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Schwarz Preconditioners for the
Spectral Element Stokes and
Navier-Stokes Discretizations

Mario A. Casarin

1 Introduction

We consider fast methods of solving the linear system

Au+Bip=f

1)
Bu=0.

resulting from the discretization of the Stokes problem by the spectral element method;
see (3).

The efficient solution of this and analogous systems, generated by a variety of
discretization methods, has been the object of various studies. The Uzawa, procedure
is a relatively standard technique [GPARS6], and more recently block-diagonal and
block-triangular preconditioners have been proposed [Elm94, K1a97]. Global pressure
variables are used in [BP89] and [TP95] as Lagrange multipliers to constrain the
interface velocities and to guarantee that the divergence free condition holds.

Rgnquist has proposed an iterative substructuring method that is based on a
decomposition of the domain into interiors of subregions, faces, edges, and vertices.
The coarse problem is a Stokes problem approximated by a lower-dimensional
pair of discrete spaces on the coarse mesh. Stokes problems are solved within the
subregions, while a diagonal scaling using elements of the matrix A is performed on
the interface velocity variables. This scheme avoids costly inner iterations, and its
built-in parallelism is certainly a very desirable feature. In [Rgn95], relatively large
problems in three dimensions are solved with modest computer resources. The small
iteration count and the excellent approximation properties of the spectral element
method for flow problems makes this a very efficient scheme.

Inspired by Rgnquist’s scheme, we have developed iterative substructuring methods,
for which the velocities are restricted to the space of discretely divergence-free
functions in the spectral element sense. The PCG method is applied to the resulting
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symmetric, positive definite linear system. The condition number of our algorithms
grows at most like
C(1 +log(N))3
BN ’
where Gy is the Babuska-Brezzi constant; see Lemma, 2.1. Our approach is also related
to the methods of [BP89] and [TP95].

The next section introduces the details of the discretization method. Section 3
presents an important extension operator, while in Section 4, the Q2 — Qo pair is used
to generate a coarse space for the Stokes problem. The theory carries over without any
substantial change to a variety of mixed discretizations using a discontinuous pressure
space.

In Sections 5 and 6, we extend the Schwarz theory for indefinite and non-symmetric
problems to the Navier-Stokes problem, taking advantage of the Stokes preconditioner
developed here. In each step of Newton’s method, only the velocity of the previous
step is used. The pressure is computed only when required, typically after the velocity
has been obtained to the prescribed accuracy. The key point in the success of this
method is the construction of an appropriate coarse space.

2 Discretization Method

Let Q be a domain in IR?, d = 2 or 3. We triangulate Q into non-overlapping
substructures {Q;}M, of diameter H;. Each ; is the image of the reference
substructure 2 = -1, -i-l]3 under a mapping F; = D; o G; where D; is an isotropic
dilation and G; a C'*° mapping such that its Jacobian and the inverse thereof are
uniformly bounded by a constant. We assume, e.g., in three dimensions, that the
intersection between the closures of two distinct substructures is either empty, a vertex,
a whole edge or a whole face.

We define the space PV (Q) as the space of polynomials of degree at most N in each
of the variables separately. The space P (€2;) is the space of functions v such that
vn o F; belongs to PN (Q). The conforming discretization space PN (Q) ¢ HE(Q) is
the space of continuous functions the restrictions of which to ; belong to PN (Q;).

Let A = [-1,1]. For each N, the Gauss-Lobatto-Legendre quadrature of order N
is denoted by GLL(N) and satisfies: Vp € P2N~1(A), f_llp(m) dr = Ej-vzo p(&)p;-
Here, the quadrature points {; are numbered in increasing order, and are the zeros of
(1 —2?)Ly(z), and Ly (z) is the Legendre polynomial of degree n.

In three dimensions, the discrete L?(Q)-inner product is defined by

(w,o)n = Y (uoFy)- (o Fy)-|Jil(&,&. &) - piprpr; (2)

i=1 j,k,I=0

where |J;| is the Jacobian determinant of Fj;.

