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Incomplete Domain Decomposition
LU Factorizations

J. C. Diaz, M. Komara, and J. Hensley

1 Introduction

The incomplete domain decomposition LU factorizations for the solution of systems
of linear equations arising from the discretization of two-dimensional non selfadjoint
PDEs are introduced. The construction of the factorizations is presented for positive
definite M-matrices. The theoretical discussion is for two subdomains. Multidomain
numerical illustrations are also included.

Consider a decomposition of the computational domain 2 into two overlapping
subregions, arbitrarily ordered €2; and €2». The original method due to Schwarz
[Sch70] consisted of alternating the solution on each subdomain until convergence was
achieved. Domain decomposition methods have evolved this idea to the construction
of preconditionings. Consider LU factorizations on each subdomain. Using these
factorizations, a symmetrized domain decomposition preconditioning solves in domain
4, then solves in domain 22, and finally corrects in domain Q;, see [BW86]. The cost
per iteration is the cost of 3 LU solves.

The method proposed here has the feel of an LU factorization: forward elimination
followed by back substitution. First using the subdomains L U factorizations, forward
eliminate in domain §2;, carry that information to domain {25 forward eliminate there.
Then, the back substitution is completed in the reverse order: first, in domain Qs and
then in the original domain €2;. The cost per iteration is equivalent to the cost of 2
LU solves. Thus, the cost per iteration of the incomplete domain decomposition LU
factorizations is approximately 2/3 of the cost of traditional domain decomposition
factorizations.

Just as the original idea of Schwarz and the multiplicative domain decomposition
methods have the feel of a Gauss-Seidel iteration on the subdomains, the factorizations
proposed here have the feel of a block symmetric Gauss-Seidel. This should make
the factorizations proposed here somewhat more robust than traditional domain
decomposition factorizations. This is born out in the application to time dependent
problems where the step size is adaptively changed for the accuracy of the solution,
[Kom96]. Incomplete domain decomposition LU factorizations are able to solve the

Ninth International Conference on Domain Decomposition Methods
Editor Petter E. Bjorstad, Magne S. Espedal and David E. Keyes ©1998 DDM.org



INCOMPLETE DOMAIN DECOMPOSITION LU FACTORIZATIONS 81

linear systems for larger time steps.

The combination of less cost per iteration and robustness makes this factorization
an attractive preconditioner. The incomplete domain decomposition LU factorizations
can be extended to multiple subdomains, [DK97]. Furthermore, the multiple
subdomains factorization is parallelizable through the use of coloring.

In Section 2, the domain 2 is decomposed into overlapping subdomains and the
incomplete domain decomposition factorization is derived. A brief analysis of the
factorization is presented in Section 3. The factorization is related to a regular splitting
of an expanded matrix, whose dimensions exceed the original matrix according to
the amount of overlap. Section 4 reports the results of some numerical experiments
illustrating the potential of the factorization.

2 Incomplete Domain Decomposition LU Factorizations

The presentation centers in the solution of the linear system
Az =b (1)

arising from the finite difference discretization of two-dimensional PDEs on a
rectangular domain 2. A is an n X n nonsingular matrix, b is a given n-dimensional
vector, and z is the n-dimensional unknown vector. The matrix A is assumed to be
a positive definite M-matrix. The linear system will be solved using preconditioned
conjugate gradient type methods [SSF95, VdV92].

The construction of incomplete domain decomposition LU factorizations is
presented for the case of two overlapping subdomains. The extension to several
subdomains will be presented elsewhere due to space limitations.

Start by first subdividing € into two overlapping subdomains. Then the matrices
constructed from the discretization of the restriction of the PDEs on these subdomains
are used to construct a matrix G that has a dimension larger than that of A. The
incomplete factorizations of A are obtained from the incomplete LU factorizations of
G.

