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Two Preconditioners for Saddle
Point Problems with Penalty Term

Axel Klawonn

1 Introduction

Many problems in the engineering sciences lead to saddle point problems. Important
examples are the Stokes equations of fluid dynamics, modeling the flow of an
incompressible viscous fluid, and mixed formulations of problems from linear elasticity,
e.g. for almost incompressible materials, plates, and beams; cf. Braess [Bra92] or Brezzi
and Fortin [BF96]. These problems can be analyzed in the framework of saddle point
problems with a penalty term.

In this article, we focus on the construction of preconditioned iterative method
for certain saddle point problems with a penalty term. We present a block-diagonal
and a block-triangular preconditioner in combination with appropriate Krylov space
methods. This yields preconditioned iterative methods which have convergence rates
that are bounded independently of the penalty and the discretization parameters.
Details and proofs of the results can be found in [Kla97, Kla95a, Kla95b, Kla98§].
Here, we only consider symmetric saddle point problems. For related work on the
non-symmetric case, see Elman and Silvester [ES96], where the Oseen operator which
is obtained by applying a Picard iteration to the Navier-Stokes equations is analyzed.
Earlier work on block-diagonal preconditioners can be found in Rusten and Winther
[RW92] and Silvester and Wathen [SW94]. A number of methods have been proposed
for solving saddle point problems. For a list of references, see e.g. [K1a97, K1a98].

2 Saddle Point Problems with a Penalty Term

In this section, we give a brief overview over saddle point problems with a penalty
term; cf. Braess [Bra92].

Let (V,|| - |lv) and (M, || - ||ar) be two Hilbert spaces, let M, be a dense subspace
of M, and let a(-,-) : VXV = R, b(-,:) : VXM — R, ¢(-,-) : M. x M. — R,
be three bilinear forms. Additionally, we introduce Vp, a subspace of V, given by
Vo :={veV:bugqg) =0Vqe M} We assume that a(-,-) is symmetric Vp-elliptic
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and that ¢(-,-) is symmetric M,-positive semi-definite. Moreover, we assume a(-, -) and
b(-,-) to be bounded. We consider the following problem:
Find (u,p) € V x M., such that

a(u,v) + blv,p) = <fv> WweV (1)
b(u,q) — tic(p,q) = <g,9> Vg€ M, tel0,1]

We denote by X :=V x M, the product space and by
A(.’L’,y) = G,(U,Q)) + b(ua Q) + b(’U,p) - tzc(p, q):

z = (u,p) € X, y = (v,q) € X, the bilinear form of problem (1) on X. With the
additional definition F(y) :=< f,v > 4+ < g, ¢ >, we obtain an equivalent formulation
of problem (1)

Alz,y) = F(y) VyeX. (2)
We equip X with a new norm. We assume that we have an additional norm on M.,
i.e. ||| - |l|ar, and introduce the new norm on X by
Wl := llullv + llglllar for = (u,p) € X.
If the bilinear form c(-,-) is continuous on M x M, we define |||p|||ar = lIp|ln-

Otherwise, |||p|||a is defined by ||p||ar + t[ple, where |p|. := y/c(p, p) is a semi-norm
on M,.

Theorem 1 Let the following three assumptions be satisfied:

1. The continuous bilinear form a(-,-) is symmetric and Vy-elliptic, i.e.
Jag > 0, such that a(v,v) > aolv||} Yo € Vo,

2. The continuous bilinear form b(-,-) fulfills an inf-sup condition, i.e.

b
36y > 0, such that inf sup _bv.g) > fo,
aeM yev |[vlvlallar
3. The bilinear form c(-,-) is symmetric and M.-positive semi-definite, i.e.
c(g,q) >0 Vg€ M.

Then, A(-,-) defines an isometric isomorphism A: X — X' if in addition one of the
following conditions is satisfied:

1) The bilinear form c(-,-) is continuous on M, x M..
2) The bilinear form a(-,-) is V —elliptic.

Under these assumptions A~' is uniformly bounded for t € [0,1].

For a proof of this theorem, we refer the reader to Braess [Bra92], Section III.4.

All these results are also valid for suitable finite element spaces; see Braess [Bra92] or
Brezzi and Fortin [BF96]. We then require, additionally, that the constants in Theorem
1 are independent of h. The continuity assumptions turn into uniform boundedness
with respect to h; see, e.g., Braess [Bra92].
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Discretizing (2) by mixed finite elements, we obtain a linear system of algebraic
equations,

Az = F,

where

. A Bt n+m n—+m .
A._(B _t20>eR x R ,]—'._(

Q

) € R*t™,

3 The Preconditioners

In this section, we present two different preconditioners for saddle point problems.
The first is based on a block-diagonal structure, the second is a block-triangular
preconditioner. Both approaches yield optimal convergence rates. To construct the
preconditioners, we consider the discrete problem, using vectors and matrices, instead
of functions and operators. Let us point out that it could have as well been presented
in an abstract Hilbert space setting. With a slight abuse of notation, we also use, for
simplicity, the same notation for the norms in both settings.

The Block-Diagonal Preconditioner

The block-diagonal preconditioner has the form

A . A 0 n+m n+m
B:= (0 C’) €ER x Rntm, (3)

Here A and C satisfy certain ellipticity conditions, i.e. there exist positive constants
ag,a; and ¢y, ¢, such that

af lully, < u'Au < afllull}, Vue R,

& lllplllz < p'Cp < lIpllla; Vp € R™

We assume the constants ag, a1, ¢o, and ¢; to be independent of the critical parameters.

We use the block-diagonal preconditioner in combination with the conjugate
residual method. To give a convergence estimate, it is our goal to give an upper
bound for the spectral condition number of the preconditioned system k(B~1A) :=
p(B=*A)p((B~*A)~1), where p(-) is the spectral radius; cf. Hackbusch [Hac94],
Theorem 9.5.13.

In the next theorem, we show that the spectral condition number can be uniformly
bounded with respect to the penalty and discretization parameters; see Klawonn
[Kla95a, Kla95b] for a detailed proof.

Theorem 2 The condition number of B~1A is bounded independently of the
discretization and the penalty parameters, i.e.

R Cy
k(B7tA) < =.
B4 < o

Here, Cy,C1 are positive constants independent of the penalty and the discretization

parameters.
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Table 1 Iteration counts for exact solvers as preconditioners for A and C, v = 0.3.

Grid 20 x 10 | 40x20 | 60 x 30 | 80 x40 | 100 x 50 | 120 x 60 | 140 x 70
CR 17 19 19 21 21 21 21
GMRES 9 10 10 10 10 10 10
BI-CGSTAB 5 5 6 6 6 6 6

The Block-Triangular Preconditioner

In this section, we consider a block-triangular preconditioner. We note that the results
presented in this subsection are, in contrast to the previous subsection, restricted to
saddle point problems where the blocks A and C' are positive definite. This class of
problems contains, e.g., Stokes equations or mixed formulations of linear elasticity but
excludes certain beam and plate problems.

The preconditioned system is either of the form AB~! or B~1A where B is the
block—triangular preconditioner.

We use the following notation

> I A B! n+m n+m > S A 0 n+m n+m
BU,_(O _é>eR x R , BL._(B —C’)ER x R ,

Here A and C are positive definite. We make the following assumptions on A and B:
The matrix A is a good preconditioner for A, i.e.

Jag,a1 >0 a2ulAu < utdu < a?uldu Vu € R™ (4)

The constants ag, a; should preferably be close to each other and be independent of
the discretization parameters but there are also other interesting cases.
We also require that C' is a good preconditioner for C), i.e.

Jeo,e1 >0 2 ptCp<plCp< 2 p!Cp Vpe R™. (5)
Under the additional assumption that
1<ao<a, (6)

which can always be achieved by an appropriate scaling, we can show that the
spectrum of AB~! stays bounded independently of the discretization and the penalty

parameters.
A-A O
e (A540).

