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Parallel Iterative Methods for
Large-scale Eigenvalue Problems in
Structural Dynamics

Jean-Michel Cros, Francoise Léné

1 Introduction

Consider the following generalized eigenvalue problem:
Kq=AMgq (1.1)

where K and M are respectively the symmetric stiffness matrix and mass matrix,
the eigenvalues A\ are the squares of the natural frequencies w, and ¢ are the
eigenvectors, although only the smallest eigenpairs are wanted. We are interested in
problems where K and M are very large (more than 10* unknowns), sparse symmetric
positive definite (or semi-definite) matrices. The main difficulty is to deal with large
matrices which exceed primary memory capacity of sequential computer. Distributed
memory architectures have enough memory, and to take advantage of these computers
algorithms must involve large tasks that can be executed in parallel. Iterative methods
represent a way of developing such algorithms. Iteration techniques to solve problem
(1.1), require that the system is reduced to a standard eigenproblem:

K'Mq= ;q
and thus a linear system has to be solved (either K~ or an approximation of K~}
[SVAV96], [BKP97]). However in structural analysis many problems occur, such as
mutiplicity of eigenvalues, semi-definiteness, etc. [GLS86], and some of these have
been adressed by the developments in the Lanczos algorithm. In addition the Lanczos
method seems to be the most well suited algorithm for very large problems, because
it requires few iterations per converged eigenvalue, and this number remains indepen-
dent of the problem size. But for large problems, a robust and parallel linear solver is
required without the use of secondary menory during computation. In static analysis,
for geometrical or materials reasons, the stiffness matrix is often ill-conditioned. It-
erative substructuring or domain decomposition methods, such as Schur complement

(1.2)
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methods, have a nice mechanical interpretation. They have proven their numerical
and parallel scalability and are better than a direct method [FC95] for this kind of
problem. From the CPU time point of view, the Schur dual complement method is
more attractive than the primal approach [Cro97], due to the use of an economical
preconditioner, and the ease to solve in a parallel way the coarse grid induced by
rigid body. Therefore, the large sparse linear system, at each iteration of the Lanczos
algorithm, is solved by the dual Schur complement method.

The paper is organized as follows: section 2 recalls briefly the Lanczos method and its
parallel implementation. Section 3 presents the way of computing the global rigid-body
modes. Section 4, describes a restarting technique to take into account the successive
right-hand sides in order to reduce the number of iterations and section 5 is devoted
to an extension of this technique. In Section 6, some numerical results obtained on the
Intel PARAGON computer, using the finite element package MODULEF (INRIA) in
a message-passing environment, are presented.

2 Lanczos Algorithm

The Lanczos algorithm for extracting the smallest eigenpairs of a system is an inverse
power-based method. In its basic form, it is an algorithm for computing an orthogonal
basis of a Krylov subspace, i.e., a subspace of the form:

K. = spanf{yo, K=" Myg, ..., (K~ M) " *yo}. (2.3)
The main iteration of the algorithm can be briefly described by the following recurrence

ﬂryr-i-l = K_lMyT — QrYr — /Br—lyT—la

where «, and (,_; are selected in such a way that the vector y,41 is M-orthogonal
to ¥, and y,_1:

ar =y’ MK 'My, and B,_1 =y MK 'My,_,. (2.4)
Then, (2.4) can be expressed in matrix form as follows:
K 'MY, =Y, T, +S with Y, =[yo ... 4r ] and S =1[0 ... Bry1¥rt1 |, (2.5)

where T, is a tridiagonal matrix. The application of the Rayleigh-Ritz procedure to
the standard form of the initial eigenvalue problem (1.1), by a projection into the
subspace generated by the Lanczos vectors ¢ = Y,.z, leads to the reduced eigenvalue
problem:
1

Tz = i (2.6)
We refer to [CG82] for practical considerations of the Lanczos algorithm, such as:
choice of starting vector, restart procedure to take into account possible multiple
eigenvalues, convergence strategy, eigenmodes and error analysis.

From the numerical point of view the most CPU time consuming operations are:
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e solution of the large-scale linear system with K !
e M-orthogonalization of y,
e computation of matrix-vector products with M

These tasks are naturally parallelized by substructuring. The physical domain is
divided in N, nonoverlapping subdomains, and the problem on a global domain
is replacing by solving iteratively a condensed problem on the interface of the
subdomains. This involves at each iteration solving of locally independant problems.
Then, each subdomain is allocated to a processor which knows only the data
corresponding to its subdomain and information about neighboring subdomains
through interface decomposition. As a sequel, a processor is responsible for computing
a fixed subset of each vector (Lanczos vector, search directions,etc.). The internal
problem in each subdomain is solved by a direct method while the interface problem,
which incorporates a coarse grid induced by rigid body modes of subdomains without
external Dirichlet conditions, is handled by a parallel Preconditioned Conjugate
Projected Gradient (PCPG) method [FR94]. Finally, a full reorthogonalization of the
Lanczos vectors is performed. The reduced eigenvalue problem (2.6) is solved in a
sequential way thanks to suitable methods from optimized LAPACK library.