Decompose {2 into two non overlapping subdomains O; and O, and an internal
boundary < such that Q@ = O; Uy U Os; see Fig. 1a. The internal boundary 7 is
extended to create subdomains Q; and Qs that overlap and cover 2. Extend « to
the right and denote the new boundary by 71 and the region between y and 71 by
O1,. Similarly, extend v to the left and denote the new boundary by 7> and the
region between vy and 2 is denoted by Os,. The two overlapping regions are defined
by @ = O U0, Uy, and Qp = Oy U Oz, U y2, and the overlap between them is
Qo =71 U014 UyU Oz, Us; see Fig. 1b. Also, let Q, = Q2 \ @1 and Q, = Q2 \ Q.
Then Q; and , are disjoint and cover 2, and 2, and Q, are disjoint subdomains
covering {s. It can be seen that Q, = ..

Now let w be the set of grid points introduced in €2 after discretizing 2 with mesh
size h. Define by w; = w Ny the set of grid points in Q;, we = wN Qs the set of grid
points in Qs, w, = w N, the set of grid points in 2, and w, = wN, the set of grid
points in 2,.. Note that w = w; Uw,, since ; and Q,, are disjoint subdomains covering
Q. Note also that ws = w,, Uw, since , and 2, are disjoint subdomains covering .
Denote by ny, na, n,, and n, the number of grid points in w;, ws, w,, and w,. The
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Figure 1 (a) Nonoverlapping subdomains and (b) Overlapping subdomains
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order of the matrix A of Equation (1), n, is equal to the number of grid points in w,
i.e. n=nq + Ny.

Let G11, Ga2, AY,, and A}, be the matrices arising from the discretization of the
restriction of the PDEs on wq, w2, wy, and w,, respectively. The matrix G2 can be
represented in 2 x 2 block form as

oo [ A A @
27| A Ay, Wy
since w, and w, are disjoint subsets of ws such that ws = w, U w,. Similarly, w; and

w, are disjoint subsets of w such that w = w; U w,, and hence, the matrix A can also
be represented in 2 x 2 block form as

All A :| w1
A= w A : 2
[ Ay A% Wy @
where
0 w1 \ Wy w1 \ Wy Wy
A1 =G A, = d Ay, = ;
11 11, 12 |: Agg :| Wy B an 21 [ 0 Agg :I

Let I be the identity matrix of order k£ and m = n; + ny. Consider Py, P, and P,
respectively ny X nq, ny X n, and m X n matrices given by

Pl =In17 P2= |:IO :| ZT ) and P = [zl sz :| Z: - (3)

Let G12, G21 and G be respectively ni X na, na X n1 and m X m matrices defined by

AY Wy G2 G2 w2

Wy Wy 0 r G G
Gia = [0 Aqu] , Gop = [ ] w , and G = [ 11 12] w1 (4)

Then, the identities hold
A11L2=P1TG12P2, 121'1=P2TG21P1, and A121'2=P2TG22P2.
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Furthermore, it can readily be checked that the equality A = PTG P holds.
A is an M-matrix and so are G111 and Ga2 which are principal submatrices of A. It
follows that the matrix
Gu=| 42 4 |

ur u
A22 A22

obtained by setting some of the off-diagonal entries of G'25 to zero is also an M-matrix.
Therefore, there exist traditional splittings [BP94] of G711 and G2 such that

Gi1=Q:1—E, and 622=Q2—E2,

where Ql_l, Q;l, E; and E, are nonnegative matrices, i.e. the entries of Ql_l, Qz_l,
E; and E, are all nonnegative. The matrices ;1 and @2 are derived from the (block)
ILU factorizations of G11 and G22 and have the form

Q1= (L1 +B1)B{*(Bi+U1) and Q= (L2 + B2)B; ‘(B2 + Ua),

where L; and Lo are the strictly lower parts of Gi; and (N}'zz; and U; and U, are
the strictly upper parts of Gi; and Gaz. The matrices By and Bs are M-matrices
constructed during the factorization process.

