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Multilevel Extension Techniques in
Domain Decomposition
Preconditioners

Gundolf Haase

One component in Additive Schwarz Method (ASM) Domain Decomposition (DD)
preconditioners [BPS89, SBG96] using inexact subdomain solvers [Boe89, HLM91]
consists of an operator extending the boundary data into the interior of each
subdomain, i.e., a homogeneous extension with respect to the differential operator
given in that subdomain. This paper is concerned with the construction of cheap
extension operators using multilevel nodal bases [Yse86, Xu89, BPX90, Osw94]
from an implementation viewpoint. Additional smoothing sweeps in the extension
operators further improve the condition number of the preconditioned system. The
paper summarizes and improves results given in [HLMN94, Nep95, Haa97].

1 The ASM-DD-Preconditioner

Consider the symmetric, Vo = H!(Q)-elliptic and Vy—bounded variational problem

. T —
find u € Vg : /Q Az) Vi u(z) Vo(z)dz = /s‘) f(z)v(z)dz VUEVO,(l_l)

arising from the weak formulation of a scalar second—order, symmetric and uniformly
bounded elliptic boundary value problem given in a plane bounded domain
QCR? with a piecewise smooth boundary T = 8Q . The material coefficients
Az) > X > 0 Vz € Q have to be restricted for certain extension techniques.

The domain 2 will be decomposed into p non-overlapping subdomains
Qi (i=1,...,p) suchthat Q= le Q; . The discretization process using Courant’s
linear triangular finite elements in each subdomain €2; results in a conforming
triangulation of Q. In the following, the indices “C” and “I” correspond to nodes
belonging to the coupling boundaries T'c =J!_; 82; \I'p and to the interior
Qr =, @ of the subdomains, respectively. I'p is that part of 9Q where
Dirichlet-type boundary conditions are given whereas Neumann boundary conditions
will be handled as coupling boundaries.
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Define the usual finite elements (FE) nodal basis

@Z[QC’;@I]: I:’d)l’”"quc’i’/}Nc‘*’l"”’¢NC+NI,1"”’1’/)N:NC+NI:| ’ ( )
1.2

where the first N¢ basis functions belong to I'c, the next N7 ; to {21, the next Ny
to 22 and so on such that Ny = Zle Nr,; . Then the FE isomorphism leads to the
symmetric and positive definite system of equations
fc)
= =: , 1.3
() = 1 a3

Ko Keg Qc)
Kuy :=
u (KIC KI) (HI I
where K = blockdiag (K1,i),_;
definite.

Solving system (1.3) with some parallelized iterative method, e.g., CG-method, we
use the ASM-DD preconditioner

» is block diagonal and symmetric, positive

i Ic _BI_CT Ce O Ic 0
¢= (0 n J\o ¢)\ B 1) (14)
This preconditioner contains the three components Cc, Cr = diag (Cr,i);,_, , and

Bic = blockmatrix (Brc,i);—, ..., » Which can freely be chosen in order to adapt the

preconditioner to the particulars of the problem under consideration. For the choice

Bic,; = —Bir,iK1c,i see [HLMO91]. As preconditioner C¢ for the Schur complement

Sc = Ko — KcrK; ' Krc the BPS [BPS89] and the S(chur)-BPX [TCK92] are used.
The preconditioning step w = C~'r can be rewritten in the form

Algorithm 1 : The ASM-DD Preconditioner [HLM91]

P
_ - T T
we = Cg > Acy (fc,i +BIC,z‘£I,z’)
=1
_1 . y —_—
wri = Cr;r1i+ Biciwe; ;1=1,2,...,p

Ac,i Acr,i . - . . .
where A; = ( AIC;: ) Ach ’ ) denotes the subdomain connectivity matrix which is used

for a convenient notation only. The subdomain FE assembly process which is connected
with nearest neighbour communication stands behind this notation. Other DD-
preconditioners and modifications of Algorithm 1 can be found in [HL92].

