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Second-Order Transmission
Conditions for the Helmholtz
Equation

Jim Douglas, Jr. and Douglas B. Meade

1 Introduction

Several domain decomposition methods for the solution of elliptic problems have been
proposed, analyzed, and successfully implemented during the past decade [BW8&6,
BPS86, GW88, HTJ88, Lio88, Lio90]. In recent years these ideas have been extended
to non-elliptic equations such as the Helmholtz equation [Des91, Des93, Des95, Ben95]
and the harmonic Maxwell system [DJR92].

It is well-known [Lio88] that iterative methods using the Dirichlet or Neumann
transmission conditions may not converge to the exact solution; the use of (first-
order) Robin conditions on the inter-domain boundaries assures the convergence of
the sequence of iterates. In practice, however, this convergence tends to be very slow.
In this paper a set of second-order Robin-type transmission conditions is proposed.
The new transmission conditions significantly improve the rate of convergence of
the iterates. After a brief overview of the general problem, including a general
domain decomposition formulation, the specific model with second-order Robin-type
transmission conditions is presented. A numerical example is used to demonstrate the
benefits of this method. The discussion in this paper is intended to motivate the new
algorithm and illustrate the type of improvements that are possible. A full description
of the method with the accompanying theory is under development.

2 General Problem

Many applications in electromagnetics, acoustics, and elasticity require the solution of
a wave equation on an unbounded domain. A number of methods have been created for
the reduction of the problem to a bounded domain. A common approach is to truncate
the exterior domain and impose an appropriate boundary condition on the artificial
boundary. The exact “radiation” boundary condition (RBC) is non-local (in both space
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and time); numerous spatially local approximate RBCs have also been developed (see,
e.g., [Giv91]). Interest in domain decomposition methods for the solution of these
problems arises from the fact that the direct solution of realistic scattering problems
require the solution of large, sparse, complex-valued systems of linear equations.
Domain decomposition methods are employed to create an iterative method requiring
the direct solution of related problems on a small subdomain, typically a single bi-
quadratic finite element.

The model problem selected for this investigation is the time-reduced scalar wave
equation, 4.e., the Helmholtz equation, in the exterior, Qt, of a two-dimensional
scatterer, ():

—Nu—w*u = f in QF (2.1)
U = go on 0N}
gu _ z'wu| = o(r~'/?) asr — oo, uniformly in 6. (2.3)

Note that the Sommerfeld radiation condition, (2.3), prevents the creation of energy
at infinity. Thus, the problem has at most one solution.

The corresponding problem on a bounded domain is obtained by truncating the
domain at an artificial boundary, I'!, and replacing (2.3) with a RBC with tangential
boundary operator, B. That is,

—ANu—w?u = f inQf (2.4)
u = go onl (2.5)
% 1 Bu = g; onI" (2.6)

Selection of I'* and B should be made so that a solution to (2.4)-(2.6) is both a
good approximation to the solution to (2.1)—(2.3) and can be numerically computed
in an efficient manner. Balancing these opposing constraints can be difficult and,
in practice, often depends on the specific application. For example, a particularly
effective combination used in many electromagnetics problems is to place I'* about one
wavelength from the (convex hull of the) scatterer and to use the Kriegsmann RBC
for B [KTU89, LWMP96]. For a long, thin rectangular scatterer and a reasonable
discretization of the resulting domain the linear system involves more than 7,000
unknowns. While this is a considerable savings over the system of more than 35,000
unknowns that results from the use of a circular artificial boundary, the benefits are
seen in scattering problems. (The 3-D vector problem presents even more problems.)

3 Domain Decomposition Methods for the Helmholtz Equation

A nonoverlapping domain decomposition method is a natural choice for the iterative
solution of (2.4)—(2.6) . Let ! be partitioned into a finite number of nonoverlapping
subdomains ;. The interfaces between subdomains are denoted by Xjx; I'; and T
denote the intersections of a subdomain with the scatterer and artificial boundary,
respectively. That is, Qf = UjEJ Qj, Xjp = 0Q;N00; for all j # k,T; := 0Q;NI, and
F; := 8%, NT*. The outward unit normal vector, relative to Q;, is v; and g; := g|r§.-
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Table 1 Lowest-order radiation boundary conditions, Bu := ou + ﬂg%.

Order Type a | g
0 Neumann | 0 0
1 Robin W O
2 Robin W i
2w

The iterative domain decomposition algorithm requires an initial solution, u?, often

zero, on each subdomain, then computes the sequence u? of functions that satisfies

(A -t = f in Q; (3.7)
u?"'l = g on I; (3.8)

(aiuj + B)u?‘*‘1 = g; on 1"; (3.9
(o + Tt = (=55 + T)u} on X Vk (3.10)

where T is the tangential differential operator used as the interface condition between
adjacent subdomains.

The convergence of this method depends primarily on the choice of the tangential
boundary operators B and 7. The Neumann and two lowest-order Robin-type
radiation boundary operators are summarized in Table 1. It is well-known [Lio88,
Lio90] that the Dirichlet and Neumann transmission conditions do not guarantee
convergence of the iterations for all values of the frequency w. Després [Des91, Des93,
Des95] has shown that a convergent iterative method does result from the use of
the first-order Robin-type boundary condition for both B and 7. The convergence
is in both H'(Q;) for all j and, under additional smoothness assumptions on the
subdomains, in H~2~¢(Q?) for all € € (0,1]. 1

In practice, however, this algorithm exhibits a surprisingly slow rate of convergence
[Des93]. A noticeable improvement in the rate of convergence is obtained if an under-
relaxed version of the transmission condition is used, i.e., replace (3.10) with

(i + Tt =(1- 5)(—i + T)ug + 5(i + T)u}

DY k
6Vj al/k al/j J On Sk v

(3.11)

for some value of the relaxation parameter ¢ € [0,1).

A better approximation to the original wave propagation problem on an unbounded
domain (2.1)—(2.3) is obtained when the second-order RBC is applied on the artificial
boundary. It is conjectured that the use of the second-order transmission condition
similarly improves the convergence of the domain decomposition method. The analysis

1 While Després’ results are developed for the special case in which there is no scatterer, i.e.,
T =0, it is easily seen that the same holds for the more general problem.
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of this problem is not substantially different from the analysis of the problem with first-
order radiation and transmission conditions. The second-order tangential derivative
introduces some additional technicalities into the analysis of this algorithm, but the
same general approach can still be applied.

4 Variational Formulation

The simplicity of this method and its similarity to the first-order algorithm (and
others of the same type) is clearly demonstrated by the variational formulation of

the problem. Introduce the flux on the boundary and each interface as a Lagrange

multiplier A; := g—lz 50 (see, e.g., [Des93]). Let the standard Ly inner product be
denoted by (-,-) and the H='/?2 — H'/? duality pairing by (-,-). The function space
#(Q;) contains all functions in H*(£2;) with sufficient (tangential) smoothness on the

boundary to assure that
B:H(Qy) » H YT and T :H(Q) - H Y2() for all k.
The variational problem corresponding to the under-relaxed version of (3.7)—(3.10) is:

given initial functions w9 on Q; and A} on 99;, find (for all j) the
(complex-valued) functions u;""l € H(Q;) with u}”‘l =goonT; and
A+ e H™1/2(09;) such that

(Vui ™, Vo) = @ (uf*h o)+ (Bui*ho), + D (Tt o),
! k
= Ek: (O} = (1 =02 v)g |
+ 2 (T (0uf + (1= )up) ,v)g
+ (;7 V)q; + (95> V)p (4.12)
Q5w = (g0 — (Bt w), (4.13)
o)y = —w)g, (T (g —uf™h),w)g (4.14)

for all (real-valued) test functions v € #({2;) that vanish on I'; and
w € HY/?(8Q;).

Note that, except under special conditions on B and the smoothness of the domains,
these variational problems are not Hermitian.
5 Computational Results

To illustrate the improvements that can be expected from this algorithm, consider
the following test problem. Let Qf := (0,1) x (0,1) and T' := (. Subdivide Q! into n
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vertical strips, i.e., for j = 1,2,...,n, Q; = (%, %) x (0,1), X5 =0 for k #j +1,
and X; 41 = {(%,y) cy e (0,1)} (5 =1,2,...,n—1). Let Bu := au—f—ﬁg% with
coefficients taken from Table 1. On each subdomain the test and trial functions are
chosen to be bi-quadratic.? Initialize both the solution, u?, and Lagrange multipliers,
/\?, to zero. Computing the next iterate on one subdomain involves the solution of a
9 x 9 complex-valued linear system to compute u?“ and four 3 x 3 complex-valued

linear systems to compute )\?H along each edge.

All that remains is to select the data for the problem: f and g;. Let U be a bi-
quadratic function on Q* and choose f = —AU — w?U and g; = _B_'Z + BU, for each
j = 1,2,...,n. Thus, the exact solution to (4.12)—(4.14) is u = U. The iterations
terminate when the relative error of the solution and Lagrange multiplier on each
subdomain, measured in the appropriate Ls-norm, falls below a specified threshold.

n+1 aUu A
Q;)’ | A Lz(anj)} <&

dv;
convergence test based on relative error might seem more appropriate, but some of
the exact values of the Lagrange multipliers vanish in the examples of interest. In fact,
since all relevant norms of the exact solution either vanish or exceed unity, the above
absolute error test is actually a slightly more stringent condition.

Note that while this choice of data avoids all issues relating to approximation error,
it is not consistent with the original scattering problem — U does not satisfy the
Sommerfeld radiation condition. Regardless, this is still a valid test of a solution
algorithm for the solution of the boundary value problem (2.4)—(2.6).

The optimal choice of the relaxation parameter is not known. The random selection
of 6 € [0.7,1) for each iteration is reported, by Després [Des93], to yield unexpectedly
good results. In an effort to work with a deterministic algorithm for this project, a
single value for § must be selected; the value 6 = 0.8 appears to be close to optimal
for a wide range of problems.

The results in Table 4, obtained using € = 1073, are representative of the
performance that can be expected from this algorithm. In each case, the problems
utilizing second-order radiation and transmission conditions converge faster than the
corresponding problem with first-order conditions; the specific improvement ranges
from 10% to 70% and averages a little more than 50%. The benefits of under-
relaxation are also evident in all test cases. It is interesting, however, to note that the
improvement due to under-relaxation is noticeably greater for the first-order problems.

That is, for a given € > 0, max; {”u;‘+1 — U||L2(

6 Additional Issues

The experimental results are encouraging, but several issues remain unanswered.
Partial answers are summarized where possible. Computational evidence referred to
in this section is based on examples closely related to those presented here.

e Note that under-relaxation can be used, independently, on each term in the
transmission condition. Is there any advantage to relaxing the two terms

2 Note that while solutions to this problem are complex-valued, it suffices to use real-valued
bases for the test and trial spaces.
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Table 2 Comparison of iterations to convergence for first- and second-order Robin
transmission conditions with and without under-relaxation.

# Iterations to Convergence
Exact order 1 order 2

Solution Grid | 6=0|0=08]| d=0|6=0.28

1 2x1 214 13 63 12

1 4x1 285 27 100 22

1 8x1 517 69 177 40

1+x 2x1 239 153 122 58

1+x 4x1| 415 258 212 122

(I+x)(14y) | 2x1 256 165 76 63

(14x)(1+y) | 4x1 || 445 277 151 130

()\?'H and ’Tu?"'l) by different amounts? Likewise, would other aspects of
the problem benefit from the use of under-relaxation, smoothing, or other
modification to the standard iteration?

e The results in [Des93] are based on the relative Lo-error of the solution;
there is no guarantee that the Lagrange multipliers have converged. In fact,
computational tests indicate that the Lagrange multipliers converge much
slower than the solution in each subdomain.

o Choosing the initial solution to be zero is easy to implement. It is also
somewhat simpler to analyze. Is there a better choice for the initial solution?

e Table 2 appears to indicate that the number of iterations is roughly linear in
the number of vertical strips. While this general trend is observed in larger
tests, the correlation seems to not be as strong as the results presented in
Table 2 might suggest. This implies that the current implementation, with
one element per subdomain, is not likely to be optimal for large problems. Is
it possible to find an optimal balance between the selection of a decomposition,
the efficiency of the subdomain solver, and the transmission of information
between subdomains?

o These tests always require that B = 7. Preliminary computational tests in
which B and 7 are Robin-type boundary operators of different orders can,
when combined with the appropriate use of under-relaxation, be convergent.
More specifically, while the local Robin-type boundary operators are optimal
(in a certain sense) for use on the truncation boundary, are the same
operators the optimal choice for the transmission condition? Related work
in this direction (see, e.g., [HTJ88, GCJ95]) recommends the use of non-local
transmission conditions.
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