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Additive Schwarz, CG and
Discontinuous Coefficients

[.G. Graham and M.J. Hagger

1 Introduction

This paper is concerned with the performance of the conjugate gradient(CG) method
with additive Schwarz preconditioner for computing unstructured finite element
approximations to the elliptic problem

V.aVu=f, on Q, u =g on 0Qp, % =g on Q. (1)
Here Q C IR? is a polyhedral domain with boundary 9 partitioned into disjoint
subsets 0Qp # 0 and dQy, each of which is composed of unions of polygons, and
f, g and g are suitably smooth given data. (Analogous results also hold in 2D.) We
also assume that a is piecewise constant on each of d open disjoint polyhedral regions
Ay, such that U¢_ Ay = Q, and we write a|s, = a where each a; € Ry := (0,00)
is constant. We have in mind that the regions Ay of different material properties are
fixed but may have complicated geometry and that the overall mesh used to compute
u accurately will be finer than the geometry of the Aj. There are many applications
of this type of problem, for example in groundwater flow and in electromagnetics.

After discretisation with linear finite elements on a triangulation 7 of €2, (1) reduces
to the SPD system

K(a)x = b(a), (2)

where the stiffness matrix and load vector depend continuously on a € ]Ri. Let h
denote the diameter of 7 and J = maxg {ar/a;}. It is a standard result that K (a)
is ill-conditioned in the sense that (under suitable assumptions) x(K(a)) = O(h™2)
as h — 0 for fixed a and k(K (a)) = O(J) as J — oo for fixed h. (Here x denotes
the 2-norm condition number.) One of the striking successes of domain decomposition
methods has been the construction of preconditioners for which the condition number
of the preconditioned problem is bounded independently of both A and a. We refer to
these two properties as “h-optimality” and “a-optimality” respectively. For a review
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of the many papers on this subject, see [CM94] or [DSW96]. As far as we are aware all
of these results assume meshes are obtained by structured refinement from a coarse
grid (or substructures) which resolve the coefficient jumps.

In many large-scale computations, unstructured meshes are obtained by mesh
generators, subdomains are obtained from mesh partitioning codes, and coarse grids
are obtained by some coarsening strategy. In this context it may be difficult to
implement the preconditioners covered by this theory. Recently the theory has
been substantially extended to unstructured meshes - [CSZ96, CGZ96] and the
references therein, and results about the h-optimality (but not the a-optimality) of the
corresponding preconditioners have been obtained. Indeed it is possible to construct
some counter examples to a-optimality when the coarse grid does not resolve the
discontinuity in a ([GH96]). Since it seems rather unnatural to consider unstructured
grids which are restrained to resolve the discontinuity in a, this appears to suggest
that unstructured grids may be bad for this type of problem. However, there is much
empirical evidence to suggest the CG method remains robust to discontinuities in a
even when they are not resolved by the discretisation and preconditioning process. In
this work we prove a result which explains this phenomenon. It is obtained not by
examining the condition number of the preconditioned matrix (which may be very
bad) but by obtaining bounds on its eigenvalues (which, except for a small number of
outliers, turn out to be very well behaved). We only have room here for a statement
of our results and an idea of the proof. The necessary details are in [GH96].

2 Theoretical Results

We present here our results for the unstructured multilevel additive Schwarz
preconditioner proposed in [CGZ96]. This is more general than the result in [GH96]
which is about the two-level variant ([CSZ96]), but the proof of both results is identical.
Let {T! }leo be a shape-regular sequence of triangulations of Q with diameters
h > h' > ... > h® = h, where T9 = T is the fine mesh on which (1) is discretised. We
assume in this section that this fine mesh resolves the interfaces between the regions
Ar. We remove this restriction in §3. Assume that for each [, Q is partitioned into
non-overlapping subdomains Qé-, j =1,...,s which are then extended to overlapping
subdomains Q% with &' := min; dist(9€5, 8(25) > 0, and are such that Q5N contains
only boundaries of tetrahedra of 7. More general meshes are permissible - see [CGZ96]
for technical details. Let N denote the degrees of freedom in 7" and set J\/Jl =N ﬂQé.
For any set of nodes S let [S] denote the space of nodal vectors on S. Then (2) is to be
solved for x € [N'?]. For each | and j we introduce a prolongation Ré-T (VI = N9
as follows: For x € [N'Jl], we form the piecewise linear function with value z, at
nodes p € /\/Jl and O elsewhere. Then form the piecewise linear interpolant of this

with respect to 7%. The nodal values of this on N'% are called R;Tx. The operator
Rl : [NQ] = [N]] is defined to be the adjoint of R;T. Note that in the case [ = Q,
RJQT is just the straightforward extension by 0 from [./\fJQ] to [M?]. The multilevel
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preconditioner M (a) is then defined by the action of its inverse:

Q s
M(a) "t =YY R (K(a)) 'R, (3)

1=0 j=1
where K (a)! := RLK(a)RL”. In [CGZ96] it is proved that

K(M(a)" K (a)) < C(a)Q? 12“1&5’2;{(hl +h7h) /8", (4)

and so, with the appropriate choice of overlap, 6!, we have h-optimality. The a-
optimality is an open question since the behaviour of C'(a) is unknown.

Rather than trying to analyse C(a) which (by counterexamples in [GH96]) cannot
be expected to be bounded in a without further assumptions, we instead obtain a
bound on the number of preconditioned CG iterations needed to solve (2) as a varies.
To do this we characterise the number of CG iterations in terms of the asymptotics
of sequences of coefficients {a(™}>_, C ]Ri. To avoid uninteresting pathologies
these are required to satisfy two mild assumptions: Firstly we require that for all
k,l, al(l) > ascl) implies al(m) > a,(cm) for all m > 1; Secondly for all k,l such that
Ar N A; # 0 we require that the ratio ascm)/ al(m) either approaches 0, oo or remains
in a compact subset of Ry as m — oo. These assumptions are consistent with the
typical applications of (1) - see [GH96].

To state our theorem, let n denote the dimension of K(a) and let )\gm) <..< )\%m)
denote the eigenvalues of the preconditioned matrix M (a®™))~1K(a(™). For any
integer 0 < L < n —1, set K,(LT_)l = )\%m)/)\gi)l and g™ = maxk,l{aim)/al(m)}.
Let x/ be the jth preconditioned CG iterate for (2), and let || . ||,, denote the energy
norm induced by K (a(™).

Theorem 1. There is an integer L and a constant C which are independent of m, h!
and &' such that for each € > 0

2 C
< e, provided j > L + /cgi)l {log Z + Llog ﬁ} ) (5)
m € NG

In addition (A{™)~1 = 0(7(™) and ngi)l is bounded as J(™ — oo, for fixed h.

Thus, apart from an additional L iterates, the number of iterates to obtain a fixed
tolerance grows only logarithmically in J(™) as m — oo. This is to be compared with
the O(J(™) growth which the condition number ngm) = k(M (a™)~1K(al™)) can
experience when the coarse mesh does not resolve the discontinuity in a [GH96].

A key question is the size of L: The answer from [GH96] is that L can never be
larger than the maximal number of components of sets formed by taking unions of
the Ag. But in many cases L is known to be smaller. The size of L depends on the
limiting form of a™) as m — oo (but not on m). A rigorous definition of L is given
in [GH96]. From this it follows, for example, that if each of the Ay touches 9Q2p then
L =0, ngm) is bounded independently of m, and the preconditioning is a-optimal.
More dramatically, suppose 2 is a square divided into a chequer-board of any number
of square regions A, which are coloured alternately red and black. Suppose that
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agcm) — oo on red squares while agcm) — 0 on black squares, then L = 1 at most. If any
of the red squares touches 0€2p then L = 0 and the preconditioner is again a-optimal.
We emphasise that these results do not require that the subdomains Qé on any of the
levels have any relationship to the regions Ay on which a is constant.

As an example of the worst case, if agcm) — oo on Ly of the regions Ay which do not

touch 9Qp and do not touch each other, and aim) is bounded on the other regions
then L = Lg in the theorem.

Sketch of Proof. The proof is obtained in three stages. First it is shown
that, for each k, the kth smallest eigenvalue of M(al™)~1K(a(™) can be
bounded below in terms of the kth smallest eigenvalue of the diagonally scaled
matrix (diagK (a(™))~1K(al™) (or, its equivalent symmetric version S(al™) :=
(diagK (al™))~1/2K (a(™)(diagK (a{™)))~1/2 ). This is done by a routine application
of the fact that these preconditioned matrices can be written as sums of orthogonal
projections onto certain subspaces.

The second and substantial part of the proof is a characterisation of the spectrum

of S(a™) in terms of the asymptotics of the maximum jumps of a(™. The result
is that only a fixed number L of eigenvalues of S(al™) may approach zero as these
jumps worsen. This number depends on the geometry of the A but not on the mesh or
the values of the coefficients. Some examples of the size of L have already been given
above. The rest of the eigenvalues are bounded above and below by positive numbers
independent of the size of the jumps. The same statement then holds for the reduced
condition number ngi)l. The third and final stage is to use a well-known extension
of the convergence theory of the conjugate gradient method for the case of outlying
clusters of bad eigenvalues. Full details are in [GH96].
Remark 1. An analogous estimate to (5) holds true with || . ||, replaced by the
Euclidean norm || . ||2, but inside the braces on the right-hand side of (5) we must add
the term 1 log(xJ (™)) where & is the condition number of K (1). This is of practical
interest since the coefficient-dependent energy norm, || . ||m, is not a good place to
measure the error if a,(cm) — 0 on some Ay.
Remark 2. An analogous clustering effect of preconditioners for problems of type
(1) (for a more restrictive class of coefficient variations) is obtained [CNT96] and also
leads to logarithmic estimates for the growth in the number of conjugate gradient
iterates as the discontinuity worsens. However, the preconditioner proposed there
essentially requires the solution of the global Laplace operator a = 1 on 2, which
is implemented, for example, by embedding €2 into a rectangular grid and using
fast Poisson solvers there. By contrast our present results concern standard additive
Schwarz preconditioners widely used in domain decomposition methods.

3 An extension of the theory

The theory described above does not require that any of the subdomains (either at the
finest level or any of the coarser levels) resolve the discontinuity in a. However, it does
assume that the fine mesh itself should resolve this discontinuity. This assumption
simplifies the analysis of the diagonally scaled matrix, on which the theory depends,
but we shall show here that it is not necessary. This generalisation has obvious practical
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importance since in the case of very irregular regions Ay, it may not even be reasonable
to expect the fine grid to resolve the discontinuities.

In the interests of brevity we shall not give here a completely general extension,
but instead restrict to the case of a two coefficient problem where A; C Q and
Ay = Q\A;. Suppose the interface I' = A; N Ay is continuous and lies entirely
inside Q. As before alp, = ar € Ry, k = 1,2. Let 7 be a mesh of tetrahedra
on © which do not need to resolve I'. Let N’ be the nodes of 7 which are not on
Op. For p € N, set T(p) = {T € T : p € T}. Then for any a € R3 and
g €N, K(a)pg = Xrer(p)n7(q) 0T(KT)pg; Where K7 is the piecewise linear element
stiffness matrix corresponding to the Laplace operator on T and ar = fT a)/|T,
where |T'| is the volume of T'. Consider the symmetrically diagonally scaled matrix
S(a) = (diagK (a))~'/2K(a)(diagK (a))~'/2 and a sequence of coefficients a(™) with
constant values on the Ay, represented by {a(™} C IR2. For T € T set a(m)
Jza™ /|T|. The extreme behaviour of the spectrum of S (a(m)) can be characterised
by considering the limit of S(a(™) as m — oco. It is easy to see that S(a(™),, is
independent of m unless p,q € T NN for some T € T with p # q and T (p) U T (q)
intersects both A; and A, in sets of positive volume. Then, for T € T (p) U T (q)
we have ai™ = (ITNA/IT]) 0™ + (IT N Axl/|T])aS™. Tf {a(™} is constrained
to satisfy the mild assumptions of §2 then we need only consider the two cases
limm_,oo{alm)/a(m)} oo or 0.

Consider a( )/a(m)—> 0. Introduce the slight extension of Ay: Ay=U{T:|T N A;|£0}
with extended interface T' = 9A;, and the matrix K; = Yorer(T 0 A4|/IT)) KT,
which corresponds to a Neumann problem on A; for an operator of the form (1)
with coefficient |T'N Ax|/|T'| on each T'. Let K» be the finite element matrix on Q\A;
corresponding to Dirichlet condition on I and given boundary conditions on 9. Then
limy, 00 S (a(m)) — S, where S is the diagonally scaled version of the block diagonal
matrix diag(f( 1, K}). S has a single zero eigenvalue with all other eigenvalues positive
(but depending on h). So S(a(™) has a single eigenvalue approaching zero as m — oo
and Theorem 1 holds with L = 1. If agm)/ al™ - 0, then S (a(m)) also approaches a
diagonally scaled version of a matrix of the general form dlag(K 1, Kg) But here K5 is
a stiffness matrix on a slight extension, Az, of As with Neumann condition on 8]\2\69
and given mixed conditions on Q. K is a matrix corresponding to a Dirichlet problem
on Q\]\z. This time S has all positive eigenvalues and Theorem 1 holds with L = 0.

An extension of this argument to many coefficients will lead to the proof of Theorem
1, in the case when the fine grid does not resolve the discontinuity. The extension to
|| . || mentioned in Remark 1 also holds by the arguments in [GH96].

4 A Numerical Example

To demonstrate our results we consider a two-dimensional problem with geometry
motivated by electromagnetic field computations, see [EST94] and the references
contained therein. Here there are three interior regions with varying material
properties, as in Figure 1(a). The domain is the unit square and the regions with
differing material properties are given by A; = (0.44,0.56) x (0.81,0.94), A, =
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(0.44,0.56) % (0.063,0.19), Az = {(z,y) : 0.063 < (z—0.5)2+(y—0.3)% < 0.14,y > 0.3}.
For the static field case the differential equation is in the form (1), and for this
experiment we imposed homogeneous Neumann boundary conditions on the left and
right boundaries and Dirichlet boundary conditions of 1 and 0 to the top and bottom
boundaries respectively of the unit square.

Figure 1 Geometry of an electromagnetic problem (a), fine mesh (b) and coarse
mesh node points (c)

a0

(a) (b) (¢)
The domain is discretised with a uniform mesh of triangles except for strong
refinement near the boundaries of the regions with differing material properties. This
results in a mesh of 30856 triangles with 15484 nodes (Figure 1(b)). These do not
resolve completely the semicircular geometry of As.

In this experiment we use the two-level additive Schwarz method, see for example
[CSZ96], for which we, in contrast to (3), require the solution of a global coarse problem
together with local problems on subdomains of the fine mesh. In principle the coarse
mesh is not required to have any direct relation to the fine mesh. However, it may
be expected that a coarse mesh which pays no attention to the underlying PDE (e.g.
fails to have some refinement where the fine mesh is refined in this example) may
not work well. To determine our coarse mesh we first impose a uniform coarse mesh
and then perform hierarchical local refinement with “slave nodes” as, e.g., in §7 of
[CM94], to increase the density in regions where the fine mesh is dense. The result
has 465 nodes and is pictured in Figure 1(c). This coarse mesh is represented by a
locally uniform data structure which is completely uniform in large sections of the
domain, this allows for a very simple and efficient implementation. More details on
the creation and performance of such coarse meshes will be available in a future
publication. The partitioning of the fine mesh into the local subdomains is performed
using the graph partitioning package METIS[KK95]. Use of this package allows us to
produce load balanced connected subdomains, with a single node overlap, based only
on the connectivity of the mesh. Hence the geometry of the problem has no direct
bearing on the subdomains and neither the fine mesh, coarse mesh nor subdomains
resolve the discontinuity in a.

To demonstrate the effect of the discontinuous coefficients on the additive Schwarz
preconditioner we use five sets of coefficient values, as specified in Table 1. Each of
these problems is also tested with a range of subdomain numbers, from 15 to 120.
Three different preconditioners are tested in each case: One with no coarse solve (AS),
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Problem | a0 al a2 ad
1 1.0 1.0 1.0 1.0
2 1.0 | 1.0(-1) | 1.0(1) | 1.0(2)
3 1.0 | 1.0(-2) | 1.0(2) | 1.0(4)
4 1.0 | 1.0(-3) | 1.0(3) | 1.0(6)
5 1.0 | 1.0(-4) | 1.0(4) | 1.0(8)

Table 1 Coeflicient values for the test problems

15 Subdomains 30 Subdomains
Problem | AS | ASC* | ASC || Problem | AS | ASC* | ASC
1 70 25 27 1 87 26 28
2 92 27 26 2 116 31 28
3 109 30 29 3 131 35 33
4 117 31 31 4 149 36 35
5 135 31 31 5 165 36 34
60 Subdomains 120 Subdomains
Problem | AS | ASC* | ASC || Problem | AS | ASC* | ASC
1 123 33 33 1 158 39 34
2 150 36 32 2 186 40 36
3 172 38 37 3 213 44 39
4 196 39 37 4 241 45 43
5 220 39 37 5 272 45 44

Table 2 Results for the 15,30,60 and 120 subdomain case

a second with a coarse solve but based on a purely uniform coarse mesh, with 121
nodes, (ASC*), and the third with coarse mesh pictured in Figure 1(c) (ASC). An
initial guess of 0 was used for the CG algorithm.

Table 2 shows the number of iterations of the preconditioned CG method required
to satisfy the convergence criterion ||x/ —x||a/||x||2 < 1073, where x/ is the jth
iterate and x is the true solution computed using an exact factorisation. In all cases
convergence to the same tolerance in the energy norm took place within one or two
iterates of the results given here. The results for the preconditioner with no coarse solve
(AS) show the expected logarithmic growth in the number of CG iterations required,
as the jumps in the coefficient worsen. Additionally an increase in the number of
subdomains also results in the expected increase in iterations. For the remaining
two preconditioners (ASC* and ASC) the growth with respect to the number of
subdomains is almost identical, indicating that, for this problem, a simple coarse mesh
would be sufficient. The results for ASC* in this case raise the interesting question of
whether a uniform coarse mesh would suffice for more general preconditioning tasks.
Preliminary experiments indicate that this is not always the case. This will be the
subject of future work.
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