Assume positive, h-independent spectral equivalence constants vy o YC Y VI
fulfilling the spectral equivalence inequalities

ZCCC < Se¢ £ ¢ Ce and 11CI < Kr <#7:Cr. (1.5)

If we have a constant cg so that

O¥o]
BICQC

holds then the upper and lower bounds of the condition number x(C~'K) [HLM91,
Che93] can be estimated as

O(ck) < K(CT'K) < 0O(ckg) - (1.7)

< c¢r llue s, Vo € RY (1.6)

‘ K
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In the remaining chapter we construct extension techniques defining Brc ; which are
cheap to implement and result in a constant cg independent of or slightly dependent
on the discretization parameter h and the number of levels £.

In the following the subscript ¢ denoting the subdomain number will be omitted.

2 Multilevel Extension Operators

Let space W;, consist of real-valued functions which are continuous on 2 and linear
on the triangles in Q;: The space Vy, is the space of traces on I of functions from Wy,.

The multilevel extension of a FE function ** € V, on the boundary 8% into a
function 4" € W; in the interior of the domain Q via the extension operator Ear
consists of three steps:

1. Choose the projection Q. from V; into Vi (kK =0,... ).
2. Split the function ** into a multilevel nodal basis according to the
projections Qp

Xt = Q™ (2.82)
xro= (Qr— Q)" k=1,...,L. (2.8b)
3. Define the extensions uz € Wy \ Wy_1 of the function XZ
h(,.(0) (0)

ug(mz(o)) — {50 ('Z-i ) ;-Z'E-O) (S F) (29&)

X y L ¢ r,

R( (k) *) e
I S k=1,...,0.  (29b)

0 vz, &L,

For ¥ we choose either the mean value of the boundary function x? or the
solution of the proper PDE on the coarsest grid with Dirichlet boundary
conditions x}.

Now, the extension u”

is simply

4
Egr't = Wt = ) up. (2.10)
k=0

In Algorithm 1 the discrete representation BTC of the transposed operator 8%1, is
needed so we prefer the recursive version of definition (2.10):

vg = ul (2.11a)
v = vp_q +ul k=1,...,¢, (2.11b)
and set Eq’" := v,. Note that v, € Wy, is the extension of Q;’" on level k£ =0, ... , £

3 Matrix Representation of Multilevel Extension Operators

Using the FE isomorphism we change from the operator description of the exten-
sion £ to the matrix representation. The bilinear FE basis U(*) will be defined
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similarly to (1.2) and the matrices ¢, denote the proper identities on level k.

The multilevel extension of a function ** = ZN” ’11/)(4) € V, represented by

the vector > € RNew into a function u® = va uzd)g) € W, represented by the
vector u € RV¢ consists of three steps:

1. Determine the rectangular n¢ ,xN¢,, projection matrix @ and define the
coefficients of the projection Q" in the FE nodal basis of level k

B, =Qw k=0,... L. (3.12)
2. According to (2.8) split the vectors 3, into the coefficients of the multilevel
nodal basis presentation of * = Zk -0 ZNC o gk)q,bl(k). Denoting by Pg’,‘cl,

(2

pktt P}‘ér } the usual linear FE interpolation matrices on the proper subsets

ofI rI;O(,ies we can determine the coefficient vectors a;,

ay = P, (3.13a)

o, = (—Pfi_y Icow) (%—1) k=1,...,£.  (3.13b)

Pk
3. The coefficients v,, of the extensions v, = Zz 1 fk)lj;(k) are determined by
=) = (i)
k Qy,
v, = (if:) - (I%k Ilj;c;’kk__ll P}i(,]c_l) tecs (3.14b)

Set Erc’ := Uy
Nec,o V1 ...1/NroxNec,o’

value of the boundary data into the interior. Another approach is the discrete
harmonic extension on the coarsest grid with respect to the PDE, i.e.,
Brco = —KZ3KIC,0-

The matrix Byc, can be chosen as mapping the mean

4 Various Multilevel Extension Techniques

Although having in mind the operator representation from Section 2 we give the
following extension techniques mostly in the matrix representation from Section 3.
Note, that the theoretical results for the first two techniques below require material
coefficients A(z) = A\; > 0 Vz€Q; (i = 1,...,p) whereas the third technique is
also available for more general coefficients.

