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Dynamics and Computational
Electro-Magnetics
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1 Introduction

Domain-based parallel implementation of numerical codes using unstructured grids
have been very successful for codes based on explicit integration schemes. For implicit
schemes, which require successive linear solves, there is still room for improvement and
research toward an efficient linear solver based on domain partitioning. In particular,
since an efficient solution of the overall nonlinear problem does not require each
successive linear problem to be solved to maximum accuracy, iterative methods are
usually preferred.

In [Ven94], linear systems are solved by a preconditioned iterative method with a
block diagonal preconditioner on interfaces and involving, within each subdomain, an
incomplete factorization corresponding to a fixed sparsity pattern. While the local and
parallel solves are efficient since their cost are linear in size, the convergence of the
outer method degrades when the number of subdomains is high. A coarse grid solver
has also been proposed in [Ven94] to alleviate this problem, at the cost of introducing
a complex agglomeration procedure.

In [FMR94], a dual Schur complement method is presented for linear problems in
elasticity: it is shown that the dual version of the method is preferable from a spectral
convergence theory point of view. Indeed, the number of “outer” Schur iterations does
not depend much on the number of subdomains into which the initial mesh has been
divided. But this remarkable result is achieved with the use of direct solvers in each
subdomain. Reusing previous right-hand sides at the “outer” level in reconjugation
techniques also proves to be efficient: this is shown in [Rou94] for nonlinear problems
in elasticity.
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Following these lines, we would like to find a domain-partitioned linear solver
which is suitable for applications in Computational Fluid Dynamics (CFD) and
Computational Electro-Magnetics (CEM). We begin by describing our CFD solver;
from its parallel implementation on distributed memory machines, we infer the desired
characteristics of our parallel linear solver. We then present three solvers based on dual
Schur complement methods and discuss their merits on representative problems. A
more realistic three-dimensional result is then given to support our discussion. Lastly,
we present some future work, applying these techniques to CEM problems.

2 VIRGINI: a CFD Solver for Low and High-speed Aircraft
Design

VIRGINI is a two/three-dimensional Navier-Stokes solver developed at Dassault-
Aviation for the last 10 years. It is extensively used for the simulation of viscous flows
including modelization of turbulence phenomena and nonequilibrium air. We refer to
[CMR94] and the bibliography therein for a complete description of its ingredients,
which we would like now to review briefly.

Governing Equations

For the sake of simplicity, we restrict ourselves to viscous turbulent flows. Let p, u,
and E denote respectively the density, the velocity, and the total energy per unit mass
of fluid. The mass-averaged Navier-Stokes equations for a compressible viscous fluid
read as conservation laws in flow domain € for:

mass % +V-(pu) = 0, (2.1)

momentum 6:;;: +V-(pu®u) = V-0, (2.2)
E

energy U4V (pBu) = V-(ou)-V-aq,  (23)

where o is the Cauchy-Reynolds shear stress tensor and q is the heat-flux vector.
Appropriate boundary conditions, usually of the no-slip type, are enforced on 9f2.
Using the above set of equations to describe the mean flow, we rely on a classical
Boussinesq hypothesis and the concept of eddy viscosity to make the required
turbulence closure assumptions, which lead us to the following definitions for the
stress tensor

. . 2 2
o = (p + py ) {Vu + Vu' - EV ~ul}— (p+ gpk)l,

the total energy
1
E=e+§|u|2+k,
and the heat-flux vector,

— _ viscl viscl
q= (lu’ Pr + lu’t Prt )ve
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Here £V'5¢ is the molecular viscosity, uy**¢ is the eddy viscosity, 1 is the identity tensor,
k is the turbulent kinetic energy, v = ¢,/c, is the ratio of the fluid specific heats. The
laminar Prandtl number is taken as P, = 0.72 and the turbulent Prandtl number is
taken as P+ = 0.9. Internal energy e is defined by e = ¢,T" and pressure p is calculated
from the thermodynamic state equation p = p(p, T).

The turbulence model used belongs to the k —e family (see [CMR94]) and introduces
two extra equations:

visc

k visc 'uvisc visc
Pop T Pu Vk—V - ((u™ + ;—k)w) = Hi(k,e p,u, pu™) (2.4)

e visc Hl'isc visc
pa +pU'VE—V' ((,U: + O—)VE) = Hs(k,e,p,u,,ut ) (25)

which are solved for k and e. The eddy viscosity is then defined as:

. k2
u;nsc — PCH ? .

Here oy, 0¢,C,, are modelling constants and Hy, H are source terms.

Numerical Approximation

Different numerical approximations are used for the two systems of equations above.

For system (2.4-2.5), corresponding to the turbulence model, the positivity of k
and € is achieved by the combination of two main features (see [CMR94]): the use
of a monotone advective finite-volume scheme and the time discretization of the
source terms. This is done via a semi-implicit time-marching algorithm, leading to
two decoupled linear systems to be solved at each time iteration:

Ai . visc Mfsc .
p— +pu-Vi—V-((p"+—=—)Vi) = H,, (2.6)
At oi
where ¢ = k or €, and Ai (resp. At) is the variable (resp. time) increment.

In system (2.1-2.3) representing the mean flow equations (see [CMR94]), a
Galerkin/least-squares finite element formulation is applied to the compressible
Navier-Stokes equations which has been rewritten in the form of a symmetric
advective-diffusive system in terms of entropy variables VI = 9#/0U, where
UT = {p, pu,pE} are the conservative variables and H(U) = —ps is the generalized
entropy function, with s being the physical entropy per unit mass. A fully implicit
time-marching procedure is used, so that a nonlinear problem is solved at each time
step. A linearization through a truncated Taylor series expansion is then performed,
leading to the following linear system to be solved for variable increment AV

~ A ~ —_
AOA—‘;+A-VAV = V- (KVAV)+F (2.7)

in which
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XO is symmetric and positive definite,
A= {sz}, 1 <4 <5 with jl symmetric,
K is symmetric and positive semi-definite,

F is the current right-hand side.

Finally, the discretized mean flow equations and the turbulence equations are
coupled through a splitting method. At a current time step, we solve the Navier-Stokes
equations using turbulence data evaluated at the previous time while the turbulence
equations are solved using the flow variables computed at the previous time.

All space discretizations are done on unstructured meshes with piecewise linear
interpolation on tetrahedra. Since we are using VIRGINI to get steady-state solutions,
time accuracy is not mandatory. Thus, the above linear systems need not be solved
to maximum accuracy and our preferred linear solver is an iterative method, namely
GMRES (see [BBC'94]), with diagonal preconditioning for (2.6) and nodal block-
diagonal preconditioning for (2.7).

Computer Implementation

An iterative linear solver like GMRES requires only two types of operations (see
[BBC*94]): vector inner-product and matrix-vector product. This allows us to
implement in VIRGINI the so-called “matrix-free” procedure, that is matrices
for systems (2.6) and (2.7) are never stored, only procedures to compute the
corresponding matrix-vector products are created. This feature, along with the usage of
diagonal preconditioning, give an “explicit-like” behavior to the code, which facilitates
vectorization via coloring techniques and parallelization via domain partitioning.

VIRGINT has been ported on various platforms: IBM ES-9000, Convex C2-C3, NEC-
SX3, Intel iPSC-860, IBM SP2, workstations (IBM RS6000, SGI), etc. The memory
requirement is about 2.7KB per mesh node, which means that, on our 16-processor
IBM SP2 with “thin” nodes (i.e., with 128MB of local memory), we can accommodate
a “maximum-size” mesh of 750,000 nodes. We give some typical convergence data in
the following simplified flowchart of VIRGINTI:

Begin time-marching loop

step 1: Solve (2.7) with previous turbulence data
— convergence level required: 10~! to 1073
— number of GMRES iterations: at most 10

step 2: Solve (2.6) with previous flow data
— convergence level required: 1073 to 1072
— number of GMRES iterations: at most 20

End time-marching loop if nonlinear residual is small enough

Improving Performance

We would like to improve the convergence of the linear solvers while retaining, as much
as possible, the nice features of VIRGINI.
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One usual way is to replace the diagonal preconditioner by a more elaborate one
built from an incomplete LDU factorization of the linear operators. This preconditioner
introduces some extra memory and computational burdens which must be carefully
evaluated.

