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Subspace Correction Multilevel
Methods for Elliptic Eigenvalue
Problems

Tony F. Chan and Ilya Sharapov

1 Introduction

Domain decomposition and multigrid methods are powerful techniques for solving
elliptic linear problems. Unfortunately the straightforward implementation of the
methods is limited to linear problems and relatively little work has been done for
nonlinear applications. The goal of this paper is to analyze the application of the
multiplicative Schwarz methods to the eigenvalue problem without linearization.
An important distinction of this approach is that the subspace problem is also a
generalized eigenvalue problem which allows to apply the algorithm recursively and
formulate a multilevel method of optimal complexity.

Solution of eigenvalue problems by multigrid methods using linearization was
discussed by Hackbusch ([Hac84]) and McCormick ([McC92]). The idea to use
coordinate relaxation applied directly for a matrix eigenvalue problem goes back to the
book by Fadeev and Fadeeva [FF63] (1963) where they applied a technique similar
to Gauss-Seidel method for minimizing the Rayleigh quotient. This approach was
extended by Kaschiev [Kas88] and Maliassov [Mal92] for PDE-based problems. In this
case the resulting method of minimizing the Rayleigh quotient is analogous to the
block Gauss-Seidel method for linear problems.

Several domain decomposition-based methods were proposed by Lui [Lui95], in
particular the method based on a nonoverlapping partitioning where the interface
problem is solved either using a discrete analogue of a Steklov-Poincare operator
or using Schur complement-based techniques. The former approach resembles the
component mode synthesis method (cf. Bourquin and Hennezel [BH92]) which
is an approximation rather than iterative technique for solving eigenproblems.
The component mode synthesis was also used by Farhat and Géradin in [FG94].
Stathopoulos, Saad and Fischer [SSF95] considered iterations based on the Schur
complement of the block corresponding to the interface variables.

Anther way to implement the domain decomposition technique on eigenvalue
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problems is the divide and conquer method proposed by Dongarra and Sorensen
[DS87]. An attempt to link relaxation methods (in particular SOR) to eigenvalue
problem was made by Ruhe [Ruh74].

In this work we extend the results of [Mal92] and [Kas88] for the multiplicative
Schwarz method by considering the two-level scheme. Convergence is proved for a
more suitable class of initial approximations and an asymptotic convergence analysis
is given. We also describe the recursive implementation of the method, which results
in a multilevel algorithm. Finally we present an alternative variational formulation
of the problem, which is equivalent mathematically but more suitable for theoretical
considerations.

2 Subspace Correction for Eigenvalue Problems

Let us consider the problem of finding the minimal eigenvalue A and the corresponding
eigenvector u of

2
_ Z 0 Ou B

ij=1

z € (], u|3920 a,-,j>0,

where € is a bounded region in R? and a; ;(z) = a;;(z), p(z) > 0 are piecewise smooth
real functions.

To discretize the problem, we can perform a triangulation of Q with triangles of
quasi-uniform size h and use the standard finite element approach to represent (2.1)
as

Au = AMu , (2.2)

where A = AT > 0and M = M7T > 0 are stiffness and mass matrices respectively. The
problem of finding the minimal eigenvalue of (2.2) can be viewed as a minimization of
the Rayleigh quotient

T
A1 = min F'(u) = min u_Au (2.3)

v uTMu '’

In order to apply domain decomposition technique to this problem we can represent
Q as a union of overlapping subdomains with Lipschitz boundaries: Q = U;_; Q. Let
{Vi}]_, be finite element subspaces corresponding to this partition and let PI denote
the orthogonal projection into the subspace V;; its transpose P; is the prolongation
operator from V; to H?. We also introduce the M-norm of a vector ||v||a = (vT Mwv)'/2.

A scheme analogous to the multiplicative Schwarz algorithm for solving (2.2) was
proposed in [Mal92] and [Kas88]:
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Algorithm 1 (Multiplicative subspace correction)
Starting with «° for k¥ = 0 until convergence
fore=1:J
find u*+#/7 such that

F(uk+i/']) = drnelXI}' F(uk+(i_1)/J + Pid;) (2.4)

end
end

To have some control over the norm of the iterates we can M-normalize the
approximations either after each subiteration or after a loop over all subdomains is
completed.

At each step the algorithm performs a subspace search minimizing the Rayleigh
quotient using the correction from the current subspace. We will now show that
the minimization (2.4) results in minimizing the Rayleigh quotient for the local
(n; + 1) x (n; + 1) problem, where n; is the dimension of the current subspace.

