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Multilevel Adaptive Methods for

Semilinear Equations with
Applications to Device Modelling

R. C. Ferguson and I. G. Graham

1 Introduction

The drift-diffusion equations modelling the steady state electrical behaviour of a
semiconductor device present several challenging problems for the numerical analyst.
These equations form a 3 x 3 coupled elliptic system with one or more small
parameters and are typically subject to mixed boundary conditions on non-smooth
domains. The solutions of this system contain both interior layers and geometric
boundary singularities which require appropriately graded meshes for their accurate
approximation. Since these irregularities are very complex and the precise position of
interior layers is quite a delicate matter ([MRS90]), it is not possible to derive suitable
meshes a priori and a mesh refinement process based on a posteriori error estimation
is essential for adequate resolution. A variety of approaches to adaptivity in device
modelling can be found in the numerical engineering literature (e.g., [KR93, BCD92]).
Much of this is based on heuristics, e.g., refinement based on doping profile. Here
we derive rigorous error estimates for a reduced class of problems and a theoretically
justified efficient method of implementation.

At least two difficulties have to be considered. The first is the construction of an
error estimator which works well even in the presence of small parameters. The second
stems from the highly nonlinear nature of the system: Each nonlinear solve requires
many linear solves which form the computational core of the solution process. If a
mesh is to be adaptively determined, then in principle one may be faced with solving
the nonlinear system on several intermediate meshes. To reduce the cost of such a
process one should in principle solve the intermediate problems up to an accuracy
commensurate with the quality of those meshes, and compute accurate solutions only
on the most accurate meshes.

In this paper we shall survey some recent results on the resolution of these two
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difficulties in the context of the single semilinear equation:
- A2Au+ f(u) =0 (1.1)

on a polygonal domain Q C IR? subject to mixed boundary conditions u = g on €2p,
Ou/On = 0 on 90y, where 0Qp and 90y partition Q. The “Gummel iteration”
for the semiconductor system can be written as sequences of such semilinear scalar
problems, but including some where the second-order term —A2Au is replaced by a
operator of the form —V.aVu, with rapidly varying coefficient function a. A detailed
analysis of (1.1) is thus the first step in the design of a fully adaptive device model. In
fact, in its “off” state, the electrostatic potential u of the device satisfies the equation

— M Ay + 26% sinhy — d = 0. (1.2)

Here A%, 6% can both be small and the doping profile d satisfies |d| < 1 but varies in
sign across interfaces interior to Q. On the Dirichlet boundary 9€2p, u is required to
satisfy u = sinh ™" (d/262).

In this paper we present some a posteriori error estimates for (1.1) which work well
under extreme parameter ranges and in the presence of geometric singularities. For
the practical implementation of the refinement process we propose an inexact Newton
method, related to those in [AXE93] and [XU94], which solves (1.1) by resolving
the nonlinearity on a coarse mesh and then computing a sequence of corrections by
solving linear problems on successively finer grids. Numerical experiments show that
this method is capable of reproducing qualitative features of solutions of (1.2) (known
from singular perturbation theory), by using considerably fewer linear iterations than
those used in solving (1.2) to full accuracy at each refinement step. Full details of the
results reviewed here are in the thesis [FER97].

2 A Posteriori Error Estimates for Semilinear Equations

Consider the problem (1.1) subject to the stated boundary conditions. Assume there
exists a weak solution ug € Loo(Q) with Aup € Loo(2), that f has two continuous
derivatives on IR, that g € H2 (09p) and that A is some small parameter. With these
assumptions it is shown in [FER97] (using well known linear results such as [GRI92])
that ug € H'%(Q), where o € (1/4,1] is a fixed constant, depending purely on the
interior angles of (2 at points where the boundary segments meet. It is also assumed
that the Fréchet derivative of the operator in (1.1) evaluated at up has a bounded
inverse as an operator from H(l],mD to (H')".

Define a shape regular triangulation 7p of 2, whose union is €. For each triangle
Ty € Th, define hy, to be its diameter and let £, denote the set of edges of the triangles.
h. is defined to be the length of an edge 7 € &,. If h, h are the maximum and minimum
triangle diameters we require the very mild assumption that hlog(1/h)z — 0, as
h — 0. Then, for h sufficiently small, there is a finite element solution, uy, of (1.1)
which is unique in a ball centered on ug in H'. Let [fuy/0n], be the difference in the
normal derivative of u;, across an edge 7 of a triangle. Then for constants C; and Cs,
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the H! and L, a posteriori error estimates may be written as:

[ 50 12) :
uo — unllm < Ch V{Z h? [6—;] } +{ > IIhkf(Uh)Ili2(Tk)} (2:3)

TEER Tw€Th
[ 3
lluwo — un|lL, < C2 { Z h%"”uo—uh”%p(n)} + lluo — unl/F | - (2.4)
Tv€Tn

The estimates (2.3) and (2.4) are analogous to estimates in [VER94] and [VER96].
However, in [VER96], the loss of H? regularity due to reentrant corners and/or mixed
boundary conditions is handled by use of a scale of Wzl, spaces with variable p. In this
work we instead use the scale H'T® = W%“L". Similar Ly estimates, but assuming full
H? regularity, are found in [EEHJ95].

Our adaptive scheme will use the Lo a posteriori error estimate (2.4). In it the second
term on the right hand side is estimated using (2.3) and the first term is estimated
by assuming that [|uo — un||g1(z,) may be estimated by the contribution to the right
hand side of (2.3) from T}. The constants, C; and Cs, are estimated in [FER97] and
the best theoretical bounds are of order A=2 in general. However in [FER97] it is
also shown heuristically that even for small A the numerical values of C; and Cs are
likely to grow more slowly than this. In order to ensure that our adaptive process is
robust with respect to A we estimate C; and Cs by extrapolation from computed error
estimates (2.4) for each pair of successive triangulations. The computed C; and Cs
conform to the heuristics mentioned above. Our adaptive scheme is: Choose an initial
coarse triangulation and a tolerance. Then:

e Calculate the current finite element solution to the problem.

e Calculate the a posteriori error estimate (2.4), after having estimated the
constants Cy, C2. (On the first refinement step these are arbitrarily chosen to
be 1.)

e If the error is greater than the chosen tolerance then refine the triangulation:
A triangle is refined if its contribution to the total a posteriori error estimate
exceeds the average error over the triangles by some tolerance.

e Repeat until the tolerance is achieved.

To test the adaptive scheme consider the “off” state PN diode problem: seek u
satisfying (1.2) subject to u = sinh™'(d/26%) on 8Qp and du/dn = 0 on O . Here Q
is the unit square and the boundary 99 is split into Qp = {0 x [0,1/2)} U{1 x [0, 1]}
and 0Qn = 0Q\0Qp. d in (1.2) is the piecewise constant doping profile of the device
and takes a value of +1 in the region {(z,y) : 2 + ¥ < 0.25} and —1 elsewhere.
A and 0 are small parameters, which depend on various physical attributes. In this
experiment A will vary, but 62 is fixed at 1 x 10~7. For this problem ug € H'™® where
a < 1/2. (In the experiments we used & = 1/2in (2.4) ).

It has been shown using singular perturbation theory, [MARS84], that the solution
of this problem has a layer at the interface between d = +1 and d = —1 and the
width of this layer is of order A|log A\| as A — 0. To test our adaptive scheme we try
to capture the correct order of A in the width of the interior layer in the computed
finite element solution as A varies. In principle it is difficult to define where a layer
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“begins” and “ends”. However in this case it is known that outside the layer the
exact solution is “flat” and in the regions where d = +1 it has essentially the values
u = +sinh™'(1/26%). The layer is defined to start and end when the finite element
solution is bounded away from these values by a small number — here we choose 0.03.
Selected results for the PN diode problem are presented in Table 1. These show that
the desired order of A is present in the computed widths. We also observe that the
number of nodes needed to compute successively more severe layers does not blow
up. All the experiments in this paper are obtained using a program combining the
packages PETSc (Argonne National Laboratory) and Femlab (Chalmers University of
Technology) and use a tolerance of 5 x 10~3 for the adaptivity.