We next consider the variational form of the Stokes equation in the velocity-pressure
formulation, discretized by the spectral elements. While the velocities are taken
to be continuous functions, the pressures can be discontinuous across substructure
boundaries. The restriction of the pressure space PY~2(Q) to each Q; is PN 72(Q;).
We note that PN=2(Q) C L2(Q), but PN=2(Q) ¢ H1(Q).
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The discrete problem is given by:
Find (u,p) € (P (R))? x PN=2(Q) N L3(Q) such that:

ag(u,v) +b(v,p) = (£,v)v Vve (B Q)7
_ 3)
b(u,q) = 0 Vqe PN=2(Q)n LQ).
: : d Ou; Ov; . s e
Here, ag(-,-) is given by ag(u,v) = Zz’,jzl v (am,- , 3“‘?‘)N . We assume, for simplicity,

that b(v,q) = — fQ gV - v dz; see [MPR92]. The right-hand side is assumed to be in
L2(Q). Our analysis also applies to the more general non-homogeneous problem, and
also to mixed Dirichlet and Neumann boundary conditions, with only minor changes.

For the velocities, we choose standard nodal basis functions qﬁjv € (PN (Q))?. We
number the GLL(N) nodes ¢ within the subregions §2; by an index r, and define a
basis for PN=2(Q) by By, (&r,) = 6pyry, for all 71,79, where § is the Kronecker symbol.
We note that any function of PV=2(Q) is uniquely represented by its values at the
interior GLL(N) nodes &,. By writing the system (3) in terms of these two bases,
we arrive, in a standard way, at the system (1). To each component of the velocity,
there corresponds a diagonal block of A which is equal to the standard scalar spectral
element stiffness matrix K. The entries of B are given by B;, = b(qS;-V ,Br), and £ is
a vector with components f; = (f, ¢Y).

The next lemma is the key point in the error analysis of this discretization; see
[MPR92].

Lemma 2.1 For each N, there exists a Bn > 0 such that

. b(v,q)
_inf sup >
g€PN-2@)NL3Q) vy () IVIE @ llallr2@)

If the geometry is rectilinear, i.e. the F; are affine mappings, then there exists a
constant 3, independent of N, and such that Bn > ,BN%, ford=1, 2, or 3.

We remark that very good convergence properties are predicted by the theory and
have been extensively verified in practice; see, e.g., [FR94].

3 An Extension Operator

For a subregion ;, we define an extension operator E;S N (PN )R —
(PN (Q;))3, where u; = Ef N(g;) is the velocity component of the solution to the

following Stokes problem:
Find (u;,p;) € (PN ()2, PN=2(Q;) N L3(£)), such that:

ag(us,vi) + bo, (vi,pi) =0 Vv; € (P (2:))4,
bo,(u;,q:) =0 Vg€ PN72(Q;) N LE(y), (4)
u;|pQ; = 8i-

The subscript 2; indicates that the integration or quadrature is taken on ; only. In
other words, u; is the solution of a homogeneous Stokes problem with g; as boundary
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data, and zero right-hand side within €2;. We remark that u; always exists, even if the
outward fluxes fan g; -ndS are not equal to zero, since the pressure test space does
not include the constant function, and the Babuska-Brezzi condition is satisfied for
the problems restricted to each subregion.

We remark that if u; = Ef’N(gi), then

a0, (i, w;) = v_lgrlzin_g' ag.0;(vi,vi) Vvi € PJ (), (5)

where Pg(ﬂz) = {Vi € (PN(Qz))d | bQi (vi;Qi) =0 Vg € PN_Z(Qi) n L%(Qz)}

Let P(fYV(Q) be the space of discretely divergence-free functions i.e. functions
that satisfy the second equation of (3). For v € (P{())%, let v be defined by
Vg, = Ef’N(v|aQi). It is easy to see that if fan,— v-ndS =0 Vi, then Vv € PéYV(Q).

4 A Domain Decomposition Preconditioner

We describe the construction in detail for two dimensions. The three-dimensional case
is analogous; see [GPAR86], Section II.3.1, and Remark 4.1 below. For a reference
square 2 = [—1,1]2, let

VH( ) (Ql( ))2®Span{p17p2ap3ap4}7

where p; € (Q2(Q))? vanishes on the edges & for j # 4, and is normal to &;. For
example, for the edge & given by z =1, p1 = ((1+ z)(1 — ¢?),0).

