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Overlapping Schwarz for Parabolic
Problems

Martin J. Gander

1 Introduction

The basic ideas underlying waveform relaxation were first suggested in the late 19th
century by Picard [Pic93] and Lindel6f [Lin94] to study initial value problems from
a theoretical viewpoint. Much recent interest in waveform relaxation as a practical
parallel method for the solution of stiff ordinary differential equations (ODEs) has
been generated by the publication of a paper by Lelarasmee and coworkers [LRSV82]
in the VLSI literature. Recent work in this field includes papers by Miekkala and
Nevanlinna [MN87], Nevanlinna [Nev89, Nev90], Bellen and Zennaro [BZ93], Reichelt,
White and Allen [RWA95], Jeltsch and Pohl [JP95], Burrage [Bur95] and Lumsdaine,
Reichelt, Squyres and White [LRSW96].

There are two classical convergence results for waveform relaxation algorithms for
ODEs: (i) for linear systems of ODEs on unbounded time intervals one can show linear
convergence of the algorithm under some dissipation assumptions on the splitting;
(ii) for nonlinear systems of ODEs (including linear ones) on bounded time intervals
one can show superlinear convergence assuming a Lipschitz condition on the splitting
function.

For classical relaxation methods (Jacobi, Gauss Seidel, SOR) the above convergence
results depend on the discretization parameter if the ODE arises from a partial
differential equation (PDE) which is discretized in space. The convergence rates
deteriorate as one refines the mesh.

Jeltsch and Pohl propose in [JP95] a multi-splitting algorithm with overlap. They
prove results (i) and (ii) for their algorithm, but the convergence rates are mesh-
dependent. However they show numerically that increasing the overlap accelerates the
convergence of the waveform relaxation algorithm. We quantify their numerical results
by formulating the waveform relaxation algorithm at the space-time continuous level
using overlapping domain decomposition; this approach was motivated by the work
of Bjgrhus [Bjg95]. We show linear convergence of this algorithm on unbounded time
intervals at a rate depending on the size of the overlap. This is an extension of the
first classical convergence result (i) for waveform relaxation from ODEs to PDEs.
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Discretizing the algorithm, the size of the physical overlap corresponds to the overlap
of the multi-splitting algorithm analyzed by Jeltsch and Pohl. We show furthermore
that the convergence rate is robust with respect to mesh refinement, provided the
physical overlap is held constant during the refinement process. The details of the
analysis can be found in [GS97].

Independently Giladi and Keller [GK97] studied superlinear convergence of domain
decomposition algorithms for the convection-diffusion equation on bounded time
intervals, hence generalizing the second classical waveform relaxation result (ii) from
ODEs to PDEs.

2 Continuous Case

Consider the one-dimensional inhomogeneous heat equation on the interval [0, L],

%% = %+f(x,t) 0<z<L,t>0
u(0,t) = g1(t) t>0 (1)
w(L,t) = gat t>0
u(z,0) = wo(z) 0<z<L,

where we assume enough smoothness on the data such that (1) has a unique bounded
solution [Can84]. Given any function f(t) : R™ — IR we define

I1f ()lloo == sup | f(¢)]-
t>0

We decompose the domain © = [0,L] x [0,00) into two overlapping subdomains
Q; =[0,BL] x [0,00) and Qy = [aL, L] x [0,00), where 0 < @ < 8 < 1. The solution
u(z,t) of (1) can now be obtained by composing the solutions v(z,t) on £; and w(z,t)
on )5, which satisfy the same inhomogeneous heat equation on the subdomains with
the new interior boundary conditions v(8L,t) = w(BL,t) and w(aL,t) = v(aL,t),
respectively. Note that v(z,t) = w(z,t) in the overlap. The system, which is coupled
through the boundary, can be solved using an alternating Schwarz iteration, where
the new function v**+!(z,t) on Q; is obtained using the previous iterate w*(z,t)
at the interior boundary and similarly on Q. Let d*(z,t) := v*(2,t) — v(z,t) and
e*(z,t) .= wk(z,t) — w(x,t) and consider the error equations

adk—i-l _ 62dk+1
d¥t10,t) = 0 t>0 (2)
d**1(BL,t) = e*(BL,t) t>0
d**1(z,0) = 0 0<z<pBL
and
dektl  GRektl
ettl(aLl,t) = d*¥(aL,t) t>0 (3)
et (L,t) = 0 t>0
efl(z,0) = 0 aL <z < L.
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Given any function g(z,t) : [a,b] x Rt — R we define

ll9C)loo,00 :== sup  |g(z,1)]-
a<z<b,t>0

Theorem 2.1 The Schwarz iteration for the heat equation with two subdomains
converges at a rate depending on the size of the overlap. The error on the two
subdomains decays at the rate

