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1 Introduction

The FETI (Finite Element Tearing and Interconnecting) method is a non-overlapping
domain decomposition algorithm for the iterative solution of systems of equations
arising from the finite element discretization of self-adjoint elliptic partial differential
equations. It is based on using direct solvers in subdomains and enforcing continuity
at subdomain interfaces by Lagrange multipliers. The dual problem for the Lagrange
multipliers is solved by a preconditioned conjugate gradient (PCG) algorithm. The
FETI method was developed in [Far91, FR91, FR92], and discussed in detail in
the monograph [FR94]. Unlike other related domain decomposition methods using
Lagrange multipliers as unknowns [GW88, Rou90], the FETI method uses the null
spaces of the subdomain stiffness matrices (rigid body modes) to construct a small
“coarse” problem that is solved in each PCG iteration. It was recognized in [FMR94]
and proved mathematically in [MT96] that solving this coarse problem accomplishes a
global exchange of information between the subdomains and results in a method which,
for elasticity problems, has a condition number that grows only polylogarithmically
with the number of elements per subdomain, and is bounded independently of the
number of subdomains. For time-dependent problems, one has to solve a linear problem
with positive definite subdomain matrices in each time step. The coarse space built
from null spaces is lost, resulting in deteriorating convergence with growing number
of subdomains. Quasi-optimal convergence properties were retained by introducing an
artificial coarse space [FCM95]. For plate bending problems, the condition number was
observed to grow fast with the number of elements per subdomain [FMR94]. This was
resolved by adding to the coarse space Lagrange multipliers that enforce continuity
at the corners [MTF]. A related idea has been employed in the Balancing Domain
Decomposition (BDD) method for plates [LMV94], where approximate continuity of
the iterates at crosspoints is enforced by adding new basis functions associated with
corners to the original coarse space [Man93, MB96].
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While the underlying ideas of FETI and BDD are in a way dual, FETI is not the
BDD method applied to the dual problem. The distinguishing features of both FETI
and the BDD method is that they are non-overlapping and work for standard plate
and shell finite elements used in everyday engineering practice.

The formulation of the FETI method presented here is based on [MTF], where more
details can be found. This formulation covers the original FETI for solids as well as
extensions to time-dependent problems and plates and shells. The extension to shells
and practical results draw partially on [FCMR95, FM95].

2 Abstract Formulation of FETI

Let © be a domain in ®? decomposed into N, non-overlapping subdomains
Qq, Qa, ..., Qn,. We assume that there is a conforming finite element discretization
defined on €2, such that each subdomain is a union of some of the elements. The discrete
problem arising from this discretization can be formulated as the minimization of the
energy subject to intersubdomain continuity conditions,

E(u) = %’U,TKU — fTu — min subject to Bu = 0. (1)
Here,
U1 fl K 0 e 0
O I I fz D k=| 0 K o0 |
un, i 0 0 ... K,

with wug, K, and f,; being the vector of degrees of freedom, the local stiffness
matrix, and the load vector, respectively, associated with the subdomain Qg, and
B = [B1,Bs,...,Bn,] a given matrix such that Bu = 0 expresses the condition that
the values of the degrees of freedom associated with two or more subdomains coincide.

The local stiffness matrices K and hence K are positive semidefinite. The algorithm
will use a given full rank matrix

Zy 0 ... 0
Z = 0 Z ... 0 , Range Z = Ker K.
0 0 ... Zn

s

We assume that the global structure is not floating, that is, the solution of (1) is
unique, which is equivalent to Ker K N Ker B = {0}.

Introducing Lagrange multipliers A for the constraint Bu = 0, the problem (1)
becomes

Ku + BTA = f
0 (2)

Bu =
A solution u of the first equation in (2) exists if and only if f — BT A € Range K, and
u=K'(f—=BTX) + Za if f— BT\ 1 KerK, (3)
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where « is to be determined. Substituting « from (3) into the second equation of (2)
yields BKt(f — BY\) + BZa = 0. It follows that X satisfies the system of equations

P(FA—d) = 0, (4)
GTN = e, (5)

where G = BZ,F = BK'BY,d= BK'f, P = I-G(GTG)"'G", e = Z* f. Note that
P is the orthogonal projection onto Ker GT. It can be proved that (GTG)™! exists
[FR94, MTF].

It is easy to see that any two solutions A of (4), (5) can differ only by a vector from
Ker BT, and that any solution A of (4), (5) yields the same solution u of (1) by (3)
with @ = —(GTG)71GT(d — F)).

The physical interpretation is that the Lagrange multipliers A are interface forces
and moments. From (3) and the definition of F', the residual P(FA—d) = —Bu has the
interpretation of jumps in the values of the degrees of freedom between subdomains.
The condition f—BT A L Ker K means that the action of the loads and intersubdomain
forces and moments does not excite rigid body motions.

To obtain more flexibility in the algorithm design, we add to the system (4), (5)
a redundant weighted residual condition, and require that all iterates satisfy along
with (5) a weighted residual condition

CTP(FA—d) =0, (6)

where C is another given matrix. The conditions (5), (6) will be enforced throughout

the iterations by projecting the increments. For applications to static problems with

solid elements, the additional constraint (6) is not necessary, but a proper choice of C

is essential for time-dependent problems as well as plate and shell problems.
Increments that preserve (5), (6) form the subspace

V' = {ulG"pn=0,CTPFu =0}
The operator PF is symmetric on Ker GT' in the sense that
(PFX, XY = (X, PF)X), for all \, X' € KerGT,

and positive definite on the factorspace Ker GT/ Ker BT, cf., [MTF].
To get an initial approximation Ao that satisfies (5), (6), we solve a system of
equations for a given Ag

GTF(A+Ga+CB) + G'Gp = G'd
CTF(Mo+Ga+CB) + CTGu = CTd (7)
GT (X +Ga+CB) = e

for unknowns a, 3, i, and set Ag = Ao + Ga + CB. We will use an analogous process
to update a tentative search direction so that it satisfies (6): given A, one finds a
projected search direction A = A + Ga + C3, with a, 3 determined from

GTFA+Ga+CB) + G'Gp = 0

CTF(A+Ga+CB) + CTGp = 0
GT(\+ Ga+ CP) =0
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Then A = Q), with @ given by

GTFG GTFC GG 1'[ GTF
Q=I-[G C 0]| CTFG CTFC C*G CTF |,

GTae GTC 0 GT
where the superscript ! denotes a generalized inverse. It can be proved that [MTF]
Q*=Q, RangeQ” + Ker BY = Range PF + Ker BY. (8)

Our formulation of the generalized FETI method is now the method of conjugate
gradients in the space V' for the operator PF, preconditioned by QDQT, where D is
symmetric positive semidefinite. It follows from (8) that the preconditioner Q DQT can
be replaced by QD without changing the method. Therefore, the following algorithm
is obtained.

Algorithm 1 (Generalized FETI) Given an initial \g, compute the initial Ao
using (7), and compute the initial residual by

To = P(F)\O —d)
Repeat for k =1,2,... until convergence:
g1 = Drpg
Ye—1 = Qzp_a
& = Th_1Yk—1
P = Yp—1+t 6—kpk—l (1 = o)
Ek—1
v = Sk
pp PFpy
A = Ap—1+ vrbk
Ty = rp_1— v PFp

3 Selection of Common Algorithm Components

Continuity Constraint Bu = 0

For a node z; at the intersection of two subdomains 92,.NOS,, we define the continuity
constraint on the displacement degrees of freedom by

(Bw)ps(zi) = ops(wp(z;) — ws(z;)) = 0.

We use a similar condition for derivative or rotation degrees of freedom, if present.
Here, 0,5 = 1 or 6,5 = —1 is a constant assigned to the edge (in 2D) or side (in
3D). In particular, the entries of B are —1,0,+1, and they are constant along an edge
or side between subdomains. Note that this construction of B results in redundant
constraints at all degrees of freedom that belong to more than two subdomain. This
slightly increases the number of the Lagrange multipliers and complicates the analysis,
but makes a simpler parallel implementation possible.
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Dirichlet Preconditioner

Decompose the space of all the degrees of freedom into the space of the degrees of
freedom lying on the subdomain interfaces, and the degrees of freedom internal to the
subdomains

W = Wb X Wz',

where the subscript b denotes the block of degrees of freedom on subdomain
boundaries, and the subscript ¢ denotes degrees of freedom internal to the subdomains.
Then,

B = [Bba 0]7
since B has nonzero entries for the subdomain interface degrees of freedom only. Also,
Z = [ g’f ] , G=BZ=ByZ, KerBY =KerBf.
k3

Let S be the Schur complement of K obtained by elimination of the degrees of freedom
internal to all subdomains:

S = Ky, — KpiK;; K. (9)
It is easy to see that
F =BK'+ BT = B,S'BY, (10)

and that KerS = Range Z;. It is well known that the evaluation of the matrix-
vector product Stu reduces to the solution of independent Neumann problems on all
subdomains. Analogously to (10), we choose D = BbSBE, giving the preconditioner

QD = QBySB; . (11)

This preconditioner is called the Dirichlet preconditioner, since evaluating the matrix-
vector product St is equivalent to solving independent Dirichlet problems on all
subdomains.

Lumped Preconditioner

This is a simplified version of the Dirichlet preconditioner (11), which trades
mathematical quasi-optimality for a lower cost per PCG iteration. The Schur
complement S of K obtained from (9) is replaced simply by its leading term Kpp.
This is equivalent to “lumping” each subdomain stiffness on its interface boundary.
The resulting preconditioner is given by

QD = QByKyBY (12)

4 Special Instances of FETI

FETI for Solid Mechanics (Second-Order Elasticity)

The original FETI algorithm [Far91, FR91, FR92] is obtained by omitting the
condition (6). Then, @ becomes the identity, and an initial approximation )\g is only



SUBSTRUCTURING BY LAGRANGE MULTIPLIERS 25

required to satisfy GT \g = e. It was proved in [MT96] that for the Laplace equation,
P1 conforming elements, and the Dirichlet preconditioner both in 2D and 3D, and
under the usual technical assumptions about the shape regularity of the elements and
the subdomains, one has the following upper bound on the condition number

' Amaz(QDPF) o\"
—mﬁC(lﬁ-logﬁ) (13)

where h is the characteristic element size, H the characteristic subdomain size, and
v = 3. If there are no nodes shared between more than two subdomains, and in some
other special cases, (13) holds with vy = 2.

The bound (13) no longer holds for the lumped preconditioner, but one observes a
superconvergence effect instead [FMR94]. Because the operator PF' is a discretization
of the inverse of a differential operator, which is compact, the eigenvalues are
clustered around zero. Since the convergence of conjugate gradients after k steps
is determined by the spectrum left after removing k extremal eigenvalues, this
distribution of eigenvalues results in fast convergence. Unfortunately, as the number of
subdomains increases, the spectrum fills in and the superconvergence effect is observed
to disappear.

FETI for Time-dependent Problems

The solution of time-dependent problems by an implicit method calls for the repeated
solution of linear systems with the subdomain matrices K, of the form

K, =K, + (At)"' M,, (14)

where K, now denotes the subdomain stiffness matrix, M, is the subdomain mass
matrix and At is the time step. Because the mass matrix is positive definite,
Ker K = {0}, Z is void. Therefore, the natural coarse problem for the unknowns
« is lost and the number of iterations increases with the number of subdomains. This
can be corrected by the selection C = BZ, where Z is chosen so that Z = diag Z,,
Range Z, = Ker K,. Then, it was again observed that the number of iterations is
independent on the number of subdomains. It was proved that the iterates approach
the static case in the following sense. Consider the FETI iterative process on a linear
system with the matrices K, from (14) with 0 < At < 400, and a fixed right hand
side. Let A¥(At) denote the approximate solution after k iterations of FETI for a given
At. Then, for all k,
lim A (At) = A*(+00).
At—+4oco

For further details, see [FCM95].

FETI for Plates

Here, the columns of C' are chosen as vectors with a one at the position of the
Lagrange multiplier that enforces the continuity of the transversal displacement at
a crosspoint, and zeroes elsewhere. A crosspoint is an interface node adjacent to at
least three subdomains or to two subdomains and the complement of Q. That is,
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Figure 1 The domain splitting for a general operator A (n =3 & N = 4)

Lagrange multipliers that correspond to crosspoints are enforced exactly throughout
the iterations.

