78

On Object Oriented Programming
Languages as a Tool for a Domain
Decomposition Method with Local
Adaptive Refinement

Brit Gunn Ersland and Magne S. Espedal

1 Introduction and Model Problem

The main objective for this work is to show how Object Oriented programming
languages like C++ can simplify the implementation of a complex model where domain
decomposition and local adaptive refinement is used. As an example we present a
simulator for two phase fluid flow (oil,water) in a porous media, where the library
DIFFPACK [Lan94b, Lan94a, Dho] is extensively used. We start by constructing the
base classes for the solvers, and use these as building bricks in a more complex system,
where different equations are solved on different meshes with domain decomposition
on the finest mesh. The decomposed domain is regarded as an array of solvers which
compute the solution to an equation on a single domain with appropriate boundary
conditions.

For incompressible immiscible displacement of oil by water in a reservoir the
following equations yield

V-u=q(x,t) (1.1)
u=-K(x)M(S,x)-Vp (1.2)

as
¢E + V- (f(S)u) — eV - (D(S,z2)VS) = q2(x,1) . (1.3)

We will use Neumann type of boundary conditions.

u is the total Darcy velocity, which is the sum of the velocity of the oil and water
phase. K(x) is the permeability which depend on the porous medium, M (S, x) denotes

Ninth International Conference on Domain Decomposition Methods
Editor Petter E. Bjorstad, Magne S. Espedal and David E. Keyes ©1998 DDM.org

664 ERSLAND & ESPEDAL

the total mobility of the phases,
M(S,x) = Ay (S) + X(5),

and p is the total fluid pressure. ¢ is the porosity of the porous media which is
considered constant. The fractional flow function f(S) is a nonlinear function of the
saturation and is given as

_ w(S)
f(8) = % (8) + 2u(S) (1.4)
where the mobility of oil and water,
AL, L€ {o,w}

is a given function of S.

The diffusion coefficient D(S,z) depend on the capillary pressure and the perme-
ability, while € is a small parameter. For a complete survey and justification of the
model we refer to [CJ86].

Here, we regard a rectangular domain which consist of two different sediments as
depicted in Figure 1. Water is injected in the lower left corner and oil is produced
in the upper right corner. Initially we assume that we have an established shock
somewhat away from the injection well. A combination of (1.1) and (1.2) give an

Figure 1 The figure shows a computational domain 2 with an injection well and a
production well.

Production well

Ky Ky

Injection well

elliptic equation for the total pressure. This equation is solved by a finite element
method on a coarse mesh, then the velocity is derived from the pressure with a second
order method [Szv90].

Since € is a small parameter the nonlinear saturation equation (1.3) is dominated
by the convective part of the equation, which denotes the main transport. It is well
known that a nonlinear equation like (1.3) will establish shock like solutions even
from smooth initial conditions, therefore we split the function f(S) into two parts
[EE87, DR&2].

£(8) = f(S) +b(S)S, (1.5)

OO LANGUAGES: A TOOL FOR DDM WITH LOCAL REFINEMENT 665

where f(S), the convex hull of the function. multiplied by u denotes the displacement
of an established shock. Hence, we split the saturation equation in two parts. The
convective part

‘I'(X)g_f = ‘f’%_f + f(S)u- VS =0, (1.6)

is solved by the Modified Method of Characteristics [DR82]. The elliptic part

\Il(x)g—f + V- (b(S)Su) —eV - (D(S,x)-VS)=0 (1.7
is solved a finite element method with optimal testfunctions [BM84]. Since the
saturation develop shock-like solutions a fine resolution is needed to resolve the shock.
However, the elliptic part of the saturation equation (1.7) only contribute to the
solution in vicinity of sharp saturation gradients, therefore we want to solve this
equation in these areas only.

2 Solution Procedure
Since different resolution is needed for the total pressure and the water saturation,

we need to define different grid levels and a mapping between the coarse grid, fine
subgrids and a global fine grid. For this problem we have used the mapping shown in

Figure 2 Mapping between fine grid Qr, fine subgrids Qm and coarse grid Qc .

