumann-Neumann type
are defined and put in vibration. They are based on special extension operators from
the boundary of each subdomain to the whole interface. Numerical tests confirm the
accuracy of the resulting modal synthesis method. We close with a few comments.

2 Hurty’s method

Let V' denote the space of global test functions and Vr the space of their restrictions
to the interface I', namely V = H}(Q) and V¢ = H&éz(I‘) if Dirichlet boundary
conditions are imposed on 9 as in (1.1.1). In a continuous setting, Hurty’s
method (see [Hur65] and [CB68]) would amount to choose the coupling modes as
the “harmonic” extensions to each subdomain of all elements of a given basis of Vr.

Now, if N; fized interface modes are retained to describe the dynamics of subdomain
Q;, and if )\fCB’N denotes the k" eigenvalue resulting from Hurty’s procedure, the
following error bound is derived in [Bou92]:

p
0< APV — X <D Ci+ Ny~ (2.1)

i=1

The constants C; depend on k but not on N;. Similar error bounds hold for the
eigenfunctions in L2-norm as well as in energy norm. For two-dimensional elasticity,
and for bars under traction [Bou90], the estimate would behave like Ni_s/ 2 and N3
respectively. Note that the rate of convergence deteriorates when the dimension of the

problem increases.

3/2
The constants C; in (1.2.1) behave as follows: C; ~ (g—) Vol(Q;), if p; and

E; stand for the mass density and Young’s modulus of substructure ;, when
these quantities are constant on ;. For two-dimensional elasticity, we obtain C; ~

E;
number of fized interface modes of each substructure relative to the others.

The optimality of the error bounds is highlighted by the numerical experiments
presented in [Bd92b]: the true error behaves like N3/ for the two-dimensional
membrane problem which has the same properties as plane elasticity from the
viewpoint of modal synthesis. This optimality is also suggested by the proof of the
error bound which is obtained as the rest of a series expansion that converges no faster
than indicated. The key ingredient of the error analysis is real interpolation theory
in Sobolev spaces [LM68]. In order to explain in a simple way where the exponents

come from, let us consider the Fourier series expansion on the basis (sin jwm)j:"i’ of

3/2
<ﬂ> (Vol (2;))3/? . Combining above estimates yields a rational way to choose the

the function 1 over [0,1]: 1 = E;L:"i’ ajsin jrz. Of course Zj:oi’ (aj)* < oo. However,
if v; = j?m?, then Ej:‘)f vj (aj)® = +o0 otherwise the function 1 would vanish at both
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ends of the interval, but E;;Of (Uj)l/z_E (ozj)2 < o0 V € > 0. This property extends
mutatis mutandis to arbitrary n-dimensional domains as a consequence of [LM68]
interpolation theory. Weyl’s formula proves also useful to derive the error bound.
Working directly at the level of the finite element discretization is possible, but does
not yield optimal error bounds because the underlying PDE is hidden. Notice that
different error bounds can be derived for plates [Bd92a].

In order to compute the final generalized mass and stiffness matrices, all the modes
are usually discretized with finite elements. If h denotes the discretization parameter,
and )\fCB‘N’h the k" eigenvalue computed with Hurty’s method, then the error
)\fCB’N’h — A\ can be estimated by the sum of the right-hand side of (1.2.1), and
a discretization error Ch?, for some constant C(N), and some 8 > 0 which depends
on the finite element method and on the smoothness of the fixed interface modes
[Bou92]. A variant of this method enables one to use incompatible meshes on the
different subdomains [FG94]. See [RTG96] for a comparison in the frequency domain
of the continuous version of the modal synthesis method with the associated discrete
version.

