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1 Introduction

Domain decomposition methods for solving elliptic boundary problems have been
receiving increasing attention for the last two decades. To a large extent this is due to
their potential application on new parallel computers.

We describe here two domain decomposition algorithms based on nonoverlapping
subregions for solving self-adjoint elliptic problems in two dimensions and we report
on some experimental results. Both alternatives can be viewed as block diagonal
preconditioners for the Schur complement matrix. The first is the classical block Jacobi
where all but one of the diagonal blocks are related to the interfaces, the remaining
block is diagonal and corresponds to the cross-points. The second preconditioner
introduces an overlap between the blocks by including the cross-points and their
couplings in the diagonal blocks of the block Jacobi preconditioner. In this case, the
block related to the cross-points is dropped. We will refer to the latter as Algebraic
Additive Schwarz (AAS) since we sum the contributions of each block on the overlap.

The nonzero sub-blocks of the Schur complement are dense matrices, we consider
approximations which are inexpensive to construct and invert. The algebraic
approximation of the interface operator is constructed by using the probing
technique studied in [CM92] for the two-subdomain case and extended in [CMS92]
for many subdomains. The proposed preconditioner belongs to the one-level
type preconditioners as, for instance, Dirichlet-Neumann [BW86] and Neumann-
Neumann [RT91]. Therefore, it does not implement any coarse grid component.
Currently, most preconditioners include a coarse correction to propagate the error
globally. We refer the reader to [BPS86, Smi90, Man93] for a detailed presentation of
some of these preconditioners and to [SrG96, CM94] for complete surveys of domain
decomposition methods. We should stress that the AAS approach, which first appeared
in a few numerical experiments in [GT93], improves the convergence rate of the well-
known block Jacobi on some model problems while retaining the same computational
complexity.

First, in Section 2, we describe the AAS preconditioner. In Section 3, we present
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the parallel implementation of both preconditioners on distributed memory platforms,
and compare their performance in Section 4. We conclude in Section 5.

2 The AAS Preconditioner

We consider the following 2"? order self-adjoint elliptic problem on an open polygonal
domain € included in IR?:

{-a%mw,y)gg)—%(b(x,w%) ~ S ma (21)

where a(z,y), b(z,y) € IR? are positive functions on Q. We assume that the domain
Q is partitioned into N nonoverlapping subdomains Qy,...,Qy with boundaries
0Qy,...,00n. We discretise (2.1) by either finite differences or finite elements
resulting in a symmetric and positive definite linear system Au = f. Grouping the
points corresponding to the interfaces between the subdomains (B) in the vector up
and the ones corresponding to the interior (I) of the subdomains in ur, we get the

reordered problem:
Arr Are) (ur fr
= . 2.2
(4, a) () = (72) e

Eliminating u; from the second block row of (2.2) leads to the following reduced
equation for up:

Sup = fp — AYg A7 f1, where S = App— AT A7} A (2.3)

is referred to as the Schur complement matrix.
Let

B=(JE)uV, (2.4)

be a partition of the interface B into edge points, E;, (depicted with e in Figure 1) and
vertex points, V, (x points in Figure 1); E; can be written as E; = (9Q; N 9%Y) -V,
with j # I. Let Rg, and Ry denote the pointwise restriction maps from B onto the
nodes on E; and on V, and let Rgi and Ra be the corresponding extension maps,
respectively. The diagonal block associated with E; is defined by

Sii=Rg,SRE,, i=1,...,m. (2.5)

Let S;; be an approximation for S;;, i = 1,...,m. Then, the approximate block
Jacobi preconditioner, bJ, can be represented by

bJ =Y RE.S;'Rp, + RySyyRy. (2.6)
i=1
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Figure 1 Decomposition of the interface points (a) the block Jacobi and (b) the
AAS.

@ (b)
Let

B= G E; (2.7)

=1

be another decomposition of B, where E; = 8Q; N 8%y (see Figure 1 (b)). E; and
E'j may overlap on one point belonging to V, so E; N Ej # () for some i # j. Let
REi denote the pointwise restriction map from B onto the nodes on E; and R}gl the
corresponding extension map. We define

Si=Rg,SRL, i=1,...,m. (2.8)

Let S;; be an approximation for S;;, i =1,...,m. Then, we consider the Algebraic
Additive Schwarz (AAS) preconditioner defined as:

AAS =" RE Si'Re, (2.9)

i=1

3 Parallel Implementation

We use the probe technique to construct S;; and Sy [CM92]. Let P = [p;] be a
matrix whose columns are the probe vectors p;. Therefore, the probe technique can
be applied by multiplying S with P. This matrix-matrix approach only requires
two communications for the construction and is more efficient than a more classical
approach based on a sequence of matrix-probing vector products. Moreover, the
matrix-matrix approach allows the algorithm to overlap part of the communication
with some computation.

The implementation of Rg S;'Rg, in AAS requires two extra neighbour-neighbour
communications to exchange information on the cross-points; these communications
are not needed for block Jacobi.