The condition number bound (13) was proved in [MTF95, MTF] for a general class
of plate bending elements that have the property that the local stiffness matrix of
the element is spectrally equivalent to that of the HCT element for the biharmonic
equation [LMV94]:

a KT < Kr < e K77 (15)

where KHCT is the reduced HCT element stiffness matrix of the biharmonic
equation [CT66], with the rotations interpreted as derivatives of the transversal
displacement, and K7 is the element stiffness matrix for a triangular or rectangular
element with one displacement and two rotation degrees of freedom per node. The
spectral equivalence (15) was proved in [LMV] for the particular case of the DKT
element [BBH80], and for a general class of non-locking P1 Reissner-Mindlin elements
that have the element energy functional equivalent to

1
2 Ly .2
/T|V0| d$+t2+h2/T|0 Vu|® dz

with u € P1(T),0 € (P1(T))?2, h = diam(T), u the transversal displacement, and 6 the
rotation. This includes the DKT plate bending element as restated in [Pit87].

FETI for Shells

The ideas and theory governing the FETI method for plates [FCMR95, FM95]
suggest that, for shell problems, the continuity of the component of the displacement
field that is normal to the shell surface should be enforced at the substructure
crosspoints throughout the PCG iterations. One approach for implementing this
requirement and bypassing the difficulties associated with defining normals for non-
smooth shell surfaces consists in enforcing the continuity of the displacement field at
the substructure crosspoints in the direction of all three coordinate axes. Clearly,
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Figure 2 A 30-substructure mesh partition

this would automatically enforce the continuity of the normal component of the
displacement field at the crosspoints, while requiring only a minor modification of the
implementation of the FETI method for plates. More precisely, only the construction
of the C' matrix needs to be modified to have a one at the position of each of the three
Lagrange multipliers that enforce the continuity of each of the three displacement
degrees of freedom at a crosspoint. In [FCMR95], the authors have shown numerically
that, even for irregular shell problems with junctures, such an extension of the FETI
method preserves the quasi-optimal convergence properties proved mathematically
in [MTF95, MTF] for plate problems.

However, the extension of the FETI method to shell problems summarized above
generates a coarse crosspoint problem that is three times larger than that for plate
problems, because the continuity of all three displacement degrees of freedom rather
than the transversal displacement is enforced at the substructure crosspoints. Hence,
wherever the shell structure has a smooth surface, one can enforce only the continuity
of the normal component of the displacement field at a crosspoint. This is done by
setting Ci; = ng, Ciy1 j = ny, Ciyo j = n, at that crosspoint and C;; = 0 elsewhere,
and incurs the same computational cost as for plate problems. Here, n,, ny, and n,
denote the three components of the normal to a shell surface at a given crosspoint.

5 Parallel Implementation and Computational Results

The parallel implementation of the FETI method is straightforward, except for the
solution of the coarse problem, which has been discussed in detail in [FC94, Far95].
Because of space limitation, we focus here on illustrating only the scalability properties
of this method with respect to the number of substructures and processors. The
additional scalability of the FETI method with respect to the mesh size has already
been demonstrated and reported in all the FETI references cited in this paper.

For this purpose, we consider the stress analysis on a Paragon XP/S system of
a submarine structure loaded by a standing pressure wave (Fig. 1). The finite element
model contains 60332 nodes, 120064 three-noded shell elements, a total of 361735
active degrees of freedom, and many structural junctures. The mesh is partitioned
into 30, 40, 60, and 80 substructures with good aspect ratios [FMB95] for parallel
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Table 1 Performance results for a submarine shell structure with 361735 degrees of
freedom on a Paragon XP/S parallel processor

H # of substructures | # of processors | # of iterations CPU time Total CPU time ‘
coarse problem

| 30 | 30 | 93 | 182 sec. | 875 sec. |

| 40 | 40 | 94 | 178 sec. | 751 sec. |

| 60 | 60 | 105 | 203 sec. | 483 sec. |

| 80 | 80 | 87 | 162 sec. | 309 sec. |

computations on a Paragon XP/S system (2).

Four structural analyses were performed using the FETI method for shells. The
corresponding performance results are summarized in Table 1.

Clearly, scalability is well demonstrated for the solution of the coarse problems as
well as the solution of the overall problem. The size of the coarse problem increases with
the number of substructures and processors, but the CPU time elapsed in forming and
solving iteratively the repeated coarse problems is shown to remain almost constant.
Moreover, the convergence rate is observed to be almost independent of the number
of substructures, and the measured total solution time decreases superlinearly with
the number of processors.
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