For system (2.7), preliminary tests have shown that it requires too much extra
computation and, in particular too much extra memory, which cannot be accounted
for in light of the low convergence requirement. The situation is different for system
(2.6) which must be solved more accurately. But then, what becomes of the incomplete
LDU preconditioner in a parallel framework involving domain partitioning?

An “ad hoc” local incomplete LDU preconditioner has been proposed in [Ven94],
where Dirichlet type conditions are imposed on interfaces, allowing the decoupling
of the original operator into local ones. This has been shown to work well for Euler
solvers, but the convergence degrades as the number of subdomains increases.

We would like now to derive, in the framework of dual Schur complement methods,
a parallel solver for system (2.6) based on local incomplete LDU factorization, which,
ideally, should have the following characteristics:

e Convergence rate nearly independent of the number of subdomains, even at
low levels of convergence

e Local solvers, the costs of which, both in computer time and in memory
requirement, are linear in problem size.

e Improvement upon a global GMRES solver with diagonal preconditioning.

In what follows, incomplete LDU factorization, iLDU in short, will be understood
to be with the sparsity pattern of the original matrix.

3 Dual Schur Complement Solvers

In this section, we first present three parallel solvers based on dual Schur complement
methods and discuss their merits on two model problems which are representative of
VIRGINI:

problem P1) two-dimensional flow around a NACA0012 airfoil at free-stream
conditions: Mach number = 0.799, incidence = 2.26°, Reynolds number
= 9 x 10°. Mesh sizes are: 8008 nodes and 15794 triangles. The converged
solution needs about 1000 time steps. As a model problem, we pick out
the linear problem corresponding to system (2.6) at the 700th time step,
where the flow is fully developed.

problem P2) three-dimensional flow over a blunt body at free-stream
conditions: Mach number = 3.0, no incidence, Reynolds number = 10°.
Mesh sizes are: 3506 nodes and 13280 tetrahedra. We have chosen the
linear turbulence problem at the 10th time-step, at the beginning of the
convergence which takes about 200 time steps.

Secondly, a more realistic test case is presented in which the “best” solver is
implemented.
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Solver 0: Direct Local Solver

In [FMR94], a dual Schur complement method, named FETI (for Finite Element
Tearing and Interconnecting), is presented for elliptic problems in elasticity. We briefly
recall the ingredients of FETI, adapted to system (2.6).

In flow domain 2 discretized by an unstructured mesh (identified in the sequel with
the flow domain), let A be the matrix of system (2.6), f the right-hand side vector
and u the vector of unknowns. We partition Q into N, subdomains {2°}1<,<n,, and
we denote by A%, f%,u® and B?, respectively, the subdomain discretization of operator
A, the subdomain right-hand side and unknowns, and the signed matrix with entries
—1,0,+1 describing the subdomain interconnectivity. The original problem Au = f is
shown to be equivalent to the following one:

Vs,1<s<N,, AW +B X = f° (3.8)
N,
Y B = 0, (3.9)
s=1

where X is the Lagrange multiplier for constraint (3.9). As in the original FETI
algorithm, the local systems (3.8) are solved by a direct method and there is an
“outer” iterative procedure to compute A: since A is nonsymmetric, we have used a
GCR algorithm (see [BBCT94]).

We have implemented this solver for problem P1 with different mesh partitions.

Table 1 CPU performance for solver 0

Number of subdomains 1 4 8 16 32
ideal iLDU 1.0 0.25000 0.12500 0.06250 0.03125
Solver 0 not rel. 0.03900 0.01400 0.01620 0.01740

The results are shown in table 1, where we have taken as CPU time unit, the CPU
time taken by a global GMRES algorithm with iLDU preconditioning, converged
to 107'¢, on the whole mesh . The other entries in the “ideal iLDU” line have
been computed assuming that this GMRES algorithm has been somehow “perfectly”
parallelized. Values in the “Solver 0” line are actual measures.

