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Combining Waveform Relaxation
and Domain Decomposition

Sigitas Keras

1 Introduction

Several techniques with inherent parallelism are available for the solution of parabolic
equations, and among the most successful are Domain Decomposition (DD) and
Waveform Relaxation (WR) methods. The main goal of this paper is to demonstrate
that it is possible to combine these techniques into a single algorithm, thus reducing the
computational complexity and the time required to obtain the computational solution
of parabolic equations.

Waveform relaxation was first suggested in the late 19th century by Picard and
Lindelof ([Pic93, Lin94]) and has been subjected to much recent interest as a practical
method for the solution of stiff ODEs after the publication of the paper by Lelarasmee
and coworkers [LRSV82]. Recent work in this field includes papers by Nevanlinna,
Zennaro, Bjgrhus and others (see [MN87a, Bjg95, BZ93, Lum92]). It can be described
as an iterative method to solve an initial value problem

W= W), 90 =

At each step we compute the solution of the equation

du (D 5
d_:: = F ™), w1 (0) = g, (1)

where the function f satisfies the identity

fv,0) = f(v).

In this paper we only consider the case where f is a linear operator, which throughout
will be denoted by f(v) = —Av, and f(v,w) = —Pv + Qw, where P and @ are linear
operators and A = P — (). In this case (1) lends itself to the following form:

du (n+1)
dt
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+ Py = Qu® 4 £, 40D (0) = y. (2)
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Solving (2) explicitly by integration of constants, (™) can be formally written as

where

t
Ku(t) :/0 eGP Qu(s)ds,

t
B(t) = et Fuyq +/ e(s_t)Pf(s)ds,
0

and it follows from the Banach fixed point theorem that the method (2) converges
for all f and u° if and only if p(K) < 1, where p denotes the spectral radius of the
operator.

An extensive theory for this iterative procedure and its discrete version has been
developed in [MN87a] and [MN87b]. In particular, necessary and sufficient conditions
for the convergence of this method have been established. The following result has
been proved in [MN87b].

Theorem 1. Suppose that all the eigenvalues of A and P have positive real parts.
Then the spectral radius of /C can be represented by means of formula

p(K) = maxp((i¢] + P)'Q). (3)

This result can be applied to semidiscretized linear parabolic PDEs. The following
theorem has been proved in [Ker95b].
Theorem 2. Consider the diffusion equation

ug — V(a(z)Vu(z)) = f, (z,t) € 2 x (0,00), (4)
U(OWZ') = UO('Z'): TE Q: (5)
u(t,z) =0, (z,t) € 0N x[0,00). (6)

where (1 is a rectangular domain in R?. Let A be a discretization of the elliptic operator
—V(a(z)V), 0 < a— < a(z) < ay < oo and P be a discretization of the operator
—V(b(z)V) for some function b such that 0 < b_ < b(z) < by < oo and let both A
and P satisfy the following assumptions:

1. A and P are positive definite
2. ¢(Pu,u) < (Au,u) < C(Pu,u) for any vector u # 0, provided that
cb(z) < a(z) < Cb(z) for all z € Q, where ¢,C € R

< 1 and p(K) < max

In particular, when b(z) is a constant, one can deduce that

o) 0|
c

Then the method (2) converges if max

a(z) —b(z)
b(z)

a(z) —b(z)
b(z)

p(K) < max

and
min p(K) < 2+ 9=
ceR* ay +a—
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In rectangular domains this choice of b(z) makes the matrix P Toeplitz or block
Toeplitz, which allows a fast solution of the subproblem (2). One may ask what other
choices can be made for b(z). In this paper we consider a natural generalization
in which b(z) is a piecewise constant function. In order to exploit the structure of
the matrix P, we propose to solve the WR equations using domain decomposition
techniques.

2 Nonoverlapping Domain Decomposition

Consider the equation
Au=f, (9)

where u and f are vectors defined on a grid in the domain 2. We assume that 2 is
divided into two subdomains €2; and . separated by the boundary B. We subdivide
vectors v and f

Uy fi
u = U 5 f = f2 ) (10)
up fB

where indices 1,2 and B denote restrictions of the vectors to the domains 2, 25 and
the boundary B respectively. Similarly, we can write

A A Aip
A= An Ay Asp
Ap1 Ap2 ABsp

where submatrices A;; satisfy the relationship > j Ajju; = f;. We assume that matrix
A is symmetric, A = AT, and also that A;2 = AL = O, which means that there
is no interaction between subdomains {2; and 23 other than through the boundary.
These assumptions are satisfied by matrices arising from the discretization of elliptic
operators which are considered in the present paper. In this case (9) can be written
as a set of three independent equations