The space V,I(Q) C (Hg(Q))? is the space whose restrictions to each §; is the image
of VH((2) under the mapping F;, which is here taken to be isoparametric with respect
to the space (Q1({))2; see [GPARS6], Section A.2. There are 12 degrees of freedom
per element, namely the nodal values at each vertex and the fluxes across each of the
edges.

Let Q& () be the space of functions of zero mean on (2 that are constant within each
substructure 2;. It is well-known that for the discretization of the Stokes problem on
the coarse mesh, the pair V.7 — QI yields a stable discretization in the Babuska-Brezzi
sense, with a stability constant bounded away from zero independently of H.

Let V%5, () be defined by: VI (Q) = {u € V]| [, V-udz = [, u-ndS = 0}.
This space plays the role of our coarse space, but it is clearly not contained in
Py (Q), since a function u € VI, (Q) in general fails to have a divergence
orthogonal to the space PV~2(Q) in L2(Q). We therefore define a transfer operator
Ik . VfVH Q) — P({YV () by:

Iy (un)loe, = unlsq,
(6)

Il (um)lo, = EPN (uglse,).

This operator satisfies the usual H'-stability and L2-approximation properties used
in the Schwarz theory.

For u,v € H'(), we define the bilinear form a(u, v) := [, Vu- Vv dz. The coarse
solver T} is given by

a(T,];Iu7 w) = ag(u, IJ’}IW) VYw € VerH ().
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For each edge &, shared by two subregions ; and €2, let Q;; be the union of Q;,
Q;, and &. The local space Vg, C P({YV(Q) consists of functions ug, with support
in Qz-j, and whose values in the interior of €2; and (2; are given by Ef N and E]-S’N,
respectively. This definition implies that Yug, € Vg,, |, g, Ug, M dS = 0. The bilinear
form associated with Vg, is ag(-,-).

For each interior vertex v,, let £(v,) be the collection of all edges having v, as
an endpoint. We define ¢, , € P({YV(Q) by assigning values at the interface nodes,

and using the EZS N to extend these values to the interior of the substructures. We let
Gw,, z(vn) = (1,0), let ¢y, » be equal to zero at all the interface nodes not adjacent to
U, and Y&, € E(vy,), we let ¢, , be equal to a constant vector at the node v], next
to v, on the edge &. This constant vector is taken to be normal to the interface at
v},, and so that |, & ¢v, ¢ -0dS = 0. We define ¢,,, , analogously. The one-dimensional
vertex spaces are given by:

Vo2 = span{e,, »} and V,, , = span{ew, 4}

The bilinear form associated with the vertex spaces is aq(,-).

The interior spaces are Vo, = POJYV(QZ-), and the bilinear form associated with all of
them is ag(-,-).

The preconditioned operator is now

M
Toa=IETE +Y (Tono +Tony) + O Te + Y To,. (7)
Uy Ex i=1

This operator does not exactly fit the Schwarz framework, but an analyisis similar
to the proof of that result, together with a decomposition lemma, involving the local
spaces and bilinear forms just described, yield the following theorem. For the proof,
see [Cas96]; cf. [Bre94, Cai95].

Theorem 4.1 The condition number of Ty, satisfies:

C(1+1og(N))?
BN )

Remark 4.1 In three dimensions, edge and face functions play the role of the vertex
and edge functions of the two dimensional version, respectively. For each edge, the edge
function is the analogue of the ¢, above; it is nonzero for the interface nodes adjacent
to the edge, and have zero flux across all the faces of the subregions. The condition
number estimate is the same as in Theorem 4.1, where By is now the Babuska-Brezzi
constant for the three-dimensional discretization.

K(Tn) <

5 Schwarz Methods for the Stationary Navier-Stokes Equations

Following [Rgn95], we consider a Galerkin spectral element discretization of the
velocity-pressure formulation of the Navier-Stokes equations, given by:
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Find (@iy,Pn_2) € P (Q) x (PN~2(Q) N L2()) such that
a(iiy, vn) + c(an; N, vN) + (v, Bn_2) = [of - vn dz Vvy € PV (Q),
b(iin,gn—2) =0 Van—_2 € PN=2(Q) N LE(NQ). (8)

For u,v, and w € H'(Q), the trilinear form c(-;-,-) is given by:

c(uyv,w) := Z/uj 8vzw,d:c

2,j=1

Numerical computations show that ty is a good approximation for u, the exact
solution of the Navier-Stokes equations, at least for Reynolds number Re = 1/v on
the order of 50; see [Rgn95].