In general Hurty’s method combines F.E. discretization and local mode truncation
in a way that prevents one from using it when the interface contains many degrees
of freedom, because the resulting mass and stiffness matrices are still quite large
and dense, therefore difficult to handle. Even forming these matrices proves time-
consuming since the Schur complement matrix has to be computed. A possible solution
is to avoid computing these matrices and to use an iterative solver within the eigenvalue
solver for the final generalized eigenvalue problem. An other strategy consists of further
reducing the size of this final eigenvalue problem. In this direction, coupling modes can
be defined at both the continuous level and the discrete level such that a prescribed
accuracy of modal synthesis is achieved by means of a given number of them that does
not depend on the mesh size [Bou89]. We define them in the next section.

3 A Poincaré-Steklov Operator-based Method

Let u and v denote any displacement fields in Vr, resulting in “harmonic” (in the
sense of elasticity) extensions @1 and v¢ on every subdomain ;. The bilinear form
b(u,v) = 37, [o, o) : e(¥) defines a scalar product over Vr and the associated
isomorphism T' satisfies Tu = Y7, ((Aie (fli)) ‘ni)|rnaﬂi , if n* denotes the unit
outer normal vector to €; along 0Q;, and A; = Ajq,. This well-known Poincaré-
Steklov operator is of course the continuous counterpart of the Schur complement
matrix.
From standard spectral theory, the problem find (A\,u) € R x Vr such that

b(u,v) = )\/ uv VveWr (3.1
r

is well-posed and admits a family of solutions {)\m,um}jzof € IR x Vr such that
(upg)zr;’f forms a basis of V. The “harmonic” extension of ur, to each component
Q; is continuous across the interface I' and is thus defined on the whole domain
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Figure 1 A two-dimensional elastic beam, clamped on the left side and free
everywhere else, decomposed in two ways.

as a trial function tipy € V' which we take as coupling mode. The Rayleigh-Ritz
approximation of the global eigenvalue problem based on N; fized interface modes from
each substructure as in Hurty’s method and Nr such coupling modes yield approximate
eigenvalues )\kPSl’N. For three-dimensional elasticity, the error bound

p
0< AN — A <D CNiT 4+ CrNp (3.2)

i=1

has been derived in [Bou89, Bou91]. In (1.3.2), a denotes the exponent of the most
severe vertex or edge singularity of the local source problems with homogeneous
Dirichlet conditions on the interface. For two-dimensional elasticity, we get the
exponent 2« instead of a. See also [Bd92a] for plates. That the rate of convergence
does not depend directly on the smoothness of the eigenmode is an interesting feature.
For the approximation of coupling modes, we refer to [Bou92], and also to [BVPA94].
The discrete coupling modes can be computed by a Lanczos method combined with
the Neumann-Neumann algorithm of [BGLTS88], as in [Bd92b] without forming the
Schur complement matrix, or as in [CL96] where the descent directions of the inner
loop are stored in view of solving more efficiently the source problem 7Tu = g with
successive right-hand sides.

This basic Poincaré-Steklov operator based modal synthesis method proves very
accurate because the first few global eigenpairs are correctly described by means of
a small number of fized interface and coupling modes [Bd92b]. Moreover, it can be
parallelized in the same way as the Neumann-Neumann algorithm applied to source
problems.

Although taking advantage of the identity matrix along I' instead of the consistent
mass matrix associated with the scalar product fr uv apparently does not deteriorate
too much the accuracy of the whole procedure, one may get rid of the possibly non
standard implementation of this mass matrix by using a non-local inertia along I'
[BN97a).
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4 Extended Neumann-Neumann Preconditioners

Now, can one speed up the method by defining new coupling modes that would be
much cheaper to compute, and that would yield comparable accuracy? A natural idea
is to replace the Poincaré-Steklov operator 7' by a preconditioner, like the Neumann-
Neumann preconditioner introduced in [BGLT88]. This operator S is defined as

p
S:V— Vo, v— 8v=> PSR, (4.1)

i=1

where P; : W; = trirnaq, (V) — Vi is a continuous extension operator, R; : Vi —
W/ is a continuous restriction operator and S; : W] — W; is the Neumann-to-
Dirichlet operator associated with the subdomain €2; and its boundary, that is to say
Siu = tripnag, (0'), where