For different values of N?¥, solver 0 performs better than the “ideal” iLDU
preconditioner, although for N°® > 8 there is a performance stagnation due to
the importance of communication versus computation. However, these results were
obtained for a level of convergence up to machine precision, which is required for direct
methods. Moreover, these direct methods entail extra burdens at the subdomain level:

O(n2%) in computation and O(nl-%) in memory, where n; is the size of the local matrix
As.
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Solver 1: Iterative Local Solver

To make the extra work at the subdomain level, linear in size, one simple idea is to
replace the local direct solvers by local iterative solvers. We have done this in solver
1, where the local solver is a GMRES algorithm with iLDU preconditioning. But now,
we have to monitor two levels of convergence: 45, for the “outer” GCR algorithm and
€1oc for the local GMRES algorithm.

For problem P2, we have made a study of the relationship between 4, and €;0. for
two mesh partitions.

Table 2 Level of convergence (“outer” iterations count) for solver 1

2 subdomains

£gl0 = 1073

Eglo = 1075

Eglo = 10710

€loc = 1073
€loc = 1075
€loc = 1010

0.80 x 1073( 8)
0.39 x 1073( 8)
0.39 x 1073( 8)

0.68 x 1073(19)
0.33 x 1075(19)
0.32 x 1075(19)

0.68 x 1073 (44)
0.80 x 1076 (44)
0.23 x 10710(44)

4 subdomains

£gl0 = 1073

Eglo = 1075

— 10—10
€glo = 10

€loc = 1073
€loc = 1075
Eloc = 10710

0.72 x 10=3(17)
0.29 x 10~3(17)
0.29 x 1073(17)

0.66 x 10~3(31)
0.71 x 10-5(31)
0.35 x 1075(31)

0.66 x 10~3 (61)
0.63 x 10~6 (61)
0.42 x 10~19(61)

The results are shown in table 2. As expected, it does not pay to converge more,
at the subdomain level, than to the level of convergence fixed for the “outer” GCR
algorithm: indeed, one should take €;,, = €410 . Another interesting remark is that the
higher this level of convergence is, the weaker the dependence of the rate of convergence
on the number of subdomains, in a relative sense.

Solver 2: Direct Local Solver for Approrimate Operator

In solver 1, we have seen that the scalability in the number of subdomains is dependent
on the level of convergence required, local as well as global. This constraint is removed
if, as in solver 0, the local solver is direct, but we have seen that this incurs too high a
memory requirement. On the other hand, in the dual Schur formulation (3.8-3.9), the
global operator is defined solely by its local representation. From the local incomplete
LDU factorizations:

Vs,1<s<N,, A°~L°D°U° = A° (3.10)
we can define an operator A from its local contributions A®. Since the incomplete
factorizations are done with the same sparsity pattern as for A®, the extra work
to compute and store A is linear in ny and the local solvers are direct. Thus the

application of solver 0 to A will result in a parallel solver having all the required
characteristics.
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If Ais a good “approximation” to A, we can now propose solver 2 which has the
following ingredients:

o global iterative algorithm: GMRES with level of convergence €4,
e global preconditioner: solver 0 applied to A with the same level of convergence

Table 3 Level of convergence (“outer” iteration count) for solver 2

£gl0 = 1073 Eglo = 1075 £g10 = 10710

2 subdomains 0.57 x 10~4(9) 0.44 x 107%(12) 0.36 x 10~11(21)
4 subdomains 0.44 x 10~4(9) 0.41 x 107%(12) 0.36 x 10~11(21)

We have implemented solver 2 for problem 2 and results shown in table 3 suggest
that we have come up with a good solution since the “outer” iteration count does not
vary when we go from 2 to 4 subdomains.

A Realistic Test Case

To support our discussion, we have run VIRGINI, with solver 2 implemented for system
(2.6), on a more realistic flow simulation: a low-speed flow around the forebody of a
military aircraft, namely a Mirage 2000, at high angle of attack.

Free stream conditions were: Mach number = 0.2, incidence = 50°, altitude = 3000
meters. Mesh sizes were around 50,000 nodes and 275,000 elements.

