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Development of a Domain
Decomposition Method for
Computational Aeroacoustics

G. S. Djambazov, C.-H. Lai, and K. A. Pericleous

1 Introduction

Computational Aeroacoustics (CAA) implies the direct simulation of acoustic fields
generated by flows and of the interaction of acoustic fields with flows. ‘Direct’ implies
that the computation is only based on fundamental physical principles without reliance
on empirical results or heuristic conjectures.

Since sound can be represented as comprised of different frequencies it is not difficult
to estimate the resolution requirements for a typical domain, say around an airport,
and a typical frequency range of interest, say up to about 100 Hz. If the ecologically
important zone — immediately after take-off — is assumed to be 300 m long, 300 m
wide, and 100 m high, and if 10 is assumed to be a reasonable number of grid points
per wavelength, then the total number of grid points in this computational domain
will be about 230 million. This shows that for realistic problems the computing power
required with a direct approach is exceedingly large.

The classical approach to aerodynamic noise is Lighthill’s “Acoustic Analogy”
[Ligh2] which does not involve direct computation of the sound field. It can be used to
estimate the level of noise generated by some turbulent flows, but not the nonlinear
interaction between the flow and the sound waves.

Since fluid flow can be easily computed using Computational Fluid Dynamics (CFD)
techniques it is desirable to make use of existing CFD codes as much as possible. The
region of interest is then most often split in two: ‘near field’ with nonlinear acoustic
effects, and ‘far field’ of linear acoustics [SHM95, SH93]. CFD is meant to be used
in the near field. In fact most CFD codes suffer from false (numerical) diffusion and
will tend to lose the noise too near the place it is generated. Hence, they have to be
combined with an Acoustic Analogy, which easily handles the far field [SH93, ZRL95].

If there is a code to compute the near field accurately enough, Kirchhoff’s surface
integral method can be applied to the far field [Lyr93]. Accordingly, any quantity which
follows the wave equation outside a given surface is defined by its values, spatial and
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temporal derivatives on the same surface. The Kirchhoff surface should be chosen far
enough to contain all the nonlinearities of the near field, and still close enough to form
a reasonably sized computational domain.

This paper describes the initial stages of the development of a CAA code for the
near field. Following the domain decomposition approach certain modules of this code
are shown to be useful in the far field as well.

2 Decomposition of the Variables

Sound is a form of fluid motion, and as such it is governed by the equations of
continuity (2.1) and momentum (2.2). Any fluid quantity has been represented as
a sum of a ‘mean’ value (indexed with (), and a ‘perturbation’ value with no index.
The index summation convention is in use:
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The symbols p, v, p denote respectively the fluid density, velocity and pressure while
F' contains both external forces and internal friction.

There are good reasons for splitting the variables [VS95]. Physically, sound waves
are small perturbations to other large scale motions, such as wind, and numerically
they are best represented separately. Also, in this way existing CFD codes can be used
to solve the ‘mean flow’.

After expanding the brackets many new terms appear in the governing equations,
and an analysis has been made for the magnitude of each of these. For a typical
aeroacoustic problem, terms containing a perturbation quantity are very small
compared to the rest; terms with derivatives of perturbation quantities are not
necessarily so. When all the small terms are moved to the right-hand side, equations
(2.3) and (2.4) are obtained:
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These will be the governing equations for the CAA algorithm. With the mean-flow
values defined by CFD the left-hand side is linear, and the small right-hand side can
be solved for iteratively. Based on the above analysis fast convergence is expected.

The interaction between CFD and CAA is pictured in Figure 1. It is generally
assumed that back-reaction of the sound on the flow field is only to be expected when
there is a resonator nearby [Ligh2], and that is denoted by the dotted arrow. In most
cases iterations in that outermost loop will not be necessary.
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Figure 1 Interaction between CFD and CAA codes
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3 Linear Propagation Solver

The discussion above has made it clear that to study the generation of aerodynamic
noise one has to resolve also its propagation, which occurs simultaneously. That can
be done by a hyperbolic solver, which will become a module in a nonlinear code for
the sound-generation zone. It can also be used on its own for the propagation zone,
where the linearized Euler equations [SHM95] are most often assumed.

Using the standard definition for the speed of sound, ¢, the framework for a two-
dimensional simulation is presented below:

LI (g_g + Z_Z) = & (3.5)
% + c%:cfz, U = PoCly, (3.6)
% + cg—i =cfy, V= pocvy, (3.7)
g—i = A =9= (Yair = 1.4)

Perturbation velocity components along the axes z and y are denoted v, and vy,
respectively. The right-hand sides are now considered known. At any time step a
relative frame of reference — moving with the mean flow — is considered, hence there
are no convection terms left.