Sug = fg, (11)
Ajju; = fl: (12)
Asous = fo, (13)
where
S = App-— Api AL Aip — ApsAy} Ao, (14)
fB = fB—ApiAiur — ApsAsyus, (15)
fi = fi— Aipus, (16)
fo = f— Aspus. (17)

Equation (11) is solved first, after which we can determine vectors f; and f, and solve
(12) and (13). Note that (12) and (13) are independent of each other and can be solved
simultaneously.
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An important part of the algorithm is to be able to solve the equation for the vector
up efficiently. The matrix S is typically dense and expensive to calculate explicitly.
In practice the equation for up is solved using the preconditioned conjugate gradient
method (PCG), and the rate of convergence depends on the condition number of the
preconditioned matrix S. We present here two examples of preconditioners for two-
dimensional elliptic problems, for a more elaborate discussion refer to the review paper
of Chan and Matthew [CM94].

In order to introduce the preconditioners, we make further assumptions about the
structure of the grid on the boundary, which is denoted with a subscript B. Assume
that the domain 2 is divided into rectangular subdomains so that the boundary
B consists of k edges E;, ¢ = 1,...,k and vertices V, and the matrix S can be
decomposed as follows,

SE'1E1 SElEk SE1V
S = . : :

SEkEl SEkEk SEkV

SVEl SVEk Svv

The first preconditioner is a block Jacobi preconditioner

Sg.g, O 0

M, = 0
: Se.g, O
0 0 Svv

One may expect that the condition number of the preconditioned system, M, 1S is
dependent on the discretization size h as well as on the size of the subdomains H.
This is in fact the case as shown in [BPS86],

Theorem 3. There exists a constant C' independent of H and h, such that

cond(M;1S) < CH™2(1 + In(H/h)).

The other preconditioner which was also introduced in [BPS86] can be written in
the form

Sg,g, O 0

My = 0
: SEkE)c 0
0 0 Ay

Here Ay is a matrix resulting from the discretization of the problem only on vertices
V. Global coupling between the vertices, introduced by the matrix Ay, substantially
reduces the condition number of the matrix S. The following result has been proved
in [BPS86].

Theorem 4. There exists a constant C' independent of H and h such that

cond(M;*S) < C(1+In®(H/h)).
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3 Domain Decomposition for WR Equations
Consider the waveform relaxation method with a splitting as described in Theorem 2,

where the domain 2 is divided into subdomains €2; and function b(z) is constant in
each of the subdomains €2;. Then it is easy to show that

al . —al;

K) < max —22* un 18
p( ) i a’%nax + a:nin ’ ( )

where . .

Omax = MAXA(T),  aApip = WD a(2).
Indeed, we choose

a’;inax + a’fnin

b(z) = — 5 z € Q; (19)

then the estimate (18) follows from Theorem 2.

In this way, we obtain a WR method with an improved radius of convergence. There
is, however, a price to pay. The main advantage of the waveform relaxation method is
due to the fact that the matrix P is easily invertible, so that (2) is easy to solve. For
instance, in case of a constant function b(z) we have obtained a block Toeplitz matrix P
which can be inverted very fast using FFT techniques. In case of a piecewise constant
function b(z) this structure is destroyed. To overcome this difficulty we propose to
employ the domain decomposition method. There are several reasons why this can be
a promising approach. Firstly, as we have already noted in the previous section, the
main computational cost of domain decomposition consists of solving the equation in
each subdomain. This can be implemented in parallel. Since b(z) is constant in each
subdomain, this results in solving equations with block Toeplitz matrices. Secondly, we
employ the domain decomposition method in order to solve the equation for (n + 1)st
iteration of the WR method »("t1). Since this is not the solution we are seeking but
only an iteration, we need not to solve the domain decomposition equations exactly. In
other words, we propose to use an inner-outer iteration scheme where inner iteration
is performed using DD algorithm and outer iteration is performed using WR method.

We start by stating a result about the convergence of iterative methods for time
dependent iterative schemes. Consider a linear system of ordinary differential equations

du
dt

where P is a symmetric positive definite matrix. We solve it on a finite time interval
[0,t*] with the § method

+ Pu = f(t), u(0) = uy,

% FOPuni1 + (1 —0)Pup = fn,  6>1/2,

At each time step the resulting linear equation

= (Grvor) [(Br-a-or)usn] oo
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Table 1 The performance of the standard parallel solver for the test problem with
a = 0.5 on large grids.

Grid Number | Time
size of nodes | (sec)
64 x 64 x 50 1 76.22
64 x 64 x 50 2 41.61
64 x 64 x 50 4 24.45
64 x 64 x 50 8 15.63
64 x 64 x 50 16 12.08
64 x 64 x 50 32 11.44
128 x 128 x 50 | 1 584.1
128 x 128 x 50 | 2 300.1
128 x 128 x 50 | 4 158.64
128 x 128 x 50 | 8 88.83
128 x 128 x 50 | 16 54.25
128 x 128 x 50 | 32 39.83
128 x 128 x 50 | 64 31.58

is solved using an iterative method with a linear rate of convergence p,
k41 k
[lup ™ = unll < plluy, —unll, &=1,2,...,

where the superscript k& denotes the iteration number. We construct an approximate
solution by applying m iterations at each time step and using the new value v, = ug’
in the right hand side of (20). Then the following theorem holds.
Theorem 5. If m is large enough, then the error at time step n, e, = v, —u,, satisfies
the inequality

llen|| < Cp™

where the constant C is independent of m and p.
The above theorem can be applied to our problem of combining the waveform
relaxation and domain decomposition methods together. Consider the equation

du

o TAv=1
which is solved using the waveform relaxation method (2) as described in Theorem 2,
and at each iteration the resulting equation is solved using m iterations of the domain
decomposition method. Let Q be divided into subdomains Q; and let b(z) be defined
as in (19).
Theorem 6. If m is large enough, then the combined waveform relaxation — domain
decomposition method converges.

The proofs of Theorems 5 and 6 are rather technical and are given in full detail in

[Ker95al.
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Table 2 The performance of the waveform relaxation with Toeplitz splitting for
the test problem with a = 0.5 on large grids.

Grid Number | Number of | Time
size of nodes | iterations | (sec)
64 x 64 x 50 2 10 40.92
64 x 64 x 50 4 10 26.74
64 x 64 x 50 8 10 20.35
64 x 64 x 50 16 10 12.44
64 x 64 x 50 32 10 8.09

128 x 128 x 50 | 2 10 171.8
128 x 128 x 50 | 4 10 111.5
128 x 128 x 50 | 8 10 83.46
128 x 128 x 50 | 16 10 49.44
128 x 128 x 50 | 32 10 27.43

4 A Numerical Example

A new numerical method can only be justified if it performs comparably to or better
than existing methods. In this section we present a numerical example. All the
calculations were carried out on an Intel Paragon computer. Qur test problem is a
parabolic equation with variable coefficients,

Ou 0 . ) Ou
% = o ((1 +ozsm47rms1n47ry)6—m)
+ 8%/ ((1 + asindnz sin47ry)g—z> , (21)
(mayat) EQX(Oal)a Q:(O,I)X(O,l)
u(z,y,t) =0, (z,y,t) €92 x(0,1), (22)
u(z,y,0) = sin 7z sin 7y. (23)

We solve the above equation using three methods. The first method is a standard
Crank—Nicolson scheme. Since this is an implicit scheme, the parallel solver of sparse
linear systems is used. The second method is the WR method with Toeplitz splitting
as described in [Ker95b]. In this case the matrix P in (2) is block Toeplitz so that
parallel FFT solvers are used. Finally, the third method is the combined waveform
relaxation domain decomposition method. The parallelization is done by assigning
subdomain problems to different processors as well as performing WR, iterations on
different processors. The preconditioner described in Theorem 3 is used for the solution
of resulting Schur problems. While it is not asymptotically optimal, it is easy to
implement and provided a good estimate of the method. A better convergence is
expected if a better preconditioner is used.

The results of the computations are presented in Tables 1 through 3. They suggest
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Table 3 The performance of the combined waveform relaxation domain
decomposition method (4 subdomains) for the test problem with & = 0.5 on large

grids.

Grid Number | Number of | Time
size of nodes | iterations | (sec)
64 x 64 x 50 2 8 55.91
64 x 64 x 50 4 8 35.87
64 x 64 x 50 8 8 28.63
64 x 64 x 50 16 8 23.71
64 x 64 x 50 32 8 18.34
128 x 128 x 50 | 2 8 202.1
128 x 128 x 50 | 4 8 134.1
128 x 128 x 50 | 8 8 91.23
128 x 128 x 50 | 16 8 60.23
128 x 128 x 50 | 32 8 38.1

that both WR and WRDD methods have better asymptotic properties compared to
the standard scheme when the grid size of the space domain increases. In particular,
for the grids of the given size, the WR method outperforms the standard solver and
the WRDD method performs comparably to it. The number of the iterations required
for the convergence is independent on the grid size and the WRDD method requires
less iterations than the WR method. The other important feature is that DD can
be used as an inner iteration method, so that only several iterations of the DD are
needed. In our numerical example we have performed only 3 DD iterations which was
sufficient for the convergence of the method.
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