Table 1 shows how the numerically computed width of the layer depends on A as
A — 0+. The theory predicts that the width is of order Alog()) as A — 0+.

A2 Size of Number of Final number Width of Order of A
initial grid refinements of nodes layer in width
1x10°* 10 x 10 15 2963 0.1527 —
5x1075 10 x 10 12 3894 0.1111 0.92
1x1075 20 x 20 16 6453 0.0526 0.93
5x107¢ 20 x 20 12 3667 0.0382 0.93
1x10~¢ 30 x 30 10 4166 0.0193 0.85

3 The Inexact Newton Method

The adaptive scheme described in the previous section solves, to full accuracy,
a nonlinear system for each triangulation before computing error estimates and
refining the grid. Since a typical refinement process can involve refining a number of
triangulations, this may involve a lot of unnecessary effort. In this section we propose
an adaptive scheme that considerably reduces this effort. The scheme is similar to
those proposed in Xu [XU94] and Axlesson [AXE93].

Our inexact Newton method proceeds by solving the nonlinear problem, to full
accuracy, on an initial coarse triangulation and then computes corrections to the
calculated solution on a sequence of successively finer triangulations. These corrections
involve solving one linearised problem on each of the finer triangulations.

For this adaptive procedure it is rather difficult to prove a priori convergence.
Instead we justify the scheme theoretically under the assumption that a sequence
of triangulations of optimal approximation power are being generated (only weak
assumptions avoiding quasi-uniformity are imposed on these meshes). Under these
assumptions we can prove the well-posedness and convergence of the inexact Newton
method. In Section 4 we shall demonstrate, empirically, the effectiveness of the
adaptive variant of this method.

Thus, for the theory, suppose that we have a sequence of shape regular triangulations
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Table 2 The number of linear solves required to solve the PIN diode problem for
different values of A and § using the two methods.

A2 FE Linear solves Linear solves for

for meth. of Section 2 inexact Newton
1x 10742 1x107° 32 17
1x 1074 1x 1077 22 17
1x 1074 1x 108 66 53
1x 1078 1x10~4 64 20
1x1077 1x10~4 156 32
1x10~8 1x10~4 310 14

{T;¥}, define h¥ to be the maximum diameter of the triangles in 7;¥ and denote
V,’f to be the piecewise linear finite element space corresponding to 771’“ Consider
problem (1.1). The finite element discretisation on the kth triangulation induces a
map Ff : VF — (VF)' defined by (FF(ur),vn) = (Vun, Vor) + (f(un),vs), which has
the linearisation (FF¥)' : V¥ — L(VF, (V})') [where L(A, B') denotes the set of all
linear operators A — B’ and B’ denotes the dual space of B]. In each case V¥ must be
supplied with appropriate boundary conditions. Then if ufl is the true finite element
solution on the kth triangulation, the inexact Newton scheme generates a sequence
{@%} defined by the algorithm:

1. Set 49 = u), the exact solution of the nonlinear finite element problem
FR(p) = 0in (V)
2. For k=0,1,2,..., iterate the two steps:

~ ! A~ ~ ~
e Solve for &j*! € YFt1: (F,lf"'l) (ak) eftt = —FFt (k)
e Update 4f: aft! =af +éeft?

Define H’,iuo to be the finite element interpolant of wuo at the nodes of the
triangulation T;*. We assume, for all k, that the following approximation properties
([STW90]) hold: [luo — IMuollm < Ch*|luolluz,, lluo — MiuollL, < C(h*)?|luollnz,
and |lug — D¥uo|lL., < C(hk)2||u0||c‘2”. Here H};, is a weighted H? Sobolev space with
weight decaying sufficiently quickly near the points of singularities on the boundary,
C%, is an analogous weighted C2-space. It is a standard result that, if h° is sufficiently
small, the true finite element solution on the kth triangulation, u’g, exists and satisfies

the a priori error estimate:
lluo — ujllar < Csh*|luglmz,, for all k, (3.5)

where Cs is a constant independent of h* and k.