Rewrite (2.4) as

p(utti7) = min p(Pidi) = min % = min ;};ﬁé ;
where
and
A=p"AP, NM=PB"MP. (2.5)

Thus the subspace problem is an eigenvalue problem with A and M.

The matrices A and M preserve the sparsity of the original matrices A and M
except for the last row and column, therefore the minimization subproblem can be
efficiently solved.

Convergence for Algorithm 1 was proven in [Mal92] and [Kas88] with the
assumption that the initial guess u® satisfies

M < F(u) < Xy . (2.6)

Lui [Lui96] pointed out that the algorithm can break down in certain degenerate cases
and proposed a modified procedure proving convergence for the case of two subdomains
under condition (2.6).

This condition is difficult to control unless we use the method as some refinement
procedure using it after a good approximation to the lowest eigenmode was produced
by some other method. We can formulate a stronger result that Algorithm 1
converges to the lowest eigenpair of (2.2) in the case of any number of subdomains
and with the more practical assumption that all the components of the initial
approximation u® are of the same sign.
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Figure 1 Error reduction for the model problem without the coarse grid
correction. Higher curves show slow convergence for the large number of subdomains.
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Theorem 1 Vectors u* and the corresponding Rayleigh quotients p(u*) produced by
Algorithm 1 converge to the lowest eigenmode of discretized problem (2.2) if all the
components of the initial approzimation u° satisfy u? > 0.

The proof (to appear in a full version of this paper) relies on a natural assumption
that the eigenvector we are looking for is not contained in any of the subspaces V;:

Assumption 1 For any subspace V; there is a constant C; > A\ such that

v Av > C;vT Mo forany veV;.

3 Coarse Grid Correction and Multilevel Method

In this work we modify Algorithm 1 by adding a coarse grid correction after a loop
over the subdomains is completed. By doing so in the case of a linear elliptic problem
with sufficient subdomain overlap, the convergence rate becomes independent of both
the meshsize and the number of subdomains [BPWX91, Xu92].

The effect of the coarse grid correction for a model problem of the 2D Laplacian
is shown in the following figures, where h and H are fine and coarse meshsizes
respectively. We see that without the coarse grid the convergence rate is dependent on
both the meshsize and the number of subdomains, whereas after the inclusion of the
coarse grid correction the convergence rate becomes independent of both A and H.
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Figure 2 Error reduction for the the model problem with the coarse grid
correction. Convergence is independent of the number of subdomains.
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Since the subspace problem is of the same type as the original one, ie. a
generalized eigenvalue problem, we can make the algorithm more efficient by applying
it recursively. Instead of solving the eigenvalue subproblem over a subdomain by some
other method we can apply several iterations of the same algorithm. Applying that
recursion to the multiplicative method with coarse grid correction we can view the
resulting scheme as a multilevel method and the iterations performed on each level as
the smoothing of the solution (in the spirit of the multigrid method). The recursion
can be stopped once the subproblems reach some sufficiently small fixed size.

Though the algorithms as presented are sequential we can add some degree of
parallelism using multicoloring techniques (see, e.g., [CM94]).

4 Alternative Formulation

A different variational formulation for the symmetric positive definite eigenvalue
problem (2.2) was recently proposed by Mathew and Reddy (94) [MR94]. They pointed
out that the minimal eigenpair (u;, A1) can be characterized as:

J(u) = mvin J(v) = mvin [v Av + p(1 — vT Mv)?] (4.7)

with
4/,&2 — 4/,LJ(’UI1)
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and

M
ludlldy =1- 5=~

for any
> /2. (4.8)

Unlike the Rayleigh quotient minimization, formulation (4.7) is unconstrained. The
p-term in J(v) serves as a barrier to pull the solution u away from the trivial solution.

The subspace problem for (4.7) is again of the same form as the original one with
dimension n; + 1, i.e. an eigenvalue problem of this size. For

P, = ( P, uktG-1/7 )7 di = ( d; >’

we can write the minimization step of the algorithm as

i/ Ty — o 5 7
J(u ) dirél\l/?,a J(Pid;)

= min (Pid)T A(Pidy) + (1 — (Pidi) ™ M (Pidy))?]

= min [JZTA(L +p(l— JzTMdz)z] )
d;

where . -
A=P AP, M =P, MP,

Therefore, we can see that for any choice of p satisfying (4.8), one subspace
correction step for formulations (2.3) and (4.7) results in the same reduced generalized
eigenvalue problem with matrices (2.5). The application of the multiplicative Schwarz
algorithm to both formulations results in the same approximations to the lowest
eigenvalue and the approximations to the eigenvector are the same up to scaling.

