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On a Domain Embedding Method
for Flow around Moving Rigid
Bodies

R. Glowinski, T.-W. Pan, and J. Périaux

1 Introduction

Several applications lead to the numerical simulation of incompressible viscous flow
around moving rigid bodies; let us mention for example blood flow around artificial
heart valves. In this article we consider only the case where the rigid body motions are
known a priori; the more complicated case where the rigid body motions are caused
by hydrodynamical forces, among other forces, will be discussed in a forthcoming
article. Following an approach advocated — to our knowledge — by Peskin [Pes72]
we use a domain embedding method (also called fictitious domain method by some
authors) which consists of filling the moving bodies by the surrounding fluid and
taking into account the boundary conditions on these bodies by introducing a well
chosen distribution of boundary forces. In the particular case of the Dirichlet boundary
conditions considered in this article it is quite convenient to use a Lagrange multiplier
method which is well suited to the variational formulations commonly used to study
the Navier-Stokes equations and their approximation, by finite element methods for
example. Another important component of the solution method is a time discretization
by operator splitting which reduces the simulation to a sequence of subproblems for
which efficient solution methods exist already.

Figure 1. The flow region
r
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2 A Model Problem and its Lagrange Multiplier/Domain
Embedding Formulation

The geometrical situation is as in Figure 1. With w = w(t) a moving rigid body
(w C Q C R? d =2, 3), we consider for t > 0 the solution of the Navier-Stokes
equations

%—VAU-I—(U-V)U-FVPIfi’rLQ\m, (1)
V-u=0inQ\wt), (2)
u(x,0) = ug(x), x € Q\w(0),(withV -uy =0), 3)
u = go Onl—‘; (4)
u = g; on (). (5)

In (1)-(5) u and p denote, as usual, the velocity and pressure, respectively; v(> 0) is
the wiscosity, f the density of external forces, x the generic point of R? (x = {z;:}d,),

y(t) = dw(t) and (u- V)u = {E?Zl ung“; d . We suppose that g; is the velocity
on (t) of the rigid body w(t) which implies that / g1 -ndy = 0, and that
v(t)

/ go - ndl’ = 0. In the following, we shall use, if necessary, the notation ¢(t) for
r

the function x — ¢(x,t).
We introduce first the functional spaces Vg, ) = {v|v € (H'(Q))¢,v = go(t) on T},

Vo = (Hg(2)%, L§(2) = {dla € LZ(Q);/ gdx =0} and A(t) = (H™/?(y(1)))?. With
B Jo
f an L2-lifting of f in Q (we can take £l =0) and V- Up = 0 (Uo|g, ;57 = wo), it
can be shown — at least formally — that problem (1)-(5) is equivalent to

Fort >0, find {U(t), P(t), A\(t)} € Vgo) x L§(Q) x A(t) such that

/a—U-vdx+1//VU-Vvdx+/(U-V)U-vdx—/PV-vdx
Q Q Q

ot o
=/f‘-vdx—l— A-vdy, Vv € Vg, (6)
Q ¥(¢)
/ gV - U(t)dx = 0, Vg € L*(Q), (7)
Q
/ (U0 —gi0) -y =0, Vi€ Q) (8)
Y
U0)=Ugin Q, U=gponTl, 9)

in the sense that U(t)|9\m = u(¢) and P(t)|n\m = p(t). We can easily show that
A = [v0U/On — nP],, where [ ], denotes the jump at 7.

Remark 2.1: The mathematical analysis of flow problems such as (1)-(5) is addressed
in, e.g., [AG93] (see also the references therein).

Remark 2.2: We observe that the actual geometry, i.e., w(t) and (t) occurs “only”
in the ~(t)-integral in (6) and in (8); this is a justification of the domain embedding
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approach.

3 Finite Element Approximation of Problem (6)-(9)

Figure 2. Part of the triangulation of 2 with mesh points
indicated by “x” on the disk boundary

We suppose that Q ¢ R? (d = 2). With h a space discretization step we introduce a
finite element triangulation Ty of Q and then 7y, /2 a triangulation twice finer obtained
by joining the midpoints of the edges of 7,. We define then the following finite
dimensional spaces which approximate Vg,, Vo, L*(Q), L3(f2) respectively

Vg()h = {Vh|Vh c 00(0)2, Vh|T € P x Pl, VT e 771, Vh|1" = g()h}, (10)
Von = {vi|vi € C°(Q)?, vi|r € P, x P, VT € Ty, vau|r = 0}, (11)
L2 = {anlan € C°(), an|r € P1, VT € Tan}, L3, = {anlan € L3, [ an dx = 0}; (12)

in (10)-(12), Py is the space of the polynomials in z;, 22 of degree < 1 and gop
is an approximation of go such that fr gor, - ndl' = 0. Concerning the space Ap(t)
approximating A(t), we define it by

An(t) = {pnlpn € (L®(y(t)))?, un is constant on the arc joining (13)
2 consecutive mesh points on (t)}.

A particular choice for the mesh points on «y is visualized on Figure 2, where w is
a disk. Let us resist any requirement that the mesh points on « have to be at the
intersection of v with the triangle edges of Tj,/2; (see [GG95] for more details and
the relations between hg and h,). This kind of decoupling between the Q and vy
meshes makes the domain embedding approach attractive for problems with moving
boundaries like those discussed in this note. With the above spaces it is natural to
approximate problem (6)-(9) by (with obvious notation)

@-vdx+u/VUh-Vvdx—f—/(Uh-V)Uh-vdx—/PhV-vdx
o Ot Q Q Q
:/f'h-vdx—f—/ )\h-vd"/, Vv € Vop, Uh(t) EVgo(t)h, (].4)
Q 7(t)
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/ 4V - Up(t) dx = 0, ¥q € L2, Py(t) € L2, (15)
Q

/ o (UHO ~B1(0) -y = 0, Vi € a8, M) € M), (16)
Up(0) = Ugy; (17)

in (17), Ugy, is an approximation of Uy, approximately divergence-free.

Figure 3.

AN

A

4 Time Discretization of (14)-(17) by Operator Splitting Methods

From an abstract point of view problem (14)-(17) is a particular case of the following
class of initial value problems

— + A1(8) + A2(8) + A3(8) = f, ¢(0) = ¢o, (18)

where the operators A; can be multivalued. Among many operator splittings which
can be employed to solve (18) we advocate the very simple one below (analyzed in,
e.g., [Mar90)); it is only first-order accurate but its low order accuracy is compensated
by good stability and robustness properties.

A fractional step scheme a la Marchuk-Yanenko: With At a time discretization step
and the initial guess, ¢° = ¢o, the scheme is defined as follows:

For n > 0, we obtain ¢"*! from ¢" via the solution of
(¢n /% — gt =D [t Ag(@™H17) = 717, (19)

with j = 1,2,3 and 327_, f7*' = f*1. Applying scheme (19) to problem (14)-(17)
we obtain (with 0 < a,8 <1, a+ 8 = 1, and after dropping some of the subscripts
h):

U° = Ugy; (20)
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for n >0, we compute {U1/3, prtl/3) unt2/3 (Uuntl AnH1Y yig the solution of

n+1/3 _ 1n
/u.vdx_/P"+1/3V-vdx=0, Vv € Vg, (21)
Q

At
f;qv U3 dx =0, Vg € Lj; U3 e vt prits e 12,
\

A

( Un+2/3 _ Un+1/3
/ A7 -vdx + ow/ VU283 . Vv dx
Q

/(Un+1/3 VU283  ydx = a/ 7+ . vdx, Vv € Vop; (22)
Un+2/3 € VTL+1

gon ’

A

unrtt — Un+2/3
At
= /8/ Pt vdx +/ AL v dy, Vv € Vi, (23)
,Y'n+1

[ O g pdy =0, Ve A
.

[ U™ € V(= Vi, (nenyann), AT € AptH (= An((n + 1)At)).

-vdx + ﬂu/ VU™ . Vvdx

5 Solution of the Subproblems (21), (22) and (23)

By inspection of (21) it is clear that U™t1/3 is the L?(Q)2-projection of U™ on the
(affine) subset of the functions v € Vg such that [, ¢V -vdx =0, Vg € L}, prt1/3
being the corresponding Lagrange multiplier in L2,. The pair {U™+!/3 Pr+1/3} s
unique and to compute it we can use an Uzawa/conjugate gradient algorithm operating
in LZ, equipped with the scalar product {q,¢'} — fﬂ Vq - Vq' dx. We obtain thus
an algorithm preconditioned by the discrete equivalent of —A for the homogeneous
Neumann boundary condition. Such an algorithm is very easy to implement and is
described in [GPP96]; it seems to have excellent convergence properties.

If @ > 0, problem (22) is a classical one; it can be easily solved, for example, by a
least squares/conjugate gradient algorithm like those discussed in [Glo84].

If B > 0 the solution of problem (23) has been discussed in [GPP94]. In the particular
case where 3 = 0, problem (23) reduces to an L2(9)2-pr03ect10n over the subspace of
Vit of the functions v satisfying the condition [ ., (v— gl ). pdy =0, Vu € AP
It follows from the above observation that if § = 0, problem (23) can be solved by an
Uzawa/conjugate gradient algorithm operating in AZ“, which has many similarities
with the algorithm used to solve problem (21). If one uses the trapezoidal rule to
compute the various L2(2)-integrals in (23), taking 3 = 0 brings further simplification
since in that particular case U"*! will coincide with U"+2/3 at those vertices of 7, /s
such that the support of the related shape function does not intersect y"+!; from the
above observation it follows that to obtain U™*! and A™*! we have to solve a linear
system of the following form

Ax+ B'y =b, Bx=c. (24)
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For the numerical simulations presented in Section 6 we have used a =1 and 8 =0

n (22), (23).

6 Numerical Experiments

We simulate a two-dimensional flow with @ = (-0.35,0.9) x (—0.5,0.5) (see
Figure 3) and w a moving disk of radius 0.125. The center of the disk is moving
between (0,0) and and (0.5,0) along a prescribed trajectory (z(t),y(t)) = (0.25(1 —
cos(%t)), —0.1sin(m(1—cos(%t)))) (see Figure 3) of period 4. Several different positions
of the disk have been shown on Figure 3. The boundary conditions are u = 0 on I’
and u on Ow(t) coinciding with the disk velocity. We suppose that the disk rotates
counterclockwise at angular velocity 27. Since we are taking » = 0.005, the maximum
Reynolds number based on the disk diameter as characteristic length is 102.336. On
{2 we have used a regular triangulation 73/» to approximate the velocity, like the one
in Figure 2, the pressure grid 7, being twice coarser. Concerning Ay (t), y(t) has been
divided into M subarcs of equal length. We have done two simulations: For the first one
we have taken h = 1/128, At = 0.00125 and M = 80. For the second we have taken
h = 1/256, At = 0.00125 and M = 160. With stopping criteria of the order of 10~12
we need around 10 iterations at most to have convergence of the conjugate gradient
algorithms used to solve the problems at each step of the scheme (20)-(23). On Figure
4, we show the isobar lines, the vorticity density and the streamlines obtained at ¢ =5,
6, 7, 8 for h = 1/256, At = 0.00125 and M = 160. There is a good agreement between

the results obtained from these two simulations.
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moves from the left to the right, then to the left. The mesh size for
velocity (resp., pressure) is h = 1/256 (resp., h = 1/128).
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