2k+1(, a(l —pB) &0 .
e < (2020) e, (@
o oL =BA\* | o |
4 e < (S2ZD) o, ) )

Proof The proof is obtained using the maximum principle of the heat equation and
can be found in [GS97]. |
3 Semi-Discrete Case

Consider the heat equation continuous in time, but discretized in space using a

centered second order finite difference scheme on a grid with n grid points and
Az = . This gives

%ﬁ = A(n)u—i—f(t) t>0

t 6
u(0) = 1wy, (6)
where the n x n matrix A, is given by
-2 1 0
1 1 -2 .
Apy = —

(n) (Az)? N . (7)

0 1 -2

and f(t) = (f(Az,t) + &0, fQAz,1),..., f((n — 1)Az,1), f(nAz,t) + LT,
up = (uo(Azx),... ,uo(nAz))T.

We decompose the domain into two overlapping subdomains €2; and Q2. We assume
for simplicity that oL falls on the grid point ¢« = a and SL on the grid point i = b. We
therefore have aAxz = aL and bAz = BL. As in the continuous case, the solution u(t)
of (6) can be obtained by composing the solutions v(¢) on Q; and w(t) on Q2, which
satisfy the corresponding equations on the subdomains. Applying a Schwarz iteration
one obtains the error equations

k+1 k
Tad t = A(b_l)dk+1 + f(e ) t > 0 (8)
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k+1
6eat = Ap_ayettt + £(@) £>0 (0)
et = o

k
with 1 = (52,0, 0)T.
Given any vector valued function h(t) : Rt — R™ we define

h(-,- = h(j,t
[[R(-, )]loo,00 1rg]a<><n§1;g| (4, 1),

where h(j,t) denotes the j-th component of the vector h(t).

Theorem 3.1 The Schwarz iteration for the semi-discrete heat equation with two
subdomains converges at a rate depending on the size of the overlap. The error on the

two subdomains decays at the rate
a1 -p)\"
||d2k+1(',‘)||oo,oo ((17_> ||€0(b_(l, )”oo
(

Al —a)

1-8)\*
2k+1(, < all—p) d°(a. - )
e e < (o)) 4@l
Proof The proof uses the discrete maximum principle and follows as in the continuous
case [GS97]. |

The results shown for two subdomains can be generalized to an arbitrary number
of subdomains, although the analysis is more involved. The theorems corresponding
to Theorem 2.1 and 3.1, and their proofs, can be found in [GS97].

4 The Algorithm in the Framework of Waveform Relaxation

For a linear initial value problem
du(t)
dt
the standard waveform relaxation algorithm is based on a splitting of the matrix A
into A = M + N, which yields

= Au(t) + f(t), u(0) =wuo

du(t
% = Mu(t) + Nu(t) + f(t), »(0) = up.
This system of ODEs is solved using an iteration of the form
dok+t
T Mv**t 4 No* + f, 0*1(0) = uo, (10)

where the starting function v°(t) is usually chosen to be constant. In the case of Block-
Jacobi the matrix M is chosen to be block diagonal, for example for two subblocks

M:[Dl D2], (11)
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and N contains the remaining off diagonal blocks. This allows for solution of the
subsystems D;, ¢ = 1,2 in equation (10) in parallel. In the case where A equals
A(ny from the semi-discrete heat equation (6), the waveform relaxation algorithm
with Block-Jacobi splitting computes the same iterates as the Schwarz domain
decomposition algorithm presented in subsection 3 with overlap Az (i.e. one grid
point only). This result can be generalized to an arbitrary number of subdomains, as
shown in [GS97].

To extend this analogy to arbitrary overlaps, the concept of multi-splittings is
needed, which was first introduced by O’Leary and White in [OW85] for solving large
systems of linear equations on a parallel computer. Jeltsch and Pohl generalized multi-
splittings to linear systems of ODEs and waveform relaxation in [JP95].

Let A, M;, N; and E;, i = 1,2 be real n x n matrices. The set of ordered triples
(M;, N;, E;) for i = 1,2 is called a multi-splitting of A if

1. AIMl—N, fori=1,2.
2. The matrices E; are nonnegative diagonal matrices and satisfy

Ei+EBEy=1. (12)

Using the waveform relaxation algorithm, we get two new approximations 'u’f“ and

vE+! at each step according to
dot Tt
—C;t = ivi'c‘i‘l (t) + Ni'vi'c + -fi’ ’vf"'l (0) = Ug, i = 172 (13)

which are combined using the matrices E; to form a new approximation v**! by
vFtl = Eioft! 4 vl Note that the two equations in (13) can be solved in
parallel and in addition, components of vf"'l where F; has a zero on the diagonal do
not have to be computed at all provided they do not couple to other components of
v¥*! where E; has a non zero diagonal entry. Jeltsch and Pohl prove in [JP95] that
the multi-splitting algorithm converges superlinearly on a finite time interval for all
splittings and matrices A, and linearly on an infinite time interval if A is an M-matrix
and the splitting is an M-splitting. However in the case of the semi-discrete heat
equation, the rate of convergence in their analysis depends on Az since their level of
generality includes the Schwarz method with one grid point overlap and spectral radius
1 — O(Az?) - the block Jacobi algorithm (11). Jeltsch and Pohl also observe, on the
basis of numerical experiments, that increasing the overlap accelerates the convergence
rate of the algorithm. Our analysis substantiates and quantifies this observation in the
specific case of the heat equation, since the F; can be chosen in such a way that the
domain decomposition algorithm described in the previous section is recovered. Choose
the two splittings of A according to the two subdomains of the domain decomposition
and let E; have the value one on the diagonal in the interior of the corresponding
subdomain €;, including the first point of the overlap, some arbitrary distribution
in the overlap satisfying (12) and zero in the interior of the other subdomain. Then
the intermediate solutions vf""l computed by the multi-splitting algorithm for the
heat equation are identical to the solutions computed by the domain decomposition
algorithm described in the previous section. Thus, in this case, multi-splitting gives a
Az independent rate of convergence.
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Note that one could save half of the computation time by computing only even
iterates on ; and odd iterates on 25 or vice versa, since these two solution sequences
are independent of one another. In the terminology of Domain Decomposition this
would correspond to the multiplicative Schwarz algorithm with red-black ordering
whereas the multi-splitting algorithm corresponds to the additive Schwarz algorithm.

The important point here is that our algorithm converges linearly, independent of
the mesh size, on unbounded time intervals. Thus for certain PDEs the analysis of
Jeltsch and Pohl can be refined to give Az independent rates of convergence if sufficient
overlap is used.

5 Numerical Experiments

We perform numerical experiments to measure the actual convergence rate of the
algorithm. We consider first the linear example problem

2
%% - %4_56—@—2)2—@—%)2 0<z<1,0<t<3
uw(0,t) = 0 0<t<3 (14)
'U,(17t) — e_t 0<t< 3
u(z,0) = z? 0<z<l

To solve the semi-discrete heat equation (6), (7), we use the backward Euler method
in time. The experiment is done splitting the domain @ = [0,1] x [0, 3) into the
two subdomains ©; = [0,a] X [0,3) and Q2 = [3,1] x [0, 3) for three pairs of values
(e, B) € {(0.4,0.6), (0.45,0.55), (0.48,0.52) }. As initial guess for the iteration we use
the constant value 1. Figure 1 shows the convergence of the algorithm at the grid
point b for Az = 0.01 and At = 0.01. The solid line is the predicted bound on the
convergence rate according to Theorem 3.1 and the dashed line is the measured one.
The measured error displayed is the difference between the numerical solution on the
whole domain and the solution obtained from the domain decomposition algorithm.
We also checked the robustness of the method by refining the time step and obtained
similar results.
Now consider the nonlinear example problem

du _ u — 3
9t = 6$2+5(u u?) 0<z<1,0<t<3 (15)
with the same initial and boundary conditions as in the linear case. We discretize in
space as before and use the backward Euler method in time for the Laplacian, keeping
the nonlinear part explicit. Figure 2 shows the convergence of the algorithm at the
grid point b for Az = 0.01 and At = 0.01 using the same overlaps as in the linear
case.

6 Conclusion

Although the analysis presented is restricted to the one-dimensional heat equation,
the underlying ideas are more general. As suggested by the nonlinear example, the
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Figure 1 Theoretical and measured decay rate of the error for two subdomains
and three different sizes of the overlap for the linear example problem
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analysis can be generalized to nonlinear problems, convection-diffusion equations,
variable coeflicients, and higher dimensions; this is the subject of ongoing research.
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