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Elliptic Problems by Finite
Element Methods
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1 Introduction

Non-overlapping domain decomposition methods have received a lot attention during
the last few years, due to the restrictions of overlapping domain decomposition
methods. Several families of non—overlapping decomposition methods for the solutions
of elliptic problems have been proposed, analyzed, and successfully implemented
[BW86, BPWX91, DPLRW93, Dry89, GW88, Lio90, MQ89, LTDRV91, Tan92].

In a non—overlapping domain decomposition method, the original problem is first
decomposed into smaller problems defined on non—overlapping subdomains. Parallel
or sequential iterative procedures are then constructed for decoupling the whole
domain problem into subdomain problems. During the iterative process, information
must be transmitted between subdomains in order to guarantee convergence. This
“information transmission” step is the key part of a domain decomposition method;
it distinguishes one domain decomposition method from another. Several methods for
passing information have been proposed in the literature [BF96, DPLRW93, GLT90,
Lio90, MQ89]. The common approach was to develop a transmission condition for
the differential problem and adapt the same condition to the corresponding discrete
problem.

The purpose of this paper is to present a parallelizable, iterative, non—overlapping
domain decomposition method for solving second oreder elliptic problems discretized
by finite element methods. Unlike the usual approach, we bypass the differential
problems and construct the iterative procedure based on domain decomposition
techniques directly for the finite element equations. To obtain the split subdomain
problems, our main idea is to use a penalty method on each subdomain and to
introduce a local (in the pointwise sense), non—Robin type transmission condition
which not only enhances the convergence and passes the information between the
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subdomains but also traces the jumps of the discrete Neumann data of the finite
element solutions across the interfaces.

The rest of the paper is organized as follows. In Section 2, a model second order
elliptic problem and its finite element discretization are introduced. In Section 3,
a parallelizable iterative procedure based on domain decomposition techniques for
solving the finite element equations of the elliptic problem is presented. Finally, in
section 4, the convergence analysis and the rate of convergence are demonstrated in
the case when subdomains are chosen as small as the individual finite elements to
show the effectiveness of the procedure. It is shown that the domain decomposition
procedure converges at a rate which is independent of the mesh size h if the relaxation
parameters are chosen properly. All the theorems and lemmas are stated either without
proofs or with schematic proofs. For the details, we refer to [Fen96], where numerical
experiments are also presented, and closely related domain decomposition procedures
are developed for the biharmonic equation and the Helmholtz equation.

2 The Model Problem

Let Q C R2 be a bounded polygonal domain. Consider the model Dirichlet problem:

—Au(z) +c(z)u(z) = f(z), inQ, (1)
w(z) = 0, on 89, (2)

where the coefficient function ¢(z) > 0. The weak formulation of (1)—(2) is to find
u € H}(Q) such that

a(u,v)o = (f,v)q, Vv € Hy (), (3)

where

a(w,v)q = / Vw - Vv dz, (w,v)q = / wodz.
Q Q

Let 75 be a quasiuniform triangular or rectangular partition of Q and V* C H}(Q)
denote a finite element space of piecewise polynomials of degree r (> 1). Then the
finite element method for problem (1)—(2) is to find u* € V" such that

a(u",v)o = (f,v)a, Yv e V. 4)

Let {d);l}?:l denote the nodal basis of the finite element space V" and {p?}?zl
denote the nodal set corresponding to the nodal parameters (a node is counted &
times if there are k nodal parameters attached to it). Then (4) gives the following
linear system:

AL =1, (5)
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where

A= [0,( ?7¢?)]HX7L; 62 (uh(p?)a"' auh(pﬁ))ta b= ((fad)}f)ﬂa a(fad)ﬁ)ﬂ)t

It is well-known that the condition number of the system is of order A2, which implies
that the system is ill-conditioned. Therefore, to solve problem (4), in particular for
small h, a fast solver other than a classical iterative method is necessary. To find a
required fast solver using domain decomposition techniques is the goal of this paper.
The following notations are adopted throughout the rest of this paper.
Let {Q;}{ be a non—overlapping partition of (2, that is,

Q= U']-Izlﬁj; Qj NQy =0, if 7 # k.

