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1 Introduction

Domain decomposition methods have been intensively studied for partial differential
equations. They are efficient parallel methods especially for the elliptic equations.
However, when domain decomposition are used for convection-dominated problems,
the flow directions must be carefully considered. We refer to [WY97], [TJDE97],
[RZ94], [RT97], [KL95] for some results of domain decomposition methods for
convection-dominated problems.

In this work a hybrid domain decomposition method is proposed. When the flow is
simple, a non-iterative domain decomposition approach can be used. The subdomains
in the upwind side shall be computed first and the subdomains in downwind direction
are computed one after another. For each subdomain, Dirichlet boundary condition
is used on the inflow boundary and an artificial boundary condition is used on the
outflow boundary. When the flow is complicated, an iterative method must be used.
The proposed methods are suitable for problem (1) when the diffusion parameter €
is relatively small. For small €, the error introduced by the domain decomposition
methods is small, and one can easily use finer meshes in the subdomains that
intersect with singular layers. When the proposed methods are used for time dependent
problems, the convergence properties are even better. The proposed methods of this
work are easy to implement and easy to do local refinement.

2 The Hybrid Domain Decomposition Method

Consider the advection diffusion problem:

—div(e 7 u) + div(Bu) + au = f, in Q, (1)
u =0, on 011,
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where a, f are bounded functions, 3 is a vector-valued function. For simplicity, it is
assumed that € is a small constant, all results can be extended to the case that € is a
symmetric and positive definite matrix-valued function with small entries €;;.

The standard Galerkin method for (1) is to seek u € SP such that

(ev uh,vv) + (dz'v(,@uh) + auh,v) =(f,v), Ywe S{;, (2)

where S§ € H(Q) is a finite element space on  with zero Dirichlet boundary
condition.

To describe the domain decomposition algorithms, we first divide the domain 2 into
some nonoverlapping subdomains €2; satisfying Q@ = J, Q;, Q% Q; =0, i # j. Let
Sh(Q;) C H1(£;) be the finite element space on §2;, we define

Vi ={v e 8"(Q;); v=00n 0 ﬂan},

Sh = Zw = {v € S"(Q), Vi, v=0o0ndQ}.

Notice that functions from S‘{; can have jumps along the interfaces. Bilinear form
A;(-,-) is defined as:

Ai(w,v) = (e vy w, Vv)q, + (div(Bw) + aw,v)q, — / wivyinQds,
o9;

where n is the unit outer normal vector on 99; and

wy(z) = lim w(z + s0), (w,v)q, =/ wvdz,
Q;

s—0%t

00, ={z € 09, B(z) n(z)<0}.

Our hybrid domain decomposition finite element solution is to find 4" = 3 4 such
that 4} = 0in Q\ Q;, and in Q;, 4? € V; satisfies

Ai(af,v) = (fv)a, — /8 __(@")—vynpds, YoeV;, (3)

where (4/)_ is the boundary value of the solution of the adjacent subdomains in the
upwind direction.

In order to solve the subdomain problem (3) to get 4, the inflow boundary condition
@"| 5~ must be known. Therefore, we need to assume that the flow is simple so that
the domain © can be divided into subdomains and when the subdomain problems are
solved one after another in the flow direction, the inflow boundary condition is always
known from the neighbouring subdomains. If the flow does not have closed streamlines,
this kind of division is always possible. By suitably organising the subdomains, the
computation of the subdomains in the cross-wind direction can be done in parallel.

In the domain decomposition scheme (3), an artificial boundary condition on the
outflow boundary is introduced, i.e. we are in fact using

Ou

= 0, on 89, Vi. (4)
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An error will be produced by this artificial boundary condition. It can be proved, see
[ETY96], that when € is small, the effect from the artificial boundary condition is
small. This is also confirmed in our numerical experiments.

Theorem 2.1 Suppose u is the solution of (1), 4" is the hybrid domain decomposition
finite element solution of (3), o+ 3divB > v > 0 in Q, and [nB| > y1 > 0 on inner
boundaries 0N \0Q, Vi, then

lu— @*llo < C(llu— u'[ly + eZ 12 ~llo,00; \00) (5)

where u! € S} is the interpolation of the solution u, C is a positive constant

independent of h, € and u.

Remark 2.2 Compare (5) with the standard error estimate, one sees that the error
resulted from the artificial boundary condition is only

@G| o o0 on)- ©)

For convection-dominated problems, boundary layers and transient layers can appear
inside the domain . In getting the subdomains, we shall avoid the situation that the
subdomain boundaries are parallel to the streamlines in the singular layers. QOutside
the singular layers, there is no problem. Due to the reason that the boundary layers
are always narrow, i.e. of width less or equal O(e€), we can construct the subdomains
in such a way that the part of 0Q; contained in the singular layers is only of size
O(e). Then, in the worst case, the summation of the error from all the subdomains is

0 1
e 15 lan \on = O(c?)- (7)

If linear finite elements are used for the approrimation and the mesh size is h in the
part of the domain where the solution is smooth, then the error caused by the artificial
boundary condition is negligible when ¢ < O(h?).

Remark 2.3 If a = 0, 8 = constant, then condition o + %div,@ > v > 0 is not
satisfied. Theorem 2.1 is still correct if we just replace ||u — 4"||o by ||u — @"|| 4. Here

ol = 326w Vo, + 537 [ mstas

i

and [v] denotes the jump of v on the inflow boundaries. So, we cannot control the errors

in the L? norm, instead we can only control the errors on the subdomain boundaries,
see [ETY96].

Remark 2.4 The streamline diffusion finite element method (SDFEM) is stable and
shall be used to compute the subdomain solutions preferably. Corresponding error
estimate can also be obtained for SDFEM, see [ETY96].
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3 Some Discussions and Extensions

An Iterative Domain Decomposition Method

When the flow is complicated and there are closed streamlines, it could be difficult to
construct the subdomains in such a way that the subdomain solutions can be computed
in the flow direction and inflow boundary condition is always available when we come
to compute the solution of a new subdomain. In this case, we only need to construct
the subdomains to guarantee n3 > v, > 0 on 012, Vi. Now, the subdomain solutions
are all coupled to each other. An iterative scheme is needed. During the iteration, the
inflow boundary condition is taken from the previous iterative step, and the algorithm
can be written as:

Algorithm 1
Step 1. Choose initial value 49;
Step 2. For n > 1, in every subdomain §;, find ag“mi = A?H € V; such that

At o) = (f,) - / (@})_vinBds, Yve Vi (8)
an;
Step 3. Go to the next iteration.

For the above scheme, it can be proved, see [ETY96], that when 4", 4} are the
solutions of (3) and (8), a + 3divB3 > 0, then the iterative scheme (8) is convergent,
ie. ||[a" — apllo — 0 as n — oo, and when a + 3div3 > v > 0, the spectral radius of

M=

1+ Ce+ Cvyh

Remark 3.1 When € is not small, different kinds of boundary condition on the
outflow boundary should be used to improve the accuracy. For example, Lagrange
multiplier can be used on the inner boundaries, see [WY97] for the details.

1
the iteration operator Ty satisfies p(Tp) < (7)

Time-dependent Problems

Consider the time dependent convection-diffusion problem:

ug — div(e 7 u) + div(Bu) = f, in Q x [0,T],
u(z,t) =0, on 02 x [0,T], wu(z,0) =uo(z), in Q.

We can use the backward difference scheme for ¢. In every time step, we just need to
solve

. k+1 . g1y, Gt u*
—div(ey ") + div(Ba )+E:f+ﬂ’m Q, 9)
with @1 = 0 on 0. Problem (9) is the same kind of problem as (1) with a = 4.
So, the domain decomposition schemes can be used to solve (9). Similar to theorem
2.1, it can be proved that

_ . ou
la* —akllo < Cley/At Z(||a_n||o,asz;\09) + At Jlu— |l + [lu = u'llo), VE,
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where 4F is the domain decomposition solution of (9) by the non-iterative scheme
(3). If the iterative domain decomposition is used to solve (9), because @ = A; is

large, a + %divﬁ > 0, so the iteration is convergent, and the spectral radius of the

1
1+ Ce+ Ch(At)—?
p(To) < C < 1, i.e. the error reduction of the iteration is uniform. Especially, when
At = O(h?), p(To) < Cv/h, therefore only a few iteration steps are required at every
time level, see [ETY96] for the analyses.