In order to prove that the inexact Newton method is well-defined we need to assume
that the triangulations are not too severely refined at each step. This is natural since
it essentially ensures that the sequence of inexact Newton iterates stays within some
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suitably small ball centered on the true solution. Thus we assume that there exists a
4> 0and ¢ € (0,1), independent of h and k, such that for all k (h*)? < y(hO)'—cpk+1,
Then it has been proved in [FER97] that, for h° sufficiently small, the inexact Newton
solution on the kth triangulation, ﬂﬁ, is well defined for all k£ and satisfies the error
estimate:

lluo — @ llar < Cs(1 + Ca(h*))h*||uolles, - (3.6)

C, is a constant independent of h* and k, and Cj is the constant appearing in (3.5).
Thus, neglecting higher order terms, the a priori error estimate for 4% is identical to
that for uf. It can also be shown that, apart from perturbations of order (h¥)*e,
luo — @F||z: is bounded above and below by |lug — uf||m:.

Figure 1 The defect correction finite element solution to the PIN diode problem
when 6% =1 x 107% and A =1 x 107*.

4 Experiments with the Adaptive Inexact Newton Method

The error estimates in the previous section are obtained with a priori determined
triangulations which have optimal interpolation properties. In practice triangulations
determined using adaptive Ls refinement are used.

To test the inexact Newton method consider the PIN diode problem in its “off”
state. This is a problem of the form (1.2) with the mixed boundary conditions
considered in Section 2, where  is taken to be the unit square and d = +1
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Figure 2 The defect correction finite element solution to the PIN diode problem
when 6 =1x107* and A* =1 x 107°.

y—axis 0 o X—axis

in the set Q1 = {(z,y) : 075 <z <1, 0 <y < 1},d = —1 in the set
Q. ={(z,y): 0<2<025 0<y<050r 22+ (y—0.5)2<0.25} and d =0 in
Qo = Q\(Q4+UQ_). The Dirichlet boundary, 8Qp, is the set {0x [0,1/2)}uU{1x[0,1]}.

It has been shown in [MRS90] that the solution to the PIN diode problem has
substantially different asymptotic behaviour in each of the cases A < § — 0 and
d € A = 0. In the former case,

I 1 Y Ay
1/)|Q+ — gsinh 1 (W) , ¢|Q_ = sinh ! (W) and ’(/)|QO =0,

whereas in the latter,

Yla, = sinh~! (%) , Yo = sinh~! (%) and Ay = 0 in Q.

We use these known asymptotics to test the accuracy and efficiency of the adaptive
inexact Newton method for a variety of A and §. The initial coarse triangulation was
refined using the Ly error estimate (2.4) as described in the previous section. To satisfy
the conditions that the triangulations should not change too much, a maximum of 10%
of the triangles were refined at each iteration and a triangle was only refined if its error
estimate was twice the average of all the error estimates. Pictures of two solutions
produced using the inexact adaptive Newton scheme are presented in Figures 1 and
2. These show the correct asymptotic form above (more details are in [FER97]).
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The aim of the inexact Newton method is to reduce the amount of computational
effort needed to find accurate finite element solutions. The method introduced in
Section 2 solves a nonlinear problem for each triangulation, whereas the inexact
Newton method only requires one nonlinear solve on the coarsest triangulation and
then a linear solve for each of the fine triangulations. The number of linear solves
required for each method for a variety of A and ¢ is presented in Table 2. It was found
that if the inexact Newton scheme was started with too coarse an initial triangulation
or the triangles were refined too quickly then the iteration diverged. Even though the
inexact Newton method may use a larger number of triangulations and nodes than the
method in Section 2 [since the grids are refined more cautiously], we found that it still
requires significantly fewer linear solves to produce solutions of the same accuracy.
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