3 Global Rigid-body Modes within Substructuring Framework

Structures having rigid-body modes arise frequently, especially for aeronautic
applications. In these cases the inverse iteration process which consists in:

) g = My 3.7)
2) Y1 = K_lgr (3.8)

is modified to filter rigid-body modes [GR94] and becomes:

1) g0 = My, (3.9)
2) g = g-—(MR,g9,)R (3.10)
3) Gr1 = K~ 'g, (3.11)
4) Y41 = Jr41— (MR, §rp1)R (3.12)

where the matrix R stores the rigid-body modes of the structure. Step 2 and step
4 respectively express the self-equilibrium of the inertia load, and the fact that the
new Lanczos vector is M-orthogonalized with respect to the rigid-body modes. The
difficulty is then to compute the global rigid-body modes of the structure. We recall
the algebraic system induced by the dual Schur complement method [FR94], and we
note with an (s) superscript, a matrix or a vector quantity associated to the st* given
substructure:

K®y® = §& _ & iy Q) for s = 1,..., N,, (3.13)
Ns
> By =0 onT, (3.14)

s=1
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where the vector of Lagrange mutipliers p represents the interaction forces between
the substucture Q(*) with s = 1,..., N, along their interface I, u is the displacement
vector, f the loading vector, and B®) is a signed boolean matrix which localizes a
substructure quantity to the substructure interface T'(*).

If the global structure has no Dirichlet boundary conditions, it will be considered
as floating. Hence the stiffness matrix is singular and the restriction of its rigid-body
mode u, in each subdomain verifies the following relations:

K&yl =0 in Q®, fors=1,...,N,, (3.15)

N
> By =0 onT. (3.16)
s=1

Let us then introduce the convention of Farhat and Roux [FR94], the following new
quantities:

G = BYR® and G =[GV ...c"), (3.17)

where the matrix R(®) stores the rigid-body modes of the substructure Q(*). In such
a situation, the number of floating substructures Ny, is equal to the number of
substructures N and G does not have full column rank, thus a set of nonzero coefficient
¥ exists such that:

N,
> BYRDE® =0 onT. (3.18)

s=1

This equation implies that the rigid displacement field defined by R(*)¥(®) in each
substructure is continuous across the substructure interface and satisfies definition
(3.15), or in other words, the global rigid-body modes can be expressed as a
linear arrangement of the local rigid-body modes. It can be shown [LT90] that
Ker(G) = Ker(GTG), and then ¥ is also solution of the following problem:

GTGU =0 where 97 = {TM" gy (3.19)

which provides an easy way to compute the matrix ¥. To solve problem (3.19),
matrix GTG must be assembled to compute singularities. Let us note that the coarse
problem GT G is the same as previously where the decomposition induces some floating
(Ny < N;) substructures, but the original problem is well posed. Finally, the relations
(3.10) and (3.12) are respectively replaced by:

N,
g =g —y ROWE)  with y =Y (MO RO EE) ) (3.20)
s=1
Ns
50 =3¢ —y ROBO  with y = 3 (MORO @), 56) ) (3.21)

s=1
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4 Successive Right-hand Sides

The presented technique has been analyzed by Saad [Saa87], and applied to improve
substructure based iterative solver for different applications [FC95] [RTD95]. The
domain decomposition method leads to an interface problem which is solved thanks
to a conjugate gradient method.

Cu=hb, (4.22)

where C is the interface operator. The conjugate gradient algorithm generates an
orthogonal basis for the Krylov subspace K = span(go,Cgo,-...,C*¥"1g0), where
go = b — Cpy is the initial residual, and po an initial guess. Let us assume known
the k first search directions, thus the approximate solution at the (k + 1)t* iteration
can be expressed by:

(b — Cpo,w;)
fbr1 = o + Z Cw”‘;} )’ w;. (4.23)
(3 1

At each iteration of the Lanczos algorithm, the same interface problem has to be
solved with a new right-hand side:

Cu? =0 (4.24)

The information (p! search directions collected) from the solution of the first system
(4.22) is used to provide an optimal guess 3 ,,; for the solution of the second system
thanks to expression (4.23).

p 2 2
b — Cuf, w;
:ug,opt = :ug + E : ( (Cw 2}) )’LUj. (425)
i=1 (2 (2

The generalization of this restarting procedure for many right-hand sides is given by:

p' .. p™ !
(0™ — Cpg', wi)

0ot = Mo + —_— " w;. 4.26
0,0pt 0 ; (sz, wz) 7 ( )
In practice, the initial guess solution wuf® is chosen equal to zero, which significantly
simplifies the computation of the expression (4.26). Let us note that a full
reorthogonalization of the search directions is necessary [Rou94] to ensure stability

of the algorithm and to avoid computing the same search directions again:

P .. +p™ +k Pl . +p™  +k (ges1, Cuy)

. —+1 1
Wet1 = Gr+1 — sw;  with v = —— 4.27
+ + ; YiWs Yi ; (Cw;, w;) ( )

5 Parametric Studies

The restarting techniques can be interpretated as a Krylov preconditioner, when the
matrix C' changes. This situation occurs when solving nonlinear problem [Rog93]
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[Rou90]. We propose to use the Krylov preconditioner in another context. Suppose
we have computed the eigenpairs of a structure, and that later a new system has to
be solved coming from a small modification of this structure:

cmod = b. (5.28)

The existing preconditioner P (Dirichlet or lumped preconditioner in the case of the
dual Schur complement method) is then improved by the Krylov space which comes
from the previous computation (p; search directions w and matrix-vector products
Cw) with matrix C. It is given as follows:

i) = (Pgkt1, Cwi)
(Cw,,wz) v

P1
, W
P g1 = Pgipa + ) (9e1 (5.29)

i=1

The technique gives good results if the spectrum of C and C™°? are close. Consequently
the modification must be done far from the interface between substructures.

6 Numerical Results

We study a steel three-dimensional cantilever beam (20mx4mx4m). The finite
element discretization is done with 6,400 hexahedral QI-Lagrange elements
(23,595 dof). The beam is cut in 8 slices (1x1x8), each substructure has 3,267 dof and
the interface has 2,541 dof. Ten eigenpairs are required. The computation is carried out
on 8 nodes of the Intel Paragon. Figure (1) shows the iteration history with different
acceleration techniques. The restarting technique reduces dramatically the iteration
number. We note that due to the particular decomposition (no cross points), the
improvement is less important in case of the Dirichlet preconditioner. The three times
appearing in the legend to the figure (1), correspond to the total CPU time, the time
of the preparation step (assembly and factorization of the local stiffness matrix), and
the time spent in the Lanczos and the dual Schur complement methods. In practice,
the dual Schur complement method represents almost 80% of this last CPU time.
The CPU times point out the best result for the lumped preconditioner. The Krylov
preconditioner, figure (2) is tested on a structure 3% longer than the previous one
(only one substructure has been modified). The reuse of the Krylov preconditioner
reduces the CPU time (-20%). This is a useful numerical tool for parametric studies
under conditions pointed out in section 5.

The beam is now box partitioned into 8 (2x2x2), 16 (2x2x4) and 32 (2x2x8)
subdomains. Figure (3) and (4) show the numerical and parallel scalability of the
method proposed. The CPU time is less for boxes decomposition than it was for slices
because of the smaller bandwidth of the local problems.

The Schur dual complement method with coarse grid is insensitive to the number
of subdomains. The accuracy of eigenpairs is governed by that of the linear system
solution, which must be increased when many eigenpairs are sought.
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Figure 1 Restarting technique Figure 2 Krylov preconditioner
INTERFACE PROBLEM - PCPG ITERATION NUMBER INTERFACE PROBLEM - PCPG ITERATION NUMBER
19 LUMPED PRECONDITIONER WITH RESTART (312s = 89s +223s) =— 4 ¢ LUMPED PRECONDITIONER WITH RESTART (327s = 100s + 227s) <— |
DIRICHLET PRECONDITIONER WITH RESTART (406s = 170s + 237s) -+~ LUMPED AND KRYLOV PRECONDITIONER (263s = 100s + 163s) ~+-

DIRICHLET PRECONDITIONER (420s = 170s + 250s) -8--

1 5 10 15 20 23 1 5 10 15 20 23
LANCZOS ITERATION LANCZOS ITERATION
Figure 3 Numerical scalability Figure 4 Parallel scalability
INTERFACE PROBLEM - PCPG ITERATION NUMBER CPU TIME (s)
8 SUBDOMA\‘NS‘ INTERFACE 4394; dof, ACCUMULATED‘SEARCH DIPECTION.‘S 19‘9 @‘% w LUMPED PRECONDITIONER WITH RESTART —+—

16 SUBDOMAINS, INTERFACE 4995 dof, ACCUMULATED SEARCH DIRECTIONS 210 -x--
32 SUBDOMAINS, INTERFACE 6196 dof, ACCUMULATED SEARCH DIRECTIONS 210 -4--

16
NUMBER OF PROCESSORS

P
10 15 20 21 22
LANCZOS ITERATION

7 Conclusion

The method proposed has been tested with success on different examples [Cro97],
especially an ill-conditioned problem (steel-elastomer structure) and presents good
features for the parallel solution of large scale eigenvalue problems. It can be improved
by including new developments in domain decomposition solvers. For the classical
shift-and-invert approach M (K —oM)~'Mq = ﬁM q, in which o is chosen close
to the desired eigenvalue A, a new coarse grid must be introduced, because there are no
more floating subdomains. Finally, extension to nonsymmetric eigenproblem provides
no difficulties.
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