1
2
iteration operator is p(Tp) < ( ) . Hence, when At = O(h),

4 Numerical Experiments

As a test example, we solve the model problem
—eAu+divu+2u = f, in Q, (10)
with Q@ =[0,1] x [0,1] and u = 0 on 9. We choose
f=C(e®t72) 4 ea(1=1)) 4 Oy (P12 4 210Dy 4 2
with

- —1—+/1+4e

a
eb — e’ 2¢ 2¢

1—¢b e —1 —-14++v1+4
01:76’ sze :g,

eb — ea
Then the analytical solution is
u= (Clea(l—z) + C2eb(1—$) + 1)(Clea(1—y) + C2eb(1—y) + 1)‘

In the computations, the domain Q is divided into 5 x 5 subdomains. Piecewise linear
finite element functions on uniform triangular meshes is used. In each subdomain,
a first order upwind approximation is used for the convection term and the inflow
boundary condition is realised exactly which is taken from the subdomains in the
upwind direction. Let i=1,2,3,4,5, and j=1,2,3,4,5 be the numbers associated with
the subdomains in the x- and y-directions. We solve the subdomain problems by
first sweeping over i=1,2,3,4,5 and then sweeping over j=1,2,3,4,5. By solving the
subdomain problems in this order, the inflow boundary condition is always available
when we come to compute a subdomain solution.

In table 1, some numerical results for different € and different mesh sizes h are shown,
where ||eg||o and ||eq|lo represent the error of the global finite element solution and the
error of the domain decomposition solution for problem (10) in L2-norm, respectively.

Figure 1 shows the computed solutions and their errors for e = 0.01 and h = 0.025,
where u, uhg and ud represent the exact solution, the global finite element solution
and the domain decomposition solution of (10), respectively. From table 1 and figure
1, one observes that when € is small, the error of the domain decomposition solution is
of the same order as the global finite element solution (see Table 1 for e =0.01, 0.001,
0.00001). From figure 1, one finds that the large errors both for the global FEM solution
and the domain decomposition solution are concentrated in the neighbourhood of
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Figure 1 The global FEM solution and the domain decomposition solution for
€ = 0.01, h = 0.025 and the corresponding errors.

uhg u(x,y) uhg-u

the outflow boundary. Due to the relative large mesh size used near the outflow
boundary, the boundary layer is not properly resolved. Here comes the advantage of
the proposed domain decomposition methods. Once we know that which subdomain
contains the singular layers, we can use finer mesh in this subdomain. By doing so,
the error introduced by the artificial boundary condition does not increase, but the
singular layers can be efficient resolved by using the known boundary conditions from
the neighbouring subdomains and a sufficient fine mesh in this subdomain. Different
examples have been tested by the proposed algorithms. The numerical results always
show that when ¢ is small, the domain decomposition solution and the global finite
element solution have errors of the same order and the large errors are in the singular
layers. To do grid refinement for the global problem is not easy, but it is very easy to
use fine meshes for the subdomains that contains the singular layers.

Table 1. L2-error of the global solution and the domain decomposition solution.



236 ESPEDAL, TAI & YAN

e=0.1 e =0.01 e = 0.001 e = 0.00001

llegllo | lleallo | llegllo | lleallo | llegllo | lleallo | llegllo | lleallo
h=0.1 | 0.0155 | 0.0354 | 0.0126 | 0.0200 | 0.0066 | 0.0095 | 0.0061 | 0.0084
h=0.05 || 0.0085 | 0.0323 | 0.0131 | 0.0186 | 0.0038 | 0.0051 | 0.0029 | 0.0035
h=0.025 | 0.0045 | 0.0297 | 0.0122 | 0.0165 | 0.0029 | 0.0037 | 0.0014 | 0.0016
h=0.0125 || 0.0023 | 0.0280 | 0.0082 | 0.0122 | 0.0032 | 0.0036 | 0.0007 | 0.0007

5 Conclusion

Both theoretical analysis and numerical tests reveal that the proposed algorithms are
suitable for problems with small e. When the diffusion parameter is small, the singular
layers are very narrow. In order to resolve the singular layers, the ratio between the
mesh size in the singular layers and the mesh size in the part of the domain where the
solution is smooth shall be very large. In this case, the error introduced by the domain
decomposition algorithms are negligible in comparison with the errors in the singular
layers. However, the domain decomposition algorithms allow easy and efficient grid

refinement in the subdomains that contain the singular layers.
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