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1 Introduction

In the field of partial differential equations, domain decomposition methods are among
the most effective parallelization techniques. A direct parallelization leads to so-called
data or grid partitioning strategies. The parallel version shows the same algorithmic
behavior as the serial one but suffers from a sometimes considerable communication
overhead. This disadvantage has led to indirect parallelization strategies which are
characterized by an additional outer iteration. This paper presents real life examples
from fabrication of semiconductor devices and nuclear reactor analysis, both for
a workstation network and for a multiprocessor-shared memory architecture. In
[Kah94] we have shown that for process simulation of semiconductor devices direct
parallelization methods are superior to indirect ones, even for workstation clusters.
In the present paper we restrict ourselves to direct methods for both application
fields: parallel multigrid in connection with Newton’s method and parallel nonlinear
multigrid. In order to reduce communication overhead, the corresponding smoothing
algorithms are changed.

The outline of the paper is as follows: Section 2 illuminates some aspects of multigrid
parallelization, Section 3 gives an introduction to the applications, namely point defect
and neutron kinetics simulation, and presents results for a workstation cluster and a
shared memory system.

2 Aspects of Multigrid Parallelization

For both applications linear prolongation and restriction are used, the restriction
operator being the transpose of the prolongation operator. On the finer grids, Gauf-
Seidel iterations are used as smoother. On the coarsest grid, the system of equations
is solved exactly: by serial Gaussian elimination in case of neutron kinetics simulation,
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and by a serial or parallel conjugate gradient method in case of process simulation.
The serial solution on the coarsest grid can either be computed by a separate host
or in parallel by each host. The fastest variant may depend on the underlying
hardware architecture. Because communication only takes place in a parallel coarse
grid correction and the smoothing algorithm, these algorithms alone are described
briefly. After preliminaries on matrix decomposition, parallel conjugate gradients and
parallel GauB3-Seidel are described.

Matriz Decomposition

Let €2, the domain of definition, be decomposed into overlapping or nonoverlapping
subdomains ;,4 = 1,...,N. Let Az = b be the basic linear system of equations
resulting from, for example, a finite element discretization of the PDE in Q, A; the
matrix corresponding to the discretization in Q;, b; the right-hand side, and R; a
matrix representing the algebraic restriction of a vector on {2 to the corresponding on
Q;. Splitting up A;, b; and R; into boundary and inner components, one obtains

AT AIB b!
and
O ... 0ro .. o0 o0
r=(g o o) 22)

Using these definitions, a decomposition of the basic system is given by

N N
> RTARiz =) Rlb;. (2.3)
=1 i=1

Parallel Conjugate Gradient Methods

Conjugate gradient type methods can be parallelized as in [Mey90]. Assume the
nonoverlapping domain decomposition with the representation of the basic system
given by (2.3). Then two types of local vector representations have to be distinguished:

1. Non-assembled: At inner boundaries, a non-assembled vector only contains
information on one subdomain and does not coincide with the global vector,
e.g., b; in (2.3).

2. Assembled: At inner boundaries an assembled vector coincides with the
global vector, e.g., s = R;x.

Iteration steps containing summation of two vectors may trivially be parallelized. For
a scalar product < ¢,r > holds

<t,r>=<Y Rltiyr>=) <t,Rr>=) <ti,r> ,

with the assembled vector r; and the non-assembled vector ¢; in domain 7. So < t,r >
can be calculated by summing up the local scalar products < t;,7; >. The norm ||r||
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may be calculated in a similar manner. But for stability reasons, ||r|| is calculated by

N ng

2 2 j j
Dol 5 lrallf =Yool
i=1 Jj=1

with n; denoting the number of variables in subdomain i. a are weights equal to 1

for inner variables and equal to 0 or 1 for variables on subdomain boundaries. For an
inner boundary node, ! is 1 for just one adjacent subdomain 4 and 0 for i # i.