Now let B, L, U, Q and G be matrices of order m defined by

_ Bl 0 w1 _ L1 0 w1 _ U1 G12
B = [0 Bz:| Wo ’L_ [Gzl L2:| Wa ’ and U= [0 U2:|

(5)

Q= (L+B)BY(B+U) and G = [Gn glz] w1

Ga1 G2 w2
The incomplete domain decomposition preconditioner of A is defined by
Qoo = (PTQ7'P)™! (6)

where () and P are given in Equation (5) and (3), respectively. Note that the
preconditioner has the feel of an LU factorization. Computing the action of Ql_rl, D
on a vector requires a forward elimination followed by a back substitution. From
Equations (2), (3) and (4) it follows that the matrix PAPT can be written as

[ Gu G12 -|

pPAPT = [0 0 ]
G
|_ oo 4 J
= G_Gur_Gru; (7)
where
0 0 0 0

Gur = 0 A, 0 and G, = 0 0 ALY

Ay 0 0 0

Note that G,,,P = 0 and G=G- Gry.

w1
W
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3 Analysis

The matrix G was constructed, in the previous section, from principal submatrices of
the matrix A which has been assumed to be a positive definite M-matrix. From these
assumptions the following Lemma can be established [Kom96, DK97].

Lemma 1 There ezists a matriz E such that G = Q — E is a regular splitting, i.e.
the entries of Q=1 and E are all nonnegative.

The stability of the incomplete domain decomposition factorization is established
in the following Theorem.

Theorem 1 The preconditioned system K = Q71 A is a principal submatriz of Q_lé

IDD
given by K = PTQ™1GP, and all of the eigenvalues of the preconditioned system K
have positive real part.

PRrOOF: First note that PTP = I,,, GuP = 0 and G = G — Gyy. Using these and
Equations (6) and (7), it follows
K = Q;},A=P'Q 'PA=PTQ 'PAPTP
= PTQ Y (PAPT)P = PTQ™ (G - Gur — Gyu)P = PTQ (G — Gy)P
= PTQ7'GP.

This establishes the first part of the Theorem.
Using Lemma 1 and the above result, K can be rewritten as

K = PIQ 'GP=P'Q"Y(Q-E)P =PI, —Q 'E)P
= I,-PTQ'EP.

Since G = Q — E is a regular splitting, it follows that the spectral radius p(Q~'E)
of Q71E is less than unity ([BP94], page 181). Also, since PTQ~EP is a principal
submatrix of the nonnegative matrix Q1 E it follows that p(PTQ 1EP) < p(Q™'E)
([BP94], page 28). Finally, the spectral radius p(I,, —K) of I, — K satisfies the inequality

p(I, —K) = p(PTQ™'EP) < p(Q7'E) < 1,

which shows that all the eigenvalues of I have positive real parts. QED

4 Numerical Experiments

The potential of the domain decomposition preconditioners is best illustrated by
applying it to cases where the domain 2 has been decomposed into several subdomains.
Both box and stripe decompositions of the computational domain Q are considered;
see Fig. 2.

The coefficient matrix of Equation (1) is obtained from the discretization of the
PDEs on the unit square Q = (0,1) x (0,1). The following PDE is solved

ou ou

—Au+’y(ma—$+ya—y) +pu=f in Q
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Figure 2 (a) Stripe decomposition (b) Box decomposition. Non overlapping and
enlarged subdomains

(a) (b)

with Dirichlet boundary conditions where v = 1000 and 8 = —100. The function f is
chosen such that the exact solution is u = 2(1 — z)y(1 — y) exp(y).

The five-point finite difference scheme is used for the discretization of the PDE on a
uniform grid. The first and second order derivatives are approximated using centered
differences. Note that although this problem is highly non symmetric, its discretization
matrix remains a positive definite M-matrix.

For n = 32,64,128, a uniform grid is introduced with spacing h = 1/(n + 1) in
). The matrix A arising from the discretization of the above PDE is a nonsingular
M -matrix of order n? for each problem.