—divAe(@’) +dia' = 0 in Q
Ase(ii).n; = wuon I'NdQ, (4.2)
; = 0 on 09Q;NIN,

for some d > 0. In order to ensure the symmetry of S, we shall always choose
R; = P!. We have the following

Proposition: let us set E; = Pl-Pit, and E = Zle E;. Then

i) 3C>0, such that v (Sv,v)v: < C||v||2F,, Vv e V.

ii) Ker(S) = Ker(E) and Ker(E) =Y., Ker(E;).

i11) The direct sum of the eigenspaces of S associated with strictly positive eigenvalues

and of Ker(E) is dense in V! and in L?(T).

Proof: i) is a direct consequence of the continuity of all operators involved in
definition (1.4.1). On the other hand, the coerciveness of each operator S; which
is due to the positivity of d, leads to the inequality v (Sv,v)v; > a7, ||Pitv||?,vi, ,
for some positive a. Since v (Ev,v)y; = 217 ||va||?,V: , we also have the opposite
inequality. Moreover, each operator F; is non-negative, hence ii). Finally iii) follows
from the symmetry and compactness of S on L?(I') and from ii).

Interface without Cross-points

Consider a domain decomposed in p slices separated by edges I'; that of course do not

intersect. In this case, the space V¢ coincides with Hf;ll trir; (V) and the extension
operators P; : W; — Vr, defined by

Piu:{ u on 9Q;NT,

0 on I'—(0NI), (4.3)
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Figure 2 Interface without cross-points (5 slices): Relative accuracy on the 15

smallest global eigenfrequencies for the standard Poincaré-Steklov based method

(left) with Ny = 15 and for the Neumann-Neumann based method (right) with
Nr =15

are continuous. The adjoint operators R; coincide with the usual restrictions to
0Q; NT. The operator S is well defined at the continuous level. It has no kernel
and possesses a countable family of eigenpairs (A, u”);il arranged such that the
eigenvalues decrease towards zero. The “harmonic” extensions to each component
of the eigenfunctions u'® can be chosen as coupling modes. This idea is close to
the concept underlying [BKP95]. The resulting modal synthesis method proves less
accurate than the original one, but the new coupling modes u'* can be computed quite
rapidly through a Lanczos method (see e.g. [CL96] and included references), because
now each step mainly consists of computing Sg for a given g. There are no more
internal loops for solving any source problem on I'. The accuracy of the resulting
modal synthesis method is very encouraging as shown on fig 2 since it yields a similar
accuracy as the Poincaré-Steklov based method at a much smaller cost.

When the interface exhibits a more complex geometry than before, extension by
zero is no more possible if H'/2(T") regularity is to be preserved for the coupling
modes. However, an extension of the method can be designed.
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Figure 3 How the extension operator works

Figure 4 A function defined on the boundary of a subdomain and its extension to
the whole interface

Interface with cross-points

Some preliminaries are needed: let f denote a continuous function on the interval
[a,0], a <0, to be extended to some interval [0,b], b > 0, then define the function

on [a,0],

_ | @)
(R’Pf)(g;) = { f(%ar)’(x) on [0, )], (4.4)

where > denotes a smooth cut-off function vanishing in the vicinity of b. The operator
P enjoys H'/? continuity from interpolation theory. This generic reflection operator
can be put to work in order to define the extension operators #P;, as follows: if u
stands for a function defined over I' N1 92;, we want to extend it in a continuous way
to the adjacent edges. Define a curvilinear abscissa over the edges of ' sharing a given
vertex which is a cross-point. For such an edge not belonging to 0f2;, parametrized
by s € [0,b], choose such an edge belonging to 99;, parametrized by s € [a,0], and
apply the operator P defined above. Repeat this for all edges adjacent to I' N 89;