I
I
I
I
i
! - -
Le=p=zTT_ Lo ----

Figure 2, where Q¢ is the coarse grid, Q2 is the global fine grid and the fine subgrids
are denoted Q,,. A sequential timestepping procedure is used [S2v90], to decouple
the equations. Hence, at every time step:

666 ERSLAND & ESPEDAL

1. Solve pressure on Q¢ and determine the velocity on Q¢ .
2. Solve the hyperbolic saturation equation on Q¢ and on subgrids €2, , with
large saturation gradients.
3. Begin
for m = 1; number of subdomains do
if Q,,, have large gradients
o update the boundary conditions
o solve the elliptic equation
endif
endo
4. Return to 3 until convergence or a maximum number of iterations is reached.
5. Map solution to Qg .

Implementation

In this section we will describe the design and some implementation aspects. A main
objective is to build a design where each solver may be debugged independently.
Now, (1.1), (1.2), (1.6) and (1.7) depend on the mobility function of oil and water,
therefor we implemented these functions together with all the methods which uses the
mobilities in a separate base class FracFunc. The permeability K(x), which depend
on the porous medium is implemented as a separate class. In our test case a domain
as depicted in Figure 1 is used, where the permeability depend on (z,y). However,
in order to use random permeability or several layers with different sediments only
Permeab need to be changed.

The solution procedure which was described in the previous section requires four
solvers, we will just give a brief overview over them before we discuss some details
regarding the implementation of the domain decomposition method.

e Press - inherit FracFunc and contain the data and methods which are needed
to solve the pressure equation.

e Velocity - inherit Press, and use the pressure to derive the velocity.

e CharSol - inherit FracFunc and use the velocity to integrate backward along
the characteristics to solve (1.6). First on the coarce domain Q¢, then on
the fine subdomains (2, where the saturation gradient is large. Here the
saturation on the uniform fine mesh Qr at previous time level is used when
we search the new solution on different grid levels.

e EllSolv - inherit FracFunc, and has a data Type Permeab. The class
contain all the data and methods which are needed to solve the elliptic part
of the saturation equation (1.7) on a single domain. Here, Dirichlet boundary
conditions, Neumann type of boundary conditions, or different boundary
conditions on different boundaries can be chosen.

Both Press and EllSolv is derived form the DIFFPACK base class FEM [Lan94a]
which is a base class for Finite Element programming with DIFFPACK. In addition
both Press and EllSolv has a LinEqAdm which is an Abstract Data Type which
administers the solvers for a linear system of equations, see figure 3. FieldFE,
FieldsFE and GridFE is scalar field, vector field and a finite element grid in the

OO LANGUAGES: A TOOL FOR DDM WITH LOCAL REFINEMENT 667

DIFFPACK library. EllSolv contains a method which solves the elliptic part of the

Figure 3 Data Types and dependencies. Dotted lines indicate a "has a”
relationship, while solid lines indicate a ”is a” relationship. Solid bozxes are newly
constructed Data Types, while dotted bozes is included in DIFFPACK.

|
|| DegFreeFE ! ! LinEgAdm !

L [
,,,,,,,,,,,,, P4, AR
I

N ! .
NS I ,
,,,,,,,,, AN V ¥, __--- Permeab
) N -
‘

FieldFE r---------= ElSov |=~~

LIEETE LT

saturation equation on a given domain §2,,. Instead of decomposing the computational
domain inside EllSolv and by this altering the methods in EllSolv, we construct a
domain decomposition method by making multiple copies of EllSolv where the data
differs. Now, to use a domain decomposition method like additive or multiplicative
Schwarz, some information about the surrounding subdomains are needed. Since
the elliptic saturation equation only need to be solved on subdomains where the
saturation gradients are large, a boolean variable is needed to indicate if the equation
need to be solved on current subdomain at this time level. Therefore, a new class
SatSys is implemented which has a data type EllSolv, an array which keep track
of the neighboring subdomains and a boolean variable. In addition SatSys contain
methods to initiate the local domain €2,, and mark boundaries which are at the outer
boundary, where Neumann type of boundary conditions are used.

Since we want to solve the elliptic saturation by a Schwarz method, we need methods
which control our subdomains. To do this we use a general vector in DIFFPACK,
VecSimplest which can take user defined data types as argument. In our case we
use SatSys as data type in VecSimplest. Let us call the method which solves

Figure 4 Relationships and dependencies for the two phase reservoir simulator
with adaptive local refinement. Dotted lines indicate a ”has a” relationship, while the
solid lines indicate a ”is a” relationship. Solid bozes are newly constructed Data
Types, while dotted bozes indicate Data Types from the DIFFPACK package.

-/ EliSolv
L ,
[TimePrm 1 . -~ satsys

| VecSimples =

|
|
N i
~ R : N
NN
,,,,,,,, N | CharSol
\\ ! -
| -
! P
|
|

e, Thel i Yy ;_/:_7”,,, Velocity
g B ey

668 ERSLAND & ESPEDAL

the elliptic saturation equation on a single domain solveAtThisTimeLevel() and the
vector of subdomain solvers localSys while EllSolv inside SatSys is called ellsolv.
In our code the method which handles the interior boundary conditions is called
updateLocBoundaries(i) which mean that the boundary condition for domain i is
updated. Hence, our multiplicative Schwarz procedure among refined grids are:

for(i=1; i <= nel; i++){

if(localSys(i).Active == TRUE) {

updateLocBoundaries (i) ;

localSys(i).ellsolv.solveAtThisTimeLevel();
}

}

The relationship between the different classes that have been implemented is shown
in Figure 4. In order to avoid multiple data, both EllSolv and CharSol point at the
same objects on the same subdomain €2,, . Likewise do CharSol and Velocity on the
coarse domain Q¢ .

3 Numerical Result

The algorithms which is described in the preveous sections have been tested in 2d
on the domain depicted in Figure 1, where the interface between two sediments
are inside some of the subdomains Q,, . The methods which are used to handle the
interface conditions are teated in [Ers96] which also contain more numerical results and
description of the experiment that is shown here. The results obtained with adaptive
local grid refinement in Figure 5 shows good agreement with the results obtained on
a single domain, see [Ers96].

We have shown that a domain decomposition method is easy to construct when a
object oriented language as C++ is used. Some of the methods which are in EllSolv,
Press and Velocity are initially written by K. G. Frgysa, but modified to some
extent.

Acknowledgement

This research was supported by the Norwegian Research Counsel and the University
of Bergen.

REFERENCES

[BM84] Barrett J. and Morton K. (1984) Approximate symmetrization and petrov-
galerkin methods for diffusion-convection problems. Computer Methods in Applied
Mechanics and Engineering 45: 97-122.

[CJ86] Chavent G. and Jaffre J. (1986) Mathematical models and finite elements for
reservoir simulation. North-Holland.

OO LANGUAGES: A TOOL FOR DDM WITH LOCAL REFINEMENT

Y-Axis

Figure 5 Computed results with adaptive local grid refinements at time level
t = 0.24. The refined area are marked with a cross.

saturation at time=0.24

669

o
/a
|

o
—
E—

[Dho] http://www.oslo.sintef.no/avd/33/3340/diffpack. The Diffpack WWW home
page.

[DR82] Douglas J. and Russell T. (1982) Numerical methods for convection-dominated
diffusion problems based on combining the method of characteristics with finite
element or finite difference procedures. SIAM Journal on Numerical Analysis 19:
871-885.

[EE87] Espedal M. and Ewing R. (1987) Characteristic petrov-galerkin subdomain
methods for two-phase immiscible flow. Computer Methods in Applied Mechanics
and Engineering. 64: 113-135.

[Ers96] Ersland B. (1996) On Numerical Methods for Including the Effect of Capillary
Pressure Forces on Two-phase, Immascible Flow in a Layered Porous Medium. PhD
thesis, University of Bergen. Department of Mathematics, University of Bergen.

[Lan94a] Langtangen H. P. (1994) Details of finite element programming in diffpack.
Technical report, SINTEF, informatics Oslo.

[Lan94b] Langtangen H. P. (1994) Diffpack: Software for partial differential equations.
In Vermeulen (ed) OON-SKI’9). Proceedings of the Second Annual Object-Oriented
Numerics Conference.

[Seev90] Seevareid O. (1990) On Local Grid Refinement Techniques for Reservoir Flow
Problems. PhD thesis, Department of Applied Mathematics, University of Bergen.