The Hierarchical Extension Technique

Using just the injection from level £ to level k for defining the projections Q
we get exactly the hierarchical extension technique Ejc which was first proposed
in [HLMN94]. The proofs of the following statements can be found therein.
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Setting Bjc := E 1c the constant cg in (1.6) behaves like

in2D: cp(Bre) = O(nh™') = OF) in3D: cg(fe)=Or").
(4.15)

This hierarchical extension can also be used as initial guess in an iteration
approximating the extension, i.e., Br¢c := Mj{Eic + (It — MIs)Kfl(—KIC) with some
iteration operator My. If there exists an h-independent positive constant such that
| Mr ||, < n < 1 holds, e.g., using multigrid to define My, then in the 2D case

s = O(In(In h™1)) iterations are sufficient to achieve an h-independent constant cg.

The BPX-like Extension Technique

When approaching a BPX splitting with the Lo ortho-projections of the boundary
data ** the projection matrix will be expressed by Qy = M k. ;M k., Where the entries

in the mass matrix M}, , are defined via the L inner product mg,kj’p ) = (M, w§p N eLs-
Using bilinear FE functions in the 2D case the matrix My ; possesses exactly 3 non-
zero entries per row. Whereas this matrix is rather easy to invert in the 3D case this
will require too much arithmetic work.

Therefore a mass lumping or the proposal in [Nep95] for defining the projection
operator Q is used. This results in an easily invertible diagonal matrix Mk,  defining
Qr = M;}E My, and leads to the BPX-like extension technique E1c for which

ce(Erc) = O(1) (4.16)

was proved in [Nep95] for the 2D as well as for the 3D case.

Multilevel Extension Techniques Plus Smoothing

The recursive definition of the extension in (3.14) leads to the idea of an additional
improvement of the extensions given above via some linear smoothing procedure
Srr : RNtk — RNk g =1,... £ with the properties

High frequencies : || Sr.x " ||KI < ok || " ”Kz V& vl € Wy \ We—q
Low frequencies : || Sy 0" e, < ok |l vl llx, Vot e Wy

(4.17)

where the number of smoothing sweeps is denoted by v,. We require smoothing factors
or < o <1 independent of h = 27! So, definition (3.14b) changes into

(Qc’k) = ( {/C’k -1 9 )(Ic’k Pkg’k_l ko > ch: 1
U1,k _(II,k_SI,kk)KI,kKICvk ‘SI,kk 0 PIC,k—l PI,k—l 7_11,1414- 8)

__Using the hierarchical extension together with the smoothing, i.e., setting Bjc =
Erc(v), it was shown in [Haa97] that in the 2D case

¢ ¢
ce(Brc(v)) < c| 1+ Vi Zgi"’“ H J;?Vj = 0(f)
k=1 J=k+1 (4.19)
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holds with a positive and h-independent constant c. In comparison to the hierarchical
extension the order remains the same but the constants hidden in that order statement
are partially controlled by the smoothing. Now, v; = O(In(In h=1)) iterations of the
smoothing procedure St are sufficient to achieve an h-independent constant cg so
that an additional iteration, as in the hierarchical extension technique, is no longer
needed.

In the BPX-like extension additional smoothing sweeps are also feasible but the
theory for this is still open. In that case the parameter o will have more influence on
the behavior of the constant cg.

5 An Algorithmic Improvement of the Preconditioner

The improvement of Algorithm 1 is based upon three observations:
A) In Algorithm 1 the matrices B, and C;! are applied to the same vector r;.

B) In the transposed operation to (3.14b) used in B7,,

I 0
Lk kc’k T T Yok
Vo k-1 = (PC,k—l) (PICk 1) v ’ )
Vr k-1 0 (Pf’k_l)T —Lk

the last row is simply the usual linear restriction from the finer to the coarser grid. A
similar observation for the extension technique plus smoothing in (4.18) leads to

T v
Vrg—1 = (PIk,k—l) (S}jk) kQI,k . (5.20)

C) Perform in a multigrid algorithm at level k v, smoothing sweeps with the iteration

matrix SI ks (SI  means the adjoint matrix to Sy, in the K g-energy inner product)
together with calculation and restriction of the defect. Then that brief algorithm,

* v _ T
Wrg = (II,k - (SI,k) k)Kr,iL,k and C_ll,k—1 = (PIk,k—l) (L,k - KI,kMI,k) >

can be simplified into

T i
drg—1 = (PIk,k—l) (S?k) L,k- (5.21)

¥

Now, choosing Sy as pre-smoother and Srj as post-smoother in a multigrid
algorithm defining C; we preserve the required symmetry and may use restriction
and pre-smoothing from the implementation of the transposed extension B%,. When,
additionally, in that extension a coarse grid solver is used more than half of the
algorithmic work can be saved when applying CI_I. This algorithmic improvement
does not depend on the choice of the projections Qy !

Numerical tests using this improved algorithm together with the hierarchical
extension technique can be found in [Haa97].
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6 A test example

For checking the theoretical results concerning the behavior of the constant cg it
is necessary that the spectral equivalence constants in (1.5) are independent of h.
Therefore, the test example consists of the PDE

—Au(z) =1 inQ=(0,1) x (0,0.5) and u(z) =0 ondf ,

where the domain  was decomposed into two squares. Using in the precondi-
tioner C' (1.4) Dryja’s approach [Dry82] as Schur complement preconditioner C¢ and
exact solvers for CI_ﬂ.l, we achieve h-independent spectral equivalence constants in (1.5),
so the condition number of the preconditioned system x(C~'K) is influenced only by
the extension Bjc.

The discrete system (1.3) was solved with a preconditioned parallelized CG until a
relative accuracy of 10~% measured in the || - || -norm of the error was reached.

KC—1K

Due to estimates (1.7) the number of CG iterations behaves like O(c%) .

On level 0 with the discretization parameter h = 0.25, i.e., just one node on the
interface between the two subdomains, the automatic mesh generator produces a
triangular mesh with 4 inner nodes per subdomain. All finer meshes were produced by
simply subdividing each triangle into 4 congruent ones. The Gauf-Seidel smoother Sy ;,
applied v = vg-times (k=1,...,¢) and a coarse grid solver were used in the
extension Bjc. Whereas in Table 1 the iteration numbers connected with the

Table 1 Number of CG iterations for the test example using 2 processors

[ Splitting [v [[£=0]¢=1]¢=2]¢=3[¢=4[4=5]1=6]

hier. 0 2 7 11 17 24 30 36
hier. 1 2 6 8 11 13 16 19
hier. 2 2 5 7 8 10 13 14
BPX-like | 0 2 7 8 11 12 13 13

hierarchical splitting grow linearly with the number of levels £ the iteration numbers
of the BPX-like splitting tend to an upper bound. This confirms the theoretical results
from (4.15), (4.16) and (4.19). Obviously the additional smoothing sweeps decrease
the number of iterations and also the condition number x(C~!K) rapidly.

7 Final Remarks

Although the development was done on rather simple operators, the results carry over
to systems of symmetric elliptic second order PDE s resulting in symmetric Vy-elliptic
and Vy-bounded bilinear forms. The extension techniques used in the test example
work also very well in more challenging examples and result in a faster solver when
the algorithmic improvement from Paragraph 4 is used; see also [Haa97].

In the latter paper, the full proof for estimate (4.19) can be found and it was shown
that this estimate holds for the whole range from extension without smoothing to
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the exact harmonic extension. Especially smoothing controls similar to the multigrid
slash cycle and generalized slash cycle were investigated, so that O(ln£) smoothing
sweeps are sufficient to achieve a condition number x(C~1K) = O(1). The algorithmic
improvement from Paragraph 5 was derived in a more heuristic way. The electrical
machine with jumping coefficients and a complicated geometry proved that the new
extension method is also successfully applicable to practical problems.

The implementation and theoretical analysis of the BPX-like extension together
with smoothing sweeps will be done in a forthcoming paper. Also, a comparison to
other extension techniques proposed in [Nep91, Che93, BPV96] should be done on a
more challenging example, with respect to the CPU time needed to solve (1.1).
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