The objective function in (4.7) is convex near the solution so for the local analysis we
can use apply the theory of multiplicative Schwarz methods for minimization problems
[TE96]. Equivalence of the formulations gives the asymptotic result:

Theorem 2 The iterates produced by Algorithm 1 with coarse grid correction
applied to formulations (2.3) and (4.7) (in SPD case) satisfy for k large enough

lur —w**H < (1= 0)lua — |l

where (u1,A1) is the minimal eigenpair of (2.2) with |lui|lpr = 1 for (2.3) and
luillae = 1 — ;‘—; for (4.7) and the value of 6 > 0 is independent of the meshsize
h and the number of subdomains J.

The proof of this theorem will be given in a larger version of this paper.



SUBSPACE CORRECTION METHODS FOR EIGENVALUE PROBLEMS 317
Acknowledgement

The authors wish to thank Jinchao Xu and Xue-Cheng Tai for their helpful suggestions
during discussions on the topic of this paper. This work was partially supported by the
ARO under contract DAAL-03-9-C-0047 (Univ. of Tenn. subcontract ORA 4466.04,
Amendment 1 and 2) and ONR under contract ONR-N00014-92-J-1890.

REFERENCES

[BH92] Bourquin F. and Hennezel F. (1992) Application of domain decomposition
techniques to modal synthesis for eigenvalue problems. In Fifth International
Symposium on Domain Decomposition Methods for Partial Differential Equations
(Norfolk, VA, 1991), pages 214-223. SIAM, Philadelphia.

[BPWX91] Bramble J., Pasciak J., Wang J., and Xu J. (1991) Convergence estimates
for product iterative methods with applications to domain decomposition. Math.
Comp. 57(195): 1-21.

[CM94] Chan T. and Mathew T. (1994) Domain decomposition algorithms. In Acta
Numerica, pages 61-143. Cambridge Univ. Press, Cambridge.

[DS87] Dongarra J. and Sorensen D. (1987) A fully parallel algorithm for symmetric
eigenvalue problem. STAM J. Sci. Statist. Comput. 8(2): 139-154.

[FF63] Fadeev D. and Fadeeva V. (1963) Computational Methods of Linear Algebra.
W.H. Freeman and Company, San Francisco.

[FG94] Farhat C. and Géradin M. (1994) On a component mode synthesis method
and its application to incompatible substructures. Computers and Structures 51:
459-473.

[Hac84] Hackbusch W. (1984) Multigrid Methods. Springer-Verlag.

[Kas88] Kaschiev M. (1988) An iterative method for minimization of the Rayleigh-
Ritz functional. In Computational processes and systemss, No. 6 (Russian), pages
160-170. Nauka, Moscow.

[Lui95] Lui S. (1995) Domain decomposition for eigenvalue problems (preprint). Hong
Kong Univ. of Science and Tech.

[Lui96] Lui S. (1996) On two Schwarz alternating methods for the symmetric
eigenvalue problem (preprint). Hong Kong Univ. of Science and Tech.

[Mal92] Maliassov S. (1992) On the analog of Schwarz method for spectral problems.
In Numerical methods and mathematical modeling (Russian), pages 70-79. Otdel
Vychisl. Mat., Moscow.

[McC92] McCormick S. (1992) Multilevel Projection Methods for Partial Differential
Equations. STAM, Philadelphia.

[MR94] Mathew G. and Reddy V. (1994) Development and analysis of a neural network
approach to Pisarenko’s harmonic retrieval method. IEEE Trans. Sig. Proc. 42(3):
663 — 673.

[Ruh74] Ruhe A. (1974) SOR-methods for the eigenvalue problem with large sparse
matrices. Math. Comput. 28: 695-710.

[SSF95] Stathopoulos A., Saad Y., and Fischer C. (April 2-7 1995) A Schur complement
method for eigenvalue problems. In Proceedings of the Seventh Copper Mountain
Conference on Multigrid Methods.

[TE96] Tai X.-C. and Espedal M. (1996) Rate of convergence of a space decomposition
method and applications liear and nonlinear ellicptic problems (preprint). Univ. of
Bergen.

[Xu92] Xu J. (1992) Iterative methods by space decomposition and subspace
correction. SIAM Rev. 34: 581-613.