The finite volume approach has been followed for the discretization of these
equations. Successive integration along z,y, and t using the notation of Figure 2
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Figure 2 Finite volume formulation — cell-face symbols
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Figure 3 Sample results for the fully explicit numerical scheme

56 time steps, Courant number = 0.7
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Integration along the time axis is expressed here through mean values for simplicity.
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The Fully Explicit Numerical Scheme

Scalar quantities (i.e., pressure) are stored in the centres of the finite-volume cells
while vector quantities (i.e., velocity components) are stored at the cell faces in the
middle of the time steps. All integrals are approximated by stepwise functions. The
resulting explicit scheme is then the same as the one resulting from a finite-difference
approach:

P = potd — Cou[(te — Uy) + (vn — vs)] + *Atg,
u = uoig — Cou(pe — pw) + cAtf,,

v = vo1q — Cou(pn — ps) + cAtfy,

Cou = cAt/h,

where At is the length of the time step, and h is the size of the cells on a regular mesh.

This scheme was first tested in one dimension, which is the case of plane wave
propagation (with v = 0) because exact analytical solutions can be obtained for plane
waves (1D) and spherical waves (3D), but not for circular waves (2D). Computed
results were exact at the limit of stability with Courant number Cou = 1. As these
are of no practical interest, further tests were done with the maximum Courant number
for the 2-dimensional case, i.e., 0.7 (see left graph of Figure 3).

An axisymmetric version of the test code was developed to check the resolution of
spherical waves, and the results are pictured to the right-hand side of the same figure.
The 56 time steps in these tests correspond to 39 cell-lengths and about 3 wavelengths.

The Improved Numerical Scheme

Although the graphs in Figure 3 seem encouraging the accuracy is actually not
sufficient as the error increases with each time step, and after 200 - 300 time steps it
becomes unacceptable.

If there are no shocks and the sound field is described by continuous functions,
the best way to overcome this difficulty is higher order approximation. Bearing in
mind that the final code will be 3-dimensional involving too many neighbours in the
numerical scheme does not seem convenient. Based on these arguments a parabolic
approximation has been applied to all functions in the finite-volume integrals:

zo+3
/ f(@)dz = B[Af(zo — h) + (1 — 24) f (o) + Af(z0 + h)], A= i

In 2D this means

[ #(e.)dady = A fon (1 40 e

cell
with ‘nb’ used to denote all four neighbours of a cell in a regular mesh.

The numerical scheme now becomes implicit, so a linear system of equations has
to be solved at each time step. Direct methods cannot be considered because of the
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Figure 4 Validation of the improved numerical scheme in 1D for 2000 time steps
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large number of grid points. However, the iterative solution can be provided with a
very good initial guess based on the explicit scheme.

When finally the nonlinear terms are implemented in the code their iterations can
be done simultaneously with the solution of the linear system.

Tests were performed on the new version in 1D over 2000 time steps. These are
equivalent to about 100 wavelengths and seem to be enough to take the signal studied
out of the near field. The results shown in Figure 4 exhibit encouraging accuracy. The
amplitude of the oscillating numerical error will be about 5% at the boundaries of
the near field, which is acceptable. As expected, the efficiency of the algorithm is very
high: only 3 to 4 iterations are necessary for convergence at each time step.

4 Coupling of the Subdomains

Since the noise generation domain (near field) is always contained in the propagation
domain (far field) all that has to be done is to implement adequate radiating boundary
conditions for the near field and to solve it prior to the far field. Time-dependent values
of the variables are then imposed on the inner boundaries of the far field, and radiation
conditions on its outer boundaries.

With the test version of the code the boundaries have been chosen to be comprised
of cell faces (stepwise boundaries). Thus only the time-dependent velocity component
that is perpendicular to the boundary has to be determined. This has been done
under the assumption that the wave equation holds there (no sources of sound at the
boundary), and that the outgoing waves are plane waves. The boundary velocities then
can be determined from the velocity field at the previous time step by interpolation.
The exact positions of the interpolation points depend on the directions of acoustic
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radiation and on the Courant number, and can be calculated for each boundary face.

5 Conclusions and Further Work

A combined decomposition method of both the domain and the variables has been
developed that is capable of handling the computationally intensive problems of
aeroacoustics.

A solver for the linearized Euler equations has been implemented and tested showing
encouraging accuracy. It is a module to be used in both domains for the perturbation
variables. Based on a finite-volume staggered grid, the algorithm proposed is stable
and efficient.

Future work includes three main stages. First: implementation of the convection
terms from (2.3) and (2.4), which have been omitted in this study. (These results
will be presented at the 3rd ATAA/CEAS Aeroacoustics Conference in May 1997.)
Second: discretization and implementation of the nonlinear terms to complete the
acoustic module for the near field. Third: coupling of the acoustic module with a
CFD code. In order to build an efficient coupled algorithm, a study has to be done
to determine how fine the CFD mesh and time stepping has to be, and whether to
include the viscous terms in the acoustic solver.

The combined CFD-CAA code will find environmental applications in studying the
mechanisms of generation of aerodynamic noise, and in searching for a way of reducing
the noise made by jets, propellers, and wind.
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