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Parallel Preconditioners for a
Fourth-order Discretization of the
Viscous Burgers Equation

Samuel Kortas and Philippe Angot

1 Introduction

We present a parallel implementation of a new high precision conservative scheme
“CFV4” that uses additive Schwarz domain decomposition methods to precondition
three Krylov solvers. Parallel performance results are given for the Cray T3D. The
additional use of a multigrid regular finite volume solver on each subdomain accelerates
the observed elapsed times and appears optimal as soon as the number of unknowns
in each subdomain is sufficient.

2 The Fourth-order Compact Conservative Scheme CFV4

We solve the 2D nonlinear unsteady viscous Biirgers equation in the bounded unit
square domain Q¢ = [0,1] x [0, 1] in the time interval [0,T]:

Ou Ou Ou

E( x,t) +u% +Ua—y -V - (v Vu)( x,t) = fu( x,t) for ( x,t) € Qo % [0,T]

Ov Ov ov

E( x,t)—i—u% —l—va—y—v-(l/va)( x,t) = fo( x,1) (2.1)

u‘|890 ( X,t) = gu( X, t) u( X,O) = UO( X)
Vo, ( X,1) = gu( x,1)  w( x,0) =vo( x)

where ug, vo, fu, fv, 9u, gv are sufficiently regular functions and v, and v, are some
given functions of space and time, possibly non-smooth. The 2D domain €2 is meshed
by uniform grid with Az = Ay = h and [0,T] is divided into time steps At.

Because our final application is the unsteady incompressible Navier-Stokes system,
we only consider divergence-free solutions satisfying (2.1). For these, the conservative
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4th_order time discretized formulation of (2.1) is integrated on a control volume V and
the advective terms are linearized in time as follows:

n+1 n—3
/Mdv+/ u™(u*,v*)" - ndo—/ v Vu ! nda:/f,’["'ldv (2.2)
v 124t oV ov v

(b(vn+17“’vn—3) m * *\ T n+1 _ n+1
— 17 ‘dv+ " (u*,v*)" - ndo — vy, Vo' - ndo = | f; dv (2.3)
v 1248 ov ov v

where ®(ypnt1 . " 73) = 25T — 48" + 36¢" 1 — 1692 + 31p" 2 is chosen in
order to obtain a 4*"-order discretization of %—‘f at (n+1)At and ¢* = 49" — 69" 1 +
49p™~2 —4h"~3 is the consistent 4*"-order Richardson extrapolation of 9" *1. We obtain
two 4*P-order accurate time discretizations, whether the advective terms are treated
implicitly (m =n + 1) or explicitly (m = *).

Figure 1 Block structure of A, Figure 2 Ghost-cells and the local domain
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In this conservative formulation, we need to evaluate the fluxes of the advective
and diffusive terms at the surface 8V of V with a 4"-order spatial consistency. To do
so, we derive linear “compact-like” relations [Lel92] linking discrete values of (u,v)
defined at the center of each control volume on one line or column of the mesh, with
their first derivatives taken at the center of the horizontal and vertical interfaces of
these control volumes V.

We obtain a matricial expression A,. u”t!, where u™*! gathers all the u-unknowns
at (n + 1)At stored in lexicographical order. Because the nonsymmetric and rather
dense-profile matrix A, (Figure 1) is expensive to build explicitly, we prefer to evaluate
A . u by calculating the solution of tridiagonal systems: 2 along each row and 2 along
each column. For each point, we also need to perform four 5-point-stencil discrete 1D
integration and one 5 x 5 point-stencil discrete 2D integration. Similar relations hold
for v. Full details on the calculation of A. U = (A,. u, A,. v)T are given in [KA96a]
and the efficient parallel resolution of tridiagonal systems distributed over a row or
column of processors is discussed in [KA96b].
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3 Parallel Schwarz-Krylov Solvers

Parallel Partitioned Solvers

Because A is nonsymmetric, we implement some Krylov-type solvers to solve
A. U = f at each time step: the straightforward implementation of BICGSTAB and
BiCGSTAB(2) solvers [Van95] on a MIMD machine, and the partitioned BiCGSTAB
and GMRESR (k) methods [VV91] preconditioned by an additive Schwarz method.

Thanks to the use of “stencils of communication” and global reduction operations,
these algorithms are implemented in a pleasant and easy-to-read form particularly
well-suited to overlapping or nonoverlapping domain decomposition methods. As
shown on Figure 2, each local subdomain 2 is extended with a ghost-cell boundary
that contains either duplicate values of grid points known by the immediate neighbor
processors or values set by the discretization of the boundary conditions on 9Qg.

A call to REFRESH_NEWS( W,Spefquit) duplicates the neighbor values of u contained
in adjacent processors in the four cardinal directions (N,E,W,S). All operations
preceded by GLOBAL_ are performed on each node before calling a global native
reduction routine that sends back the global result to all nodes. A complete description
of the implementation and performance of this model of programming on IBM SP2,
Cray T3D, and IPSC/i860 can be found in [KA96b] or [AKF96].

Figure 4 Parallel GMRESR/(k)
Figure 3 Parallel BICGSTAB
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Parallel Preconditioners

Figure 3 shows the parallel version of a preconditioned BiCGSTAB algorithm. If
M = I, we obtain a “natural” parallel partitioned implementation of this solver:
Part_BiCGSTAB. Similarly, we implement Part_BiCGSTAB(2).

Following [Meu91], [Le 94] or [Ang94], we precondition these solvers by an additive
Schwarz domain decomposition method to solve at each iteration M p = p or
M z = s. In this preconditioning step, we first extend the local contribution of s or
p to the extended overlapping local subdomain with calls to communication stencil
routines. On each subdomain handled by a different node, we solve “exactly” a local
problem, similar to (2.2-2.3) taken this time with homogeneous Dirichlet boundary
condition. A BiCGSTAB(2) solver is used to reduce the local residual by eight orders
of magnitude. During this step, no communication occurs. No coarse grid solver is
implemented. The global solