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An Additive Schwarz method for
Elliptic Mortar Finite Element
Problems in Three Dimensions

Maksymilian Dryja

1 Introduction

In this paper, we discuss a domain decomposition method for solving linear systems
of algebraic equations arising from the discretization of elliptic problem in 3-D by the
mortar element method; see [Mar90, AG93] and literature given therein. The elliptic
problem is second-order with discontinuous coeflicients and the Dirichlet boundary
condition. Using the framework of the mortar method, the problem is approximated
by the finite element method with piecewise linear functions on nonmatching meshes.

The domain decomposition method is of iterative substructuring type and is
described as an additive Schwarz method (ASM) using the general framework of ASMs;
see [DW95, Ben95a]. It is applied to the Schur complement of our discrete problems,
i.e., interior variables of all subregions are first eliminated using a direct method.

In this paper, we consider the mortar element method in the geometrically
conforming case only. The region €2 is a union of simplices {2; on which a coefficient p;
of the problem is constant. The described ASM uses a standard coarse space defined
on the triangulation formed by Q; of diameter H, i.e., Vo = V¥, a space of piecewise
linear continuous functions which vanish on 912.

The algorithm described is almost optimal, i.e., the number of iterations required to
decrease the energy norm of the error in a conjugate gradient method is proportional
to (1 + log%)g, where g = 1 or g = 3 with the constant independent of the coarse
and fine meshes (H and h) and the coefficient p;. This result is proved assuming a
special distribution of the p; on €;, called quasi-monotone (introduced in [DSW96])
and weak quasi-monotone (introduced herein). This is the main result of the paper.
There are indications that this result is sharp in 3-D with respect to the distribution
of p;, see [Osw95] and [Xu91]. In the case of arbitrary distribution of p;, the number
of iterations can be bounded by (H/h)z.

The results of this paper are generalizations of results obtained in [Ben95b] for 2-D.
The idea of using a standard coarse space is taken from [Glo84], where the 2-D case
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with regular coefficients is considered. The mortar element method in the geometrically
nonconforming case for problems with discontinuous coefficients is not discussed here.
The reason is that it is not clear how to design and analyze ASMs for either the
standard coarse space or for others; see, for example, the new coarse space used in
[Ben95b] in the 2-D case.

The outline of the paper is as follows. In Section 1.2, the discrete problem
obtained from the mortar element method is described. In Section 1.3, an iterative
substructuring method is described in terms of an ASM for the Schur complement
system. In this section, Theorem 1.3.1 is formulated as the main result of the paper.
A proof of this theorem is given in Section 1.5. In Section 1.4, technical tools are given
which are needed for the proof.

Some of the results of this paper have been obtained in joint work with Olof
Widlund.

2 Mortar Discrete Problems

We solve the following differential problem: Find u* € H}(Q) such that
a(u*,v) = f(v), ve Hy(Q), (1)

where

a(u,v) = ZPi(V%Vv)LZ(Qi): fw) = (f,v)r2@),

Q =UN,Q;, and p; is a positive constant in ;.

Let Q be a polygonal region in 3-D and ; be tetrahedral elements. They form a
coarse triangulation with a parameter H. In each Q;, a triangulation is introduced
with tetrahedral elements eg.') and a parameter h;. The resulting triangulation of Q2
is nonmatching. We assume that the coarse triangulation and the h; triangulation in
each §; are quasi-uniform, see [GPP94]. Let X;(2;) be the finite element space of
piecewise linear continuous functions defined on the triangulation of €2; and vanishing
on 9%; N O1). Let

XMQ) = X1(Q1) x -+ x Xn(Qn).

To define the mortar finite element method, we introduce some notation and spaces.
Let
I = (U;00,)\09Q

and let Fj;, E;; denote the faces, edges of ;. The union of Eij forms the wire basket
W; of Q;. We now select open faces 7, of I, called mortars (masters) such that

L' =Unym and vy Ny, =0 if m #n.

By Ym(iy we denote a face of €2;. Let ,,,(; be a face common to 2; and ;. As a face
of Q; it is denoted by d,,(;) and it is called nonmortar (slave). The rule for selecting
Ym(i) = Fij, a common face to ; and (;, as mortar is that p; > p;. Let Whi (Fij) be
the restriction of X;(£2;) to Fj;. Note that on Fy; = ¥p,(;) = dp(;), the common face to
2; and Q;, we have two triangulation, denoted in terms of h; and h; and two different
spaces W (v,¢5)) and Whi (6,,;)-
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Let M"i(8,,;)) denote a subspace of W"i(d,,;)) defined as follows: Let v €
Whi(6m(j))- A function & € M" (8,,(;) has the same values as v at the interior
nodal points of d,,(;). The value of ¥ at a nodal point zy € 9d,,;), the boundary of

dm(j), is equal to
Np ng
o(zg) = Zaiv(xi(k)) Z a; =1,
i=1 =1

where a; > 0 and the sum is taken over interior nodal points ;) of d,,(;) such that
an interval (zx,Z;(k)) is a side of the triangulation and its number is equal to ny, for
details see [AG93].

We say that u;(,,) and u;(y), the restrictions of u; € X;(€;) and u; € X;(Q;) to
0m, a common face to {); and (2, satisfy the mortar condition if

[ (i) = s s =0, W € 25, ®)
[

m

This condition can be rewritten as follows. Let Il (4i(m),v;(m)) denote a projection
from L2(8,,) on Whi(6,,) defined by

/ Hm(ui(m),vj(m))‘l’d8=/ UimyVds, ¥ € M"i (6,,) 3)
) )

m m

and

I (Wim) s Vj(m)) |96, = Vj(m)- (4)

Thus Uj(m) = Hm (ui(m),uj(m)) if 'Uj(m) = Uj(m) on 65m.

By V" we denote a space of v € X" which satisfies the mortar condition for each
8 C T. The discrete problem for (1) in V" is defined as follows: Find u} € V" such
that

b(u;knvh) = f(Uh)a vp € Vh7 (5)
where
N N
b(un,vn) = Zai(uihavih) = Zpi(vuih, vvih)LZ(Qi)
=1 =1

and vy, = {vip}Y,; € V. It is known that V" is a Hilbert space with an inner product
defined by b(u,v). This problem has an unique solution and an estimate of the error
is known, see [AG93].

3 Additive Schwarz Method

In this section, we describe an additive Schwarz method for (5). It will be given for
the Schur complement system. For that we first eliminate all interior unknowns of €2;
using for u; € X;(2;) (here and below we drop the index h for functions)

u; = Pu; + Hu;, (6)
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where Hu; is discrete harmonic in 2; in the sense of (yu, VU)LZ(Qi) with Hu; = u;
on 09;. Using this, we get

s(u*,v) = f(v), ve€VhQ), (7)

where here and below V" denotes a space of discrete harmonic functions in each Q;
and
s(u,v) = b(u,v), wu,v € VH(Q).

An additive Schwarz method (ASM) for (7) is designed and analyzed using the
general ASM framework, see [Ben95a]. Using this framework, the method is designed
in terms of a decomposition of V", certain bilinear forms given on these subspaces,
and the projections onto these subspaces in the sense of these bilinear forms.

The decomposition of V" is taken as

N
VR =ve@+ Y. v+ Y v ). (8)

Ym CT =1z, €EWip,

Here V; = VH is a space of piecewise linear continuous functions, on the coarse
triangulation, which vanish on 9. The space V#LF) (Q2) is a subspace of V" associated
with the master face 7,,. It is the restriction of V" to 7, and 6, (Ym = 6m), and the
zero on 0y, and 0d,,, the remaining master and slave faces, and on 0€2. Wy, is the set
of nodal points of W;. Vk(Wi) is an one-dimensional space associated with z € W;; and
spanned by ®;. The function & is discrete harmonic with data on the boundary of
the substructures defined as follows: Let zj be a nodal point of dv,,(;), the boundary
of the mortar face vy, (;) of ;. We set ® = ¢y, () on v (i), where @i (z) is a nodal basis
function associated with zy. Let d,,() = Ym(i) = Fi; be the face common to ; and
;. @y, is equal to I, (¢k,0) on dy,,(j); see (3) and (4). @ is defined on the remaining
mortar faces of {; in the same way if xj, is a nodal point of their boundaries. ®y, is zero
on the remaining mortar and nonmortar faces of I'. Let z be a nodal point of 9d,,(;,
the boundary of a nonmortar face of ;. ®x(z) is equal to II,, (0, %) on dp,(;. This
means that ®; = 0 on the mortar face v,,,(j) = dpn(i)- @k is defined on the remaining
nonmortar faces of ; in the same way if z; is a nodal point of their boundaries. ®y,
is zero on the mortar and nonmortar faces belonging to remaining substructures. If
Tp is a nodal point common to the boundaries of mortar or nonmortar faces, ®; is
defined on these faces as above.

Let us now introduce bilinear forms defined on the introduced spaces. bg ) associated

with V&) x Vi) 5 R is of the form

bﬁf) (um(z’)avm(i)) = (pi + Pj)(VUm(z'),va(i))Lz(ni)a 9)

where u,,(;) is the discrete harmonic function in €; with data u,,(; on the mortar face
Yi(m) of i which is common to €2; and zero on the remaining faces of ;.

We set by : VWD x ") 5 R and by : Vo x Vo — R equal to b(u,v).

Let us now introduce operators T,(,LF), T,SW"), and Ty by the bilinear forms bg,f ),
biWi), and by, respectively, in the standard way. For example, Ty(nF) T VAL VT,(lF) is the

solution of

bENT )y, v) = b(u,v), ve V. (10)
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Let

N
T=To+ > TP+Y S ™.
Ym CI i=1 2, EW;p
The method described is almost optimal assuming a special distribution of the
coefficients p;, called quasi-monotone, introduced in [DSW96]. The quasi-monotone
distribution on substructures with common vertex x; requires a monotone path from
each substructure to the substructure having the largest coefficient, traversing through
faces of substructures only. If the vertex z € 99, we additionally assume that 9Q2;NO<2
contains a face of the substructure 2; with the largest coefficient p;. This is a local
condition. The distribution p; in 2 is quasi-monotone if it is quasi-monotone at each
vertex of the substructures; for details see [DSW96]. We also introduce the concept of
a weak quasi-monotone distribution of p; for which the traversing path is also allowed
to go through edges. In this case, for a vertex z, € 99, we assume that 9Q; N 9Q
contains the face or the edge of Q; for which p; is the largest in ;.
There are indications that the estimates given below are sharp; see [Osw95] and
[Xu91].

Theorem 3.1 For all u € V"

Co(1+1og )6 alu,w) < a(Tw, ) < Cra(u,w), (11)

where C; are positive constants independent of H, h; and p;, h = inf;h; and

when p; is quasi-monotone
+log &) when p; is weakly quasi-monotone (12)
when p; is not even weakly quasi-monotone

0=

sm= =

4 Technical Tools

In this section, we formulate some auxiliary results that we need to prove Theorem
3.1.

Lemma 4.1 Let vi(m) = 0j(m) be a face common to Q; and 2, and let ui(,) and wj(m)
be the restrictions of u; € X;(;) and uj € X;(825) to Yim) and &y, respectively.
If uitm) and uj(m) satisfy the mortar condition (2) on 0jm) and wjm,) vanishes on
B(Sj(m), then

ljem)[22(6,0ny) < CllUim) 22 (ys00my)> (13)
where C' is independent of h; and h;.
This lemma follows from Lemma 2.1 in [AG93].

Lemma 4.2 Let the assumptions of Lemma 4.1 be satisfied and additionally w;y,)
vanishes on 8dy(,,). Then,

< Olluim)ll? 2

1 ; (14)
H020 ('Yi(m))

i 4
7m) H020(5J(M))

where C' is independent of h; and h;.
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A proof of this lemma follows from Lemma 4.1 and properties of the standard L?
projection on Whi (05(m)) ﬂH&((Sj(m)). In the 2-D case, Lemma, 4.2 is a particular case
of Lemma 1 in [Pes72]. Alternative proofs of this result, also in the 2-D case, are given
in [Glo84] and [Ben95b)].

Lemma 4.3 Let ¢ be a function defined in Section 1.8 and associated with a nodal
point x, € W;. Then

b(q)k,q)k) S Cpihi, (15)
where C is independent of h; and p;.

A proof of this lemma follows from Lemma 4.1 and the definition of ®y.
Let R(z) be a union of the substructures ; with a common vertex zy.

Lemma 4.4 Foru e Vh

Inf [fu — Alie(ray SC D, Helulipa,, (16)
Q,-CR(zk)

where C' is a positive constant independent of h; and H.

A proof of this lemma in the 2-D case is given in [Glo84]. An alternative proof
follows from

ng
|lu — a“iZ(R(mk)) < 22 (I — ﬂi“%Z(Qi) + |l@; — a||iz(9l.)). (17)

i=1
Here the €2; with a common z; are ordered from ¢ = 1,...,n, in such a way that

Q; and Q;41 have a common face F; ;11 and 4; is the average value of u; over Fj ;1.
Using now Poincare’s inequality, we get (16).

Let QF denote the L2 projection from V" to Vo = V¥ in the weighted inner
product.

Lemma 4.5 Foru € V"
b(qu,qu) < Cob(u,u) (18)
and
lu — Q23 0y < CH8b(u,), (19)

where § is given by (12) and C is constant independent of H, h; and p;.
A proof of this lemma is a slighted modification of the proof of Lemma 9 in [DSW96].

5 Proof of Theorem 1.3.1

Using the general theorem of ASMs, we need to check three key assumptions; see
[DW95] and [Ben95a).
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Assumption (ii) It is shown that p(¢) < C in view of Lemma 4.3.
Assumption (iii) Of course, w = 1 for by(u,u), u € V; and bgv")(u,u)7 u € Vk(W").
We now show that for u € V(F)

b(u,u) < CbE) (u,u). (20)

Let Yi(m) = 0(m) be the mortar and nonmortar sides of (2; and ;, respectively. We
have for u € V(F)

b(u,u) = a;(us, u;) + aj(uj,uj) < C(pi|ui|2 1 + pJ|uj| )
[l

0 (Yi(m)) 00(51(m))

Using now Lemma 4.2, we get (20) with w = C.
Assumption (i) We show that for u € V", there exists a decomposition

N
u = ug + Z ug)ﬁ-z Z USCW"), (21)

Ym CT i=1 2, EWip,

where ug € Vo, u$f’) € V) and uiWi) € Vk(Wi), such that

N
bo(uo,uo) + D b (ulP,ulP) + 3 3T b (@™ uf")

Ym CT i=1 2 €W;p

<Cs(1+ log%)zb(u,u). (22)

Let uo = Q}'u, w = u — uo, and w; be the restriction of w to ;. It is decomposed
on 09); as

w; = Z w(F”) (W’ , wEW") = Z w;(z) Py, (23)
F,_,C(?Qih T EWin
where ng“)(a:) is the restriction of w; — (W) to Fjj;, the face of ;, and zero on

To define usf) let Fij = Yi(m) = d;(m) be a face common to Q; and €2;. We set

ug) = {ng“) on 0f); and uJ;.F“) on GQ]-}

(W)

and zero at the remaining nodal points of I'. The function u; "’ is defined as

ul™) = w;(z) @ (2). (24)

It is easy to see that these functions satisfy (21).
To prove (22) note first that

bo(ug,ug) < Céb(u,u) (25)

by Lemma, 4.5.
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Let us now consider the estimate for uﬁf ) e VA(,IF) when v, iy = 0@y = Fij, a face

common to ; and ;. It is known that

b () u)) < Cp; + pj)| w92 2 (i)
Ho (7i(m)

H
<Cpi(l+ lOgE)ZHUi — 0|3 (.5
(3

see, for example, [DW95]. We have used here also the fact that p; > p;. Summing with
respect to v, and using Lemma 4.5, we get

H
> B0 @, ul) < Co(1 + log ) b(u, u). (26)
¥m CI

We now prove that

N
> > B @™ u™) < C6(1 + log )b, ). (27)
i=1 2, EWip

For that note first that, see (24),
b (™ i) < Cu (an)b(Bx, Bi) < Cpihiw (a)

in view of Lemma 4.3. Summing with respect to z; € W;,, we get

> o™ ™) < Opillwil agwy < Cpi1 +log ) lwillin -

zR EWipn E

Summing now with respect to 7 and using Lemma 4.5, we get (27).
To get (22), we add the inequalities (25), (26), and (27). The proof of Theorem 3.1
is complete.
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