Assume that 0€Q;, j = 1,2,---,J is Lipschitz and €; is a star-shaped domain. We
also assume that the non-overlapping partition aligns with the triangulation 7. In
practice, with the exception of perhaps a few €2;’s along 012, each ; will be convex
with a piecewise-smooth boundary. For example, an interesting choice for the domain
decomposition of a finite element discretization is to let each finite element be a
subdomain.

Finally, define

Hllj (Q;) ={ve H'(Q;); v=0, on [;}. (7

3 The Domain Decomposition Iterative Method

The objective of this section is to construct a domain decomposition iterative method
to solve the finite element equations (4). The key step is to construct the split
subdomain problems and the local (in the pointwise sense) transmission conditions
on the interfaces of the subdomains. We notice that the pointwise continuity across
h
the element interfaces does not hold for the flux since, in general, g“f

dul . . .
% on I';;. Therefore, any attempt to enforce the pointwise continuity of the flux
J

is different from

ng

will not succeed. The above observation leads us to take the following approach: find
transmission conditions that preserve the continuity of u* and trace the discontinuity
of % on the interfaces.

To construct the subdomain problems, first, we rewrite (4) as

Za(uh,v)gj = Z(f7 v)Q,, Vv € Vh, (8)

J J
Next, we observe the following fact:

Bz~ - =L),0)r, =0, VveVh
Z an Onj

4,5

for any nonzero constant 3.
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Now for th =V"|q, and u;‘ = uh|q,, it is easy to see that {u;l} satisfies

Jul oult
ai(“?ﬂ“) - Z(ﬂ( on. a—n]'),vh*ij = (f,v)e,, Vv € Vih= (9)
- i 5

ul = u? on I';;. (10)
We remark that the second term on the right hand side of (9), which measures the
total jumps of the Neumann data being transmitted into the subdomain ;, can be
viewed as a penalty term for the subdomain problem on €2;, and the size of the free
parameter 3 strongly influences the size of the penalty term.

On the other hand, it is not convenient to decouple the whole domain problem (4)
based on (9)—(10), since the interface condition (10) is a Dirichlet condition on the
interfaces for each subdomain problem. To overcome this difficulty, we replace equation
(10) by the following equivalent one:

Ouy h Ouj h
_ ’Bﬁ—nj +ou} = —ﬁ@Tj +auj. on Ty, (11)

h
which is obtained by adding — 3 gini to both sides of (10) after multiplying it by another
nonzero constant c.

Remark 3.1 The “new” interface condition (11) still holds in the pointwise sense.
This condition is not a Robin type transmission condition since the partial derivative

.y . Oul Sul
J i
on the left hand side is Iy not s -

Now based on (9)—(10), we propose the following domain decomposition iterative
algorithm:

Algorithm 1
Step 1. Vul € VP, i=1,2,---,J.
Step 2. Compute {u?} for i = 1,2,---,J and n > 1 by solving

n
ou;

ai(u?7’u) - E (16 on.: + A;'Liﬂ-})l—‘ij = (f7 U)Qi7 Vv € sz'ha (12)
F i
n n au?_l n—1
A+ aul = - an, +au;™", on Ty, (13)

Note that we have omitted all super indices A in the algorithm.

4 Convergence Analysis

In this section we will establish the convergence of Algorithm 1 and derive an upper
bound for its rate of convergence. Our analysis based on the discrete version of an
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energy method (cf. [DPLRW93]), which was first proposed by Després in [Des91]
for analyzing convergence of a Lions’ type domain decomposition method for the
Helmholtz equation at the differential level.

Let

h
n h n n uj n
€ =u; —U;, l"ji:_ﬂ%_)‘ji'
J
Then from (9)-(13) we get
6
Z b + Kjisvi)r,; =0, Vv € |7 (14)
i
n n 86?_1 n—1
wyi +ael = —p o +ael”", only;. (15)
J
Clearly,
ai(ei,€f) = Zw@n- + Wjis €515, - (16)
. K3
J
Define the “pseudo—energy”
= E({e}}) =Y |uji +aeflir,,- (17)
4,3

By (13)—(16) we can show the following lemmas (cf. [Fen96]).