The classical PCG requires two synchronisations to compute the inner products; we
have implemented the variant proposed in [DER93] where only one synchronisation
per iteration is needed.
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4 Experimental Results

The elliptic problem (2.1) was discretised by the standard five-point difference stencil
on an (nxn) mesh. The approximations Sj; and S;; are tridiagonal matrices built using
twelve probing vectors [CG97]. The direct solver for the solution of the local Dirichlet
problems A;;, i = 1...N, is MA27 [DR83], while the tridiagonal matrices S;i and
S’,-i are factorised using LAPACK routines. The stopping criterion is to decrease the
relative residual to less than 1075. The grid is either uniform or nonuniform. The
message passing library used is MPIL. The parallel platform is a Cray T3D (IDRIS -
France). In the parallel experiments, we have used as many processors as subdomains
and the computations have been performed in 64 bit precision.

Figure 2 Definition of the function a(.,.) on Q, the unit square of IR

a(.,) =107% | a(.,.) =10® | a(.,.) = 1073

a(.,.) =10* | a(.,.) =107 | a(,.) =103

Table 1 gives the number of iterations of the PCG. Table 2 gives the total parallel
elapsed time, in seconds, for solving Az = b; that is, the analysis and factorisation steps
of MA27, the preconditioner construction, the PCG iterations, and the computation
of the global solution by local back substitutions.

Table 1 Number of iterations of the PCG on a 257 x 257 grid.

AAS block Jacobi
# subdomains | Poisson Aniso. Nonunif. | Poisson Aniso. Nonunif.
4 17 11 14 18 11 16
16 23 29 27 24 35 37
64 33 52 40 35 82 60

Table 1 shows that AAS performs better than block Jacobi in the presence of
anisotropic phenomena; the increase in the number of iterations is less for AAS as
the number of subdomains grows larger. We have observed such behaviour for a wide
class of model test problems, but we only report two of these results here. For all
the experiments the function b(.,.) has been set to one. In the first example, the
anisotropy is physically present in the definition of the problem through the function
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Table 2 Times (in sec.) on the Cray T3D for solving Az = b on a 257 x 257 grid.

AAS block Jacobi
# subdomains | Poisson Aniso. Nonunif. | Poisson Aniso. Nonunif.
4 10.77 9.64 10.18 10.97 9.64 10.57
16 2.17 2.43 2.33 2.20 2.66 2.72
64 0.58 0.78 0.65 0.59 1.07 0.84

a(.,.) as defined in Figure 2, while in the second example the anisotropy is numerically
introduced in the Poisson problem by the discretisation on a nonuniform grid. This
grid is used to solve the drift-diffusion equations [GT93] involved in MOSFET device
simulation.

As a first remark, we indicate that the time per iteration is almost the same for
PCG with both preconditioners; the neighbour-neighbour communications required
by AAS do not penalise its performance on the Cray T3D.

We can observe in Table 2 that the reduction in the number of PCG iterations is
not directly reflected in the time reduction. This is due to the significant amount of
time required by the MA27 analysis and the factorisation routines for the solution
of the local problems A;;, 4+ = 1...N, which are common to both preconditioners.
These routines are responsible for 20% of the global solution time in the case of 64
subdomains. Consequently, the global time is not a linear function of the number of
iterations but is an affine function; that is, the global parallel solution time is equal to
the time for the symbolic and numerical factorisation of the local Dirichlet matrices,
plus the time for the back solution (once the interface problem has been solved), plus
the number of iterations times the time per iteration (which is the same for both
preconditioners).

Table 3 shows the performance of the parallel device simulation code, using PCG
with either AAS or block Jacobi for the solution of the linear systems involved in the
nonlinear solver. Both numerical and physical anisotropies are encountered and AAS
performs better than block Jacobi.

Table 3 Times in seconds and number of iterations for a continuation step of the
MOSFET device simulation on a 257 x 257 grid.

AAS block Jacobi
# subdomains | time # iterations | time # iterations
4 | 857.6 1520 | 861.6 1543
16 | 214.3 2731 | 240.1 3422
64 | 67.5 4877 | 88.9 7300

The AAS preconditioner can easily be extended by using a larger overlap between
the edges FE;. Experimental results have shown that this does not significantly
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accelerate the convergence for the MOSFET problem. In Table 4, we vary the size
of the overlap and report the total number of linear iterations involved in the solution
of the drift-diffusion equations.

Table 4 Iterations using preconditioners with overlap sizes 0 (block Jacobi),
1(AAS), 2 and 3 on a 129 x 129 grid for the MOSFET problem.

# points in the overlap between the EA'z

# subdomains 0 1 3 5
4] 1660 1693 1678 1671

16 | 3610 2842 2797 2720

64 | 8385 5177 5419 5599

5 Conclusions

We have compared a so-called Algebraic Additive Schwarz preconditioner (AAS)
with an approximate block Jacobi preconditioner for the Schur complement domain
decomposition method for solving elliptic PDEs. We have shown that AAS performs
better both in terms of number of iterations and in computing time, for problems
with anisotropic phenomena. This behaviour has been illustrated when solving linear
systems that arise from model problems and from the real life application of device
modelling.

Although AAS does not introduce a global coupling among the subdomains, the
growth of the number of iterations is slower than the one observed with block Jacobi,
when the number of subdomains increases. AAS can be a cheap alternative to improve
the simple block Jacobi preconditioner when it is difficult to define or to implement a
coarse problem in the preconditioner applied to the Schur complement system.

For a detailed presentation of this work we refer to [CGIT].
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