(see Figures 3 and 4). Of course, the choice of the edge parametrized by s € [a, 0]
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is somewhat arbitrary and a weighted average of operators #P corresponding to
different edges of I' N 0€2; can also be used. In any case, we end up with an operator
Rp;, for every subdomain, and operators £S and BE as in (1.4.1) and in the
proposition. They are defined in a continuous setting as well as in a discrete setting.
We omit the details of the discretization and of the implementation here. Although
the perfect locality of the original Neumann-Neumann preconditioner is lost, some
locality is preserved because of the cut-off function ’. The kernel of such operators
are not reduced to {0} in general, but the proposition suggests to choose as coupling
modes the first few eigenfunctions of ®S associated with its largest eigenvalues in
addition to Ker(BE). At the discrete level, this kernel is easy to compute since
the matrices #E; =% PP} only depend on the mesh and on the geometry of the
interface. No subdomain solve is required. From ii) of the proposition, the kernel can
be computed as the intersection of the local kernels Ker(®E;), that will be computed
in parallel with minimal data exchange between subdomains. Then the Rayleigh-
Ritz approximation of the eigenvalue problem ®Ez = pz over |J_, Ker(RE))
is performed. The rank of the corresponding Rayleigh matrix may be maximal. In
this case, Ker(FE) = {0}. However, the smallest eigenvalue of this matrix can be
very small. Therefore, a variant of this modal synthesis method consists of computing
several of the smallest eigenvalues of #E and corresponding eigenvectors that will
supplement the set of eigenvectors of 5. In particular, it may be interesting to keep
as coupling modes an independent set of vectors in |J}_, Ker(RE;), in view of parallel
implementation. On the other hand, Ker(®E) may be very large, therefore a strategy
to filter out unwanted, highly oscillating functions of this kernel should be put to work
in this case.

This method, referred to as the R-method, has been tested on the reference structure
and the relative error on the eigenfrequencies is reported on Figure 5. It compares
favourably with the standard Poincaré-Steklov based method since a similar accuracy
is obtained at a smaller cost.

A conceptually simpler variant of above extension operators is based on the linear
extension operator defined as

[ f@) on [a,0],
(“Ph)(w) = { F0)1—2) on [0,] (4:5)

that is well-defined at the discrete level but not at the continuous level because
functions in H'/2 do not have traces. In this case, we noticed that the associated
operators ' E; have no kernel. Results of poorer quality than with the R-method are
obtained for this variant, referred to as L-method, as shown on Figure 6.

5 Concluding Remarks

i) According to recent numerical experience of the authors, the Poincaré-Steklov based
methods are the most accurate at least at very low frequency. The R-method proves
slightly less accurate but a better cost effectiveness is expected. It turns out that the
L-method which is not defined at the continuous level is less accurate than the other
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Figure 5 Interface with cross-points (10 subdomains): relative accuracy on the 15
smallest global eigenfrequencies for the standard Poincaré-Steklov based method
(left) for Nr =15 and for the R-method (right) with Nt = 15, and with 1/5 of the
eigenvectors of *E over JI_, Ker(®E;)
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ones. All of them are amenable to parallel computing. The R- and L-methods involve
slightly more communication efforts between subdomains.

ii) Variants of the R- or L-method can be designed. In particular, parametrized families
of extension operators can be introduced in view of optimizing the accuracy of the
method. A detailed version of section 1.4 on the design and use of extended Neumann-
Neumann preconditioners will be available in [BN97a].

iii) Extension to three-dimensional problems seems conceptually possible. However,
from the practical point of view, defining the extension operator from the boundary
of each subdomain to the whole set of interfacial faces may appeal to geometrical data
that are not directly available from the numerical description of each subdomain.

iv) On the other hand, the case of plate-like problems can be treated by means
of similar but more complicated techniques. Here, extension operators that preserve
H3/2 x H'/? continuity along the interface must be designed [BN97b).

v) It would be interesting to combine the Poincaré-Steklov based method with the
R-method which starts proving very accurate at frequencies where the former starts
deteriorating.
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