Lemma 4.1

En = Lin41 — Rn—l = EO - Z Rf: (18)
where
n—1 2
€; -1 _n-—-1
Ry_y = Z[Iu Mory =B || 1+20) ai(ef e,
7 lo,ry; j (19)

a

Lemma 4.2 If the parameters o and (3 are chosen to satisfy 5= O(h™1), then
R, >0 forn>1.

Remark 4.1 The following are sample choices of a and B which satisfy the
assumption of Lemma, 4.2

1. @ =0(1) and 8 = O(vV/h).
2. a=0(h71) and g = O(1).
3. a=0(h) and g = O(h).



A NON-OVERLAPPING DOMAIN DECOMPOSITION METHOD 227

Theorem 4.1 Choose the parameters o and 3 such that % = O(h™1), then

1. )\fj — —5% in L*(Ty;) as £ — oo.
2. ub —» ol in HY(Q;) as £ — oco.

Proof. Notice that if 7z = O(h™1), then {E,} is a decreasing sequence. Therefore,
if ¢(z) > Co > 0, the theorem immediately follows from Lemma 4.1 and Lemma 4.2.
If ¢(z) = 0 or ¢(z) > 0, Lemma 4.1 and Lemma 4.2 imply the convergence of Ve!
in L2(Q;) for each Q;. To show the convergence of ef in L2(();), we first consider all
boundary subdomains €2;. Since e§ = 0 on T;, by Poincaré inequality we have e — 0
in L?(§;) for each boundary subdomain ;. Suppose Q; is a subdomain which has a
common interface I'j; with one of the boundary subdomains, say, ;. From (15) we

have s
de:™

£ J £ {—1 *

ae; = | — — ;| + ae; on I'}..

i . ji i o ij
( on;

And

lef

lo,0; < C

IVelllos, + [

r

|ef|2ds] -0 as £ — oo.
i
Hence
||ef||H1(Qj) =0 as £ — oo.

So the convergence takes place on the subdomain €2;. The argument can be repeated
until the domain is exhausted. The proof is completed.

The above convergence theorem says that, for appropriately chosen parameters «
and 3, Algorithm 1 produces a strongly convergent sequence. In the rest of this section
we will address the issue of the algorithm’s speed of convergence by giving an upper

bound estimate for the rate of convergence.
Define

Ty({uf™'}) = {u]'}- (20)

Then
T (u) = To(u) + T¢(0).

If u* is a fixed point of T, then
(I = To)(u") = T¢(0). (21)

Lemma 4.3 Suppose c(z) > Cy > 0, and let u be an eigenfunction of Ty. Under the
assumption of Theorem 4.1 there exists a constant Q(h) > 0 such that

ah—lCl
Cy ’

E(u) < Q(h)R(w), with Q(h)=2+ (22)

where Cy is some positive constant which is independent of h.

Remark 4.2 The conclusion of Lemma 4.3 still holds in the case ¢(z) > 0. For a
detailed proof, see [Fen96].
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Theorem 4.2 Let p(Ty) denote the spectral radius of Ty. Then under the assumptions

of Lemma 4.3 the following estimate holds:

1
p(TO) S 1- Wa

where Q(h) is given in (22).

Proof. Suppose
TO (U) =u,
then from (18) we get

VE(u) = E(u) — R(u).

Hence, the theorem follows from combing Lemma 4.3 and (24)

(23)

(24)

Remark 4.3 From Theorem 4.2, we immediately conclude that the spectral radius
of the iteration matrix of Algorithm 1 has an upper bound of the form O(h~!) if
a = 0(1) and B = O(V'h), moreover, it is bounded by an absolute constant which is
less than one if & = O(h) and 8 = O(h), that is, the algorithm converges optimally

when @ = O(h) and 8 = O(h).
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