We have made a thorough comparison, during the first 100 time-steps, between this
version of VIRGINI and the original version. The gains, for a convergence level for
system (2.6) fixed at 1075, were:

in iteration count ~ 60%
in CPU time =~ 4%.

The smaller gain in CPU time can be accounted for by the extra local incomplete
factorizations done at each time step. Different operator “freezing” strategies should
be used here to alleviate this problem.

The complete convergence for this simulation needed about 2,000 iterations and
over 33 hours on a IBM SP2 with 4 (thin) processors.

4 SPECTRE: a CEM Solver for Aircraft Design

We would like now to sketch some future work applying dual Schur complement
methods to CEM problems. SPECTRE is a three-dimensional solver for the Maxwell
equations developed at Dassault-Aviation for the last 6 years. We refer to [CLL190]
and [CZJ96] as well as the bibliography therein for a complete description of its
ingredients, which we would like now to review briefly.
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Governing Equations

Let H, E, K,J denote respectively the magnetic field, the electric field, the magnetic
surface current and the electric surface current. SPECTRE solves the time-harmonic
Maxwell equations for perfectly conducting material which read, for domain 2:

VxVxH-KH = 0 in Q, (4.11)
VxVxE—-KE = 0 in Q, (4.12)
—-nxE = K on 09, (4.13)
nxH = J on 09, (4.14)

where n is the outward unit normal to 92 and k is the incident wave number. In the
far field, the Sommerfeld radiation condition should also be enforced.

Numerical Approximation

This radiation condition constitutes a major numerical difficulty in Maxwell equations.
In the CEM community, it is customary to distinguish two types of problems:

interior problems: such as simulating fields in waveguides and cavities; there
is no need for a radiation condition.

exterior problems: such as simulating fields scattered or radiated from
structures; the Sommerfeld condition must be enforced.

For aircraft design, the above two situations are present. As proposed in [CZJ96],
SPECTRE partitions domain 2 into two parts separated by a bounding surface and
uses a coupling method between:

EFIE: an Electric Field Integral Equation solution, exterior to the bounding
surface, that exactly enforces the Sommerfeld radiation condition.
Piecewise linear electric surface currents J are defined on the boundary
discretized by an unstructured surface mesh composed of triangles, leading
to the following equation:

Z; ] = (4.15)

where Z; is a dense matrix and V; represents the incident field. A direct
Gauss solver is used for the solution of (4.15).

MFVE: a Magnetic Field Volumic Equation solution, interior to the bounding
surface. For a given electric field E computed from (4.15), equation (4.11)
along with its natural boundary condition (4.13) is solved for magnetic
field H. A finite element formulation is used with an unstructured
volumetric mesh composed of tetrahedra; it is based on the H(rot)
tetrahedral element (see [CZJ96]) with unknowns defined on edges. The
resulting linear system, with a sparse symmetric and complex matrix, is
solved by a QMR iterative procedure with a SSOR, preconditioner (see
[FN91] and [BBC194)).
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The above coupling is done in a direct manner. The bounding interface unknowns
are eliminated by a succession of independent linear solves for MFVE, one for each
degree of freedom on this interface.

MFYVE: Parallel Implementation using Dual Schur Methods

For these solutions, we would like to apply the different parallel solvers defined in the
previous section. In this perspective, we need to keep in mind the following differences
with the CFD case:

1. The level of convergence required is higher: 1078.

2. Preliminary tests have shown that, due to the particular spectrum of the
operator, the “outer” GCR, algorithm in the dual Schur methods should be
replaced by a QMR procedure.

3. We are solving for a given linear operator with a large number of independent
right-hand sides: reconjugation techniques proposed in [Rou94] should be
useful.

In light of these remarks, solver 0 seems to have the advantage.

5 Conclusion

We have proposed a parallel preconditioner, based on dual Schur methods and
incomplete LDU factorization, which seems to be scalable both in terms of the number
of subdomains as in terms of the level of convergence required.

Applications to problems in CFD have given thus far only a small gain compared
to the usual diagonal preconditioner. We are expecting higher gains as we go on to
“stiffer” problems such as those encountered in unsteady flows or multi-disciplinary
optimization.

Applications to problems in CEM are still in the development stage.
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