The linear system Az = b obtained from the discretization of the PDE is solved
using preconditioned Bi-CGSTAB [VdV92] and GMRES(50) methods. The latter is
the GMRES method [SSF95] that is restarted after every 50 iterations. The iterative
solvers are considered to have converged when the initial residual is reduced by a factor
of at least 107¢, that is, the stopping criterion is || r; ||2< 107 || 7o [|2, where r; =
b— Az; is the it" residual, z; is the i*" approximation to the solution z, and ||  ||2 is the
Euclidean norm. The initial guess is £op = 0 in all the test runs. The preconditioners
used are the incomplete domain decomposition LU factorizations presented in this
paper. To construct the preconditioner, compute the block ILU factorizations of the
coefficient matrices derived from the discretization of the restriction of the PDE on
the overlapping subdomains. The incomplete factorizations for these local matrices
are their INV (1) factorizations [CGM85, CM86, Meu89]. The ordering is the natural
order. No effort is made to select a particular ordering for the grid points or for the
subdomains.

The performance of the preconditioner @), ,, is investigated. Throughout, the Bi-
CGSTAB and GMRES(50) used in conjunction with a preconditioning matrix C' will
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Table 1 Number of iterations required for various grid sizes and overlaps

Box Decompositions Stripe Decompositions

n =32 n==64 || n=128 n =32 n=64 || n=128
Ov DM Bi |{GM || Bi |[GM ||Bi | GM (| DM (| Bi | GM || Bi | GM || Bi | GM
Oh 1 4 | 5 6 | 8 ||11 | 14 1 4 |5 6 | 8 || 11| 14
2h 4 4 | 5 6 | 8 ||10] 14 || 2 4 | 5 6 | 8 || 11| 14
4h 4 | 5 6 | 8 ||10 | 14 4 | 5 6 | 8 || 11| 14
6h 4 | 5 6 | 8 ||10 ]| 14 4 |5 6 | 8 || 11| 14
8h 4 | 5 6 | 8 ||10 ]| 14 4 |5 6 | 8 || 11| 14
2h || 16 5| 6 719 || 11|16 | 4 4| 6 719 | 11| 15
4h 5| 6 719 || 11| 16 4| 6 719 | 11| 15
6h 5 | 6 719 | 11 16 5| 6 719 | 11|15
8h 719 | 11 16 719 | 11|15
2h || 64 8§ |10 8 | 12| 13| 19 || 8 5 7 7 (10| 10 | 16
4h 8§ | 12| 13 | 19 7 110 | 11 | 16
6h 9 | 12| 13 | 19 7 110 | 11 | 16
8h 13| 19 11 | 16
2h || 256 14 | 18 || 19 | 25 || 16 10 | 13 || 15| 19
4h 19 | 24 16 | 19
6h 19 | 24 16 | 19

be denoted by Bi-CGSTAB/C and the GMRES(50)/C, respectively.

A test is carried out for obtaining the solution of the above problem using the
Bi-CGSTAB/Q®,,, and GMRES(50)/Q,,,, solvers. The numerical calculations were
carried out in double precision on a Sun workstation. All calculations are serial.
The numerical performance of the preconditioners is considered herein. Their parallel
implementations which will be presented elsewhere.

Results

The test results are gathered in Table 1. The overlap between the subdomains is labeled
Ov and is the same for any two subdomains that overlap. For instance, if 0v = n,,h,
where n,, is a nonnegative integer, then the overlap between any two overlapping
subdomains is nyyh. In other words, the overlap between the grids corresponding
to any two overlapping subdomains is 7., grid lines. The number of subdomains is
reported in the column labeled DM. The number of iterations taken by Bi-CGSTAB
and GMRES(50) methods are reported in columns labeled Bi and GM, respectively.

In all the test runs, the case DM = 1 corresponds to using the INV (1) factorization
of A as preconditioner; i.e. Bi-CGSTAB/INV (1) and GMRES(50)/INV (1) methods
are used.

In all the test runs, the number of iterations seems to be independent of the
size of the overlap. On the other hand, Bi-CGSTAB/Q,,, and GMRES(50)/Q,,,,
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require more iterations as the number of subdomains increases. Preconditioners
based on box decompositions take more iterations than those derived from
stripe decompositions. The coefficient matrices of the subdomains, however, are
larger for stripe decompositions than for box decompositions. Therefore applying
the preconditioners requires more computation on the subdomains in the stripe
decompositions case than the box decompositions case.
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