Introduce the notation,

From (6), we see that # is positive definite. Since A, A, C' are symmetric, it defines an
inner product.

In the next theorem, we see that GMRES, using an inner product which is spectrally
equivalent to the one defined by H~!, applied to the preconditioned system ABEl
yields an optimal convergence rate. The proof uses that Al?l}l is symmetric positive
definite in the %~ —inner product. For details, see Klawonn [K1a95b, K1a98].
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Table 2 Iteration counts for a two-level multigrid preconditioner with a standard
V-cycle defining A and C =C, and v =0.3.

Grid 20 x 10 | 40x20 | 60 x 30 | 80 x40 | 100 x 50 | 120 x 60 | 140 x 70
CR 20 23 24 26 26 26 26
GMRES 12 12 13 13 13 13 14
BI-CGSTAB 7 7 7 7 7 7 7

Table 3 Iteration counts for a two-level multigrid preconditioner with a standard
V-cycle defining A and a one-level symmetric multiplicative overlapping Schwarz
method with the minimal overlap of one node defining C, and v = 0.3.

Grid 20 x 10 | 40x20 | 60 x 30 | 80 x40 | 100 x 50 | 120 x 60 | 140 x 70
CR 20 23 24 26 26 26 26
GMRES 12 12 13 13 13 13 14
BI-CGSTAB 7 7 7 7 7 7 7

Theorem 3 Let 'Z-Al be a positive definite matriz, such that C: H! L H1 <
C? H™L, where Co,C1 are positive constants independent of the discretization and
penalty parameters. Then,

C’l k—1 "
Iralli-s < G2 (VA1) ol

where Ty, is the n-th residual of GMRES, ro = b — AB 'y and k := K,(AB_I) <

is the condition number of AB™1 in the H™'—inner product.

IS8

We note that our convergence estimate only depends on the square root of the
condition number of the preconditioned problem. Except for a leading factor, this
estimate matches the standard estimate for the conjugate gradient method applied to
positive definite symmetric problems.

There also exist convergence estimates for GMRES using the L, —metric. Since these
bounds are not uniform for the meshsize h, we refer to the more detailed discussion
in Klawonn [Kla95b, Kla98]. We would like to point out that these theoretical non-
uniform bounds are not sharp since the convergence rates obtained from the numerical
experiments are uniformly bounded ; cf. Section 4.

4 Numerical Examples

In this section, we apply our block—preconditioners to the mixed formulation of planar,
linear elasticity, cf., e.g., Brezzi and Fortin [BF96] or Klawonn [Kla97]. For simplicity,
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Table 4 Iteration counts for exact solvers as preconditioners for A and C on a

80 x 40 grid.
v 0.3 ] 0.4 | 049 | 0499 | 0.4999 | 0.49999 | 0.499999 | 0.5
CR 21 21 23 25 25 25 25 25
GMRES 10 | 11 12 12 12 12 12 12
BI-CGSTAB | 6 7 7 7 7 7 7 7

Table 5 Iteration counts for a two-level multigrid method with a standard V-cycle
defining A and € = C on a 80 x 40 grid.

v 0.3 04| 049 | 0.499 | 0.4999 | 0.49999 | 0.499999 | 0.5

CR 26 | 29 33 33 33 33 33 33
GMRES 13 | 14 15 15 15 15 15 15
BI-CGSTAB | 7 7 7 7 7 7 7 7

we work with the following formulation
p(Vu, Vo)o + (dive,p)e = < fiv> Yo €V :=(HEQ))?,
0 Vg € M := Ly(9),

(divu, g)o (P, @)o

A+p
with Hi(Q) := {v € H'(Q) : vjr, = 0}. T is the part of the boundary where Dirichlet
conditions are imposed and A, p are the Lamé parameters. All results shown are for
mixed boundary conditions with Ty := {z = (z1,73) € Q2 : 3 < —0.8} and the
region [—1,1] x [—1,1]. We note that our model is mathematically equivalent to the
full elasticity problem only in the case of Dirichlet conditions on the whole boundary.