The parallel algorithm is not as stable as the serial one. In practical applications
there are sometimes problems in achieving the required accuracy which may have their
roots in the assemblies. During the iteration process of the parallel algorithm vectors
are assembled with nonzero entries, but the assembled vector should be zero for the
converged solution. In the serial program these problems do not occur because the
assembly is done before solving the linear system.

Il =

Parallel Gauf$-Seidel

Parallelization of GauB-Seidel depends on the type of application, e.g., whether we have
a scalar equation or a system of equations. Of course, the numbering of the variables,
in particular those at the inner boundaries, plays an important role, also the coupling
between variables, and whether we choose standard Gauf3-Seidel or Block-Gauf3-Seidel.
In this section, one parallel variant of standard GauB-Seidel used in point defect
simulation is described with the numbering of variables given by (2.1),(2.2),(2.3).

With a decomposition of matrix A into an upper, lower and a diagonal matrix
(A=U+ L + D) one iteration of Gau$}-Seidel reads:

Dz*tl = (b — La**t — Uzh). (2.4)
Applying partition (2.3) of matrix A it holds:
N N
> R D;Riz**" =" RY (b — LiRiz"*' — U;Riz*). (2.5)
i=1 i=1

Splitting up U;, Li, D;, R; and b; into inner and boundary components as in (2.1),(2.2)
leads to

II Ik+1 _ 31 I, Ik+1 II, Ik IB_B.k
D'z =b, — L, — U,z "+ U " x)") (2.6)
for the inner variables of domain s and
N N
B,T BB, Bk+1 _ B,T /1B BI,I,k+1 BB _.B,k+1 BB, B,k
ZRi D"z = ZRi (b7 — (L7 = + Ly x; ) =U"z")
i=1 =1 (27)

for the boundary nodes. (2.7) carries a lot of communication. For some applications
it may be therefore advantageous to replace (2.7) by the Jacobi iteration. Applying
operator RZ one arrives at

N
(DJ? + R} Y RPTDFPRIRI )2l Mt = RTY RPT (6P
i#s i=1

BI_I.k+1 BB_B.k BB_B.k
- (Li'z; + L7z t) = U7 t).
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3 Hardware Environment

In order to make an easier interpretation of the performance tables in the next section,
a short description of the used hardware environment is given. The two applications
run on a workstation cluster and on a multiprocessor-shared memory architecture. The
workstation cluster consists of four Hewlett Packard HP725/75MHz and of 16 SUN4
sparc2 workstations which are connected by Ethernet. The shared memory architecture
is a Silicon Graphics Power Challenge with eight processors (R8000/90MHz). To give
an idea of the floating point performance of the three different architectures, the
theoretical peak performance and the LINPACK benchmark are listed in Table 1.

Table 1 The first column is the theoretical peak performance in Mflops and the
second is the rate achieved for the decomposition of a matrix of dimension 1000.

Computer Peak Matrix
SUN4 Sparcl0/51 (50MHz) 50 27
Hewlett Packard 725 (75MHz) 150 92
SGI Power Chall. (90MHz) 1 Proz. 360 308

The communication could be performed by interface software packages such as MPI
or PVM; see [MPI94, GBD*93, pvm]. On the workstation cluster the Send/Receive
is realized by using UNIX sockets. The shared memory variant uses a simple copy
mechanism. One of the major advantages of these interfaces is that the software can
be transferred to the new platform without any modifications. Further acceleration
on the multiprocessor architecture is achieved by using the machine-specific interfaces
of SGI. The machine-specific interfaces directly exploit the shared memory structure
and need no copy at all. For the current implementations PVM was used.

4 Applications

Point Defects

It is state-of-the-art to simulate point defects in order to obtain a consistent model
for dopant diffusion; see [PJKT93]. Diffusion of dopant ions (boron, phosphorus
arsenic and antimony) in silicon only takes place by way of interaction with either
a silicon interstitial or a silicon vacancy. In the case of inert diffusion an equilibrium
concentration of point defects can be assumed. Process steps like oxidation of silicon
disturb this equilibrium concentration, thus the transient evolution of point defects has
to be simulated. Following Hu [Hu74], point defects are modelled by two linear diffusion
equations which are coupled by a nonlinear recombination term. The generation of
interstitials depends on the interface velocity between silicon and silicon oxide:

aC
6—tI = V-(D/VC) - k(CiCy — C;Cy), Cr(0) =CF, (4.8)
aC

V. = V.(DyVCy)—k(CiCy — C:Cy), Cy(0)=CY, (4.9)

ot
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and the boundary conditions

oCT _ —KI(CI —C}k) +F(U,’m§) on I
Dy on { 0 otherwise, (4.10)
6CV _ —Kv(CV - C‘*/) on I
Dv on { 0 otherwise. (4.11)

Cr and Cy denote the concentrations of interstitials and vacancies, C} and C, the
thermal equilibrium concentrations, Dy and Dy the diffusion coefficients, and Ky
and Ky the surface recombination velocities of interstitials and vacancies. v;,; is the
velocity of the interface I' between oxide and silicon. The computational domain is
2D.

For space discretization linear finite elements are used, time discretization is
performed by the trapezoidal rule, backward difference method (TRBDF) [BCF*85].
In each time step two nonlinear systems have to be solved by Newton’s method. Both
linear systems are solved with parallel multigrid.

The multigrid cycles are optimized with regard to the serial algorithm (V-cycles
start on coarse grid); see [Kah94]. On the coarsest grid, the serial CGS [Son89] is
applied (The parallel CGS leads to a communication overhead). This means that all
relevant data has to be sent to a specified host before starting serial CGS there. Table 2
shows the h-independence of the multigrid algorithm. The number of multigrid cycles
is nearly a constant, while the number of variables increases.

With the use of PVM, the software was transferred to the SGI Power Challenge
without any changes. The difference in performance with respect to the SUN4
processor is dramatic. Thus, time measurements make only sense for a large number
of variables. Table 2 shows results of the parallel multigrid algorithm for the SUN4
workstation cluster and the SGI Power Challenge.

Table 2 Speed-up of the multigrid algorithm on a SUN4 workstation cluster (first
row) and on the SGI Power Challenge (second row). The point defect equations are
computed with 162 to 132098 variables. The first number in the Table gives the real
time for one timestep (8 Newton iterations) in seconds; the second denotes the
number of multigrid cycles.

# Variables 162 578 2178 8450 33282 132098

1 domain 4/16 9/20 31/20 111/19 428/18
25/18 119/17

4 domains 7/16 14/20 26/20 57/20 146/18
7/18 30/17

16 domains 22/21 21/21 30/21 49/20 101/18

We have also considered a parallel CGS accelerated by an additive nonoverlapping
Schwarz; see also [KPW96]. The local problems associated with the additive Schwarz
method are solved by the serial multigrid algorithm. For the both architecture
platforms considered, the parallel multigrid works faster.
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Neutron Kinetics

One major task of reactor core simulation is the calculation of neutron fluxes given
by the transient multigroup neutron diffusion equations [FG81]:

199,

v, Ot (r,1) + Vig(r,t) + (Zag + Z Egrg)py(r;1) (4.12)

9'>g

G
Z 1
= Eggl¢gl (I',t) + X E Epggl¢gl (I',t)
g'=1

9'<yg

I
+ " XighiCilr,t) + Se™(x, 1)

i=1
Jg(r,t) + DgVy(r,t) =0 (4.13)
G
aC; 1 ;
7 1) + ACir,1) = 5 > B by (4.14)
g'=1

in a 3D computational domain. ¢4 and j, are the flux and current in energy group g,
vy the neutron velocity, D, the diffusion constant. Xfig are fission spectra of delayed
neutrons, S;”’t is the external source, A the eigenvalue of the reactor. ¥4, X4/, Xpgq,
E} o are cross sections, C; the precursor concentration of type ¢, A; the decay constant.
The unknowns to be computed are ¢4, j, and C;. At outer boundaries mixed boundary
conditions (vacuum or albedo boundary conditions for a reflective medium) hold.
Space discretization is done by a nodal expansion method (NEM) [FBW77, FG81].
The domain is subdivided into boxes, (4.12),(4.14) are integrated over the volume and
(4.13) over the surfaces of each box. For time discretization implicit Euler is applied in
combination with an exponential transformation technique [FG81]. The equations for
precursor concentrations can be substituted into the balance equations for the fluxes.
This results in the system of finest grid equations. On coarser grids a multiplicative
variant of multigrid, CMR (“Coarse Mesh Rebalancing”) [FBMK91], is applied. On
grid levels 1 to L — 1, the coarse mesh equations are solved by red-black Gauf3-Seidel,
whereas on coarsest grid level L Gaussian elimination is applied.

The basic principle of parallelization is axial domain decomposition. The axial layers
of the core are distributed among the processes which solve the NEM equations on
the finest grid level and the CMR equations on grid levels 2 to L — 1.

The parallel neutron kinetics code is part of a coupled thermal hydraulics / neutron
kinetics code system [KM94], the thermal hydraulics part running sequentially.

As test example an emergency power case has been chosen. The simulation is
performed for three different problem sizes: the first problem with approximately 4000
boxes, the second one with 8000 and the third one with 16000 boxes on the finest grid.
Table 3 shows results for a cluster of HP 725 workstations. The execution times are
overall execution times including the sequential parts of the program.

In this simulation only the two finest grid levels were computed in parallel, with the
number of parallel processes given in the table. The coarser grid levels were computed
by a single master process.

The parallelization of the multilevel cycle leads to considerable communication
between the processes. Thus much better speed-up factors are expected on a shared
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Table 3 Results for the parallel neutron kinetics code on HP 725 workstations with
PVM: execution time in seconds.

#Processes Problem 1 Problem 2 Problem 3

1P 5185 8795 14533
2P 4916 6915 10568
4P 4736 6638 9476

memory computer. Table 4 (each of the first numbers) shows results for the parallel
code system using again PVM as parallel platform, the neutron kinetics running on
the SGI Power Challenge and the thermal hydraulics on an HP 725 workstation. The

Table 4 Results for the parallel neutron kinetics code on the SGI Power Challenge.
The first number gives the execution time in seconds with PVM as parallel platform,
the second number the execution time using machine-specific interfaces.

#Processes Problem 1 Problem 2 Problem 3

1P 1529 2788 4624

2P 909/919 1402/1370 2314/2259
4P 651/626 844/ 851 1271/1277
6P 562/506 672/ 644 945/ 946
8P 776/511 851/ 629 964/ 791

basic overhead of parallelization is the same as in the case of workstation clusters, but
a Send/Receive of PVM is realized by a simple copy mechanism and the more costly
communication through UNIX sockets is avoided. The speed-up factors scale only
up to 6 processors; for 8 processors the communication overhead becomes dominant.
Further acceleration is achieved by using machine-specific interfaces of SGI instead of
PVM which need no copy at all. The results are also shown in Table 4 (the second of
each set of numbers).

5 Conclusion

Our goal was to study the scalability of parallel domain decomposition methods in an
industrial environment. Three different computer architectures were used: cluster of
HP and SUN workstations, and an SGI Power Challenge, a shared memory computer.
For point defect analysis, the parallel multigrid with minor modifications turned out
to be a very efficient method. It is somewhat surprising, that even on a workstation
cluster with its low communication performance, the method works quite satisfactorily.
In neutron kinetics simulation, future work concentrates on variants of multigrid with
similar convergence rates, but with higher parallel potential for a large number of
processors.
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