We will develop Schwarz preconditioners for the system representing the k* step
of the Newton iteration used to solve (8). We fix k, and to simplify notations, set
uy = uk, w = ufv_l, and g := f¥. Then, uy is the solution of the following
problem:

Find uy € Py'y () such that

Bw(uN,vN) = (g,VN) VN € P({YV(Q)’ (9)
where
Bw(un,vN) = a(un,vN) + c(W;un, vy) + c(un; w, vy). (10)

We assume that Gy is a solution of (8) which is non-singular i.e. (9) is uniquely
solvable if we let w = . If the Reynolds number Re = 1/v is small enough, this
can be proved by classical arguments (see [GPAR86], Theorem IV.2.4); our analysis
does not assume Re is small enough, although the iteration count of the method may
deteriorate when that parameter increases.

6 A Schwarz Preconditioner with a New Coarse Space

We propose a Schwarz preconditioner for B(-,-), by viewing B(-,-) restricted to
PéYV (Q) as a perturbation of the symmetric bilinear form a(-,-). We assume that
the coarse triangulation 7 = UM, (), is a shape regular triangulation, not necessarily
quasi-uniform, and set H = max; H;, where H; is the diameter of 2;.

We start the definition of our coarse space by first defining an extension operator
1%, similar to the operator I}, defined in (6). Let I} : VI (2) — PG (), and

let iy = TP (ug) for ug € VfVH (). The restriction of @iy to a subregion (; is the
solution of the following non-homogeneous Stokes problem:

Find ag € PY(Q;), with g = ug on 8Q;, and pg € PN~2(Q;) N LE(€2;) such that

a(p, vN) +b(vN,Pr) = a(um,vy) Vvn € Py (),
(11)
b(ﬁH5QN—2) =0 VQN—z (S PN_z(Ql) n L(Z)(Qz)
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By restricting the test function vy to have zero discrete divergence,i.e. vy € P&’V (),
g can also be determined by:
Find @iy € PY(Q;), ig = ug on 8%, and such that

a(le,VN) = a(uH,vN) Vvy € PéYV(Ql) (].2)
The new coarse space is defined by:
Vo, () =I5V, (Q).

An easy argument using Green’s formula shows that Vr{"IVH Q) c PéYV (Q); it is also
easy to see that iy is the function of PéYV (2) which coincides with ug on I', and which
is the best approximation of ug in the a(-,-)-semi-norm (and in the H!-semi-norm,
since they differ only by a fixed factor v).

The operator Qg : Py'y (Q) — f/lva () is defined by

B(Qgu,vyg) = B(u,vyg) Vvg € V,va (). (13)
We remark that although B(-,-) is not necessarily positive definite, (13) is guaranteed
to have solutions for sufficiently small values of H; see property P3 below.

Let V, s > 1 be the local spaces used to define the operator Ty; see (7). In three
dimensions, there is one local space associated with the interior of each £2;, one space
related to each face, and one for each edge. For s > 1, the operator P : P(fYV(Q) — Vs
is defined by

a(Psu,vy) = B(u,vs) Vv, € V. (14)

Theorem 6.1 There exists a positive constant Hy, depending only on the domain
Q and on the solution ty, and positive constants c¢(Hop), and C(Hy) such that the
operator

Qa:QH+ZPs

s>1

satisfies, Vu € Py'y (), and for H < Hy,
a(Qaua Qau) < C(Ho)a(u7 u):

and
¢(Ho)Cya(u,u) < a(Qqu,u).

The proof of this result is given in [Cas96].
This estimate immediately implies an upper bound on the iteration count of the
GMRES method applied to the preconditioned system

Qa. EN = b:

where b is chosen so that u, is the vector of nodal values of uy. This result is an
extension to the Navier-Stokes equation of the Schwarz method for scalar second-order
non-symmetric problems studied in [CW92].
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