For growing A, the considered material becomes more incompressible. Instead of
using the Lamé constants A and p, we can also work with Young’s elasticity modulus
FE and the Poisson ratio v. These parameters are related to each other as follows

FEv FE

ATy Tt

(7)

The relation between the penalty parameter ¢ and the Poisson ratio v is given by
t:=(1+v)1-2v)/(Ev). Without loss of generality, we set E = 1. We discretize
by a @Q1(h) — @1(2h) macro-element, i.e. we use piecewise bilinear polynomials on
quadrilaterals on a grid with mesh size h for the displacements u and piecewise bilinear
polynomials on quadrilaterals with mesh size 2h for the Lagrange multiplier p. For a
proof that the inf-sup condition of B holds for this element; see Girault and Raviart
[GR86] or Brezzi and Fortin [BF96].

All computations were carried out on a SUN SPARC 10 workstation using the
numerical software package PETSc 1.0; cf. Balay, Gropp, Curfman McInnes, and Smith
[BGMS96]. The initial guess is 0, and the stopping criterion is ||rg||2/||roll2 < 1075,
where 7}, is the k-th residual.
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Table 6 Iteration counts for an exact solver as A and a one-level symmetric
multiplicative overlapping Schwarz method with the minimal overlap of one node as
C on a 80 x 40 grid.

v 0.3 104|049 | 0.499 | 0.4999 | 0.49999 | 0.499999 | 0.5

CR 21 | 21 23 25 25 25 25 25
GMRES 10 | 11 12 12 12 12 12 12
BI-CGSTAB | 6 7 7 7 7 7 7 7

Table 7 Iteration counts for a two-level multigrid method with a standard V-cycle
as A and a one-level symmetric multiplicative overlapping Schwarz method with the
minimal overlap of one node as C on a 80 x 40 grid.

v 0.3 ]04 ] 049 | 0.499 | 0.4999 | 0.49999 | 0.499999 | 0.5

CR 26 | 29 33 33 33 33 33 33
GMRES 13 | 14 15 15 15 15 15 15
BI-CGSTAB | 7 7 7 7 7 7 7 7

We give numerical results for different Krylov space methods. We use the conjugate
residual method (CR) in combination with the block-diagonal preconditioner and
GMRES and BI-CGSTAB with the block-triangular one. We report on results with
a version of GMRES without restarts but we also ran a version with restart every
10 iterations. The number of iterations for this latter version was always just one
or two larger than without restart. We use right-oriented preconditioning with B,}l
for GMRES and we only use the Ly— rather than the H~1—metric. Experiments
were also carried out with a left-oriented preconditioner B;' and BI-CGSTAB. This
latter method has the advantage of being based on a short term recurrence but it is
not covered by our theory. As is shown in our experiments, there is no appreciable
difference in the number of matrix-vector products of the different methods and the
numerical results suggest that the number of iterations is bounded independently of
the critical parameters h and t. Although we would like to point out that GMRES
requires more inner products and more storage than BI-CGSTAB.

We note that in all of our experiments the block-diagonal preconditioner almost
always needs about twice as many matrix-vector products than the block-triangular
preconditioner. Whereas the latter is only slightly more expensive when used with a
short term recurrence method.

To see how the Krylov space methods behave under the best of circumstances, we
first conducted some experiments using exact solvers, i.e. A= Aand C = C; see
Tables 1 and 4.

In another series of experiments, we use different preconditioners for A and C. We
present results with a two-level multigrid preconditioner with a V-cycle including one
pre- and one post-smoothing symmetric Gauss-Seidel step defining A, and a one-level
symmetric multiplicative overlapping Schwarz method with the minimal overlap of
one node as C’; see Tables 2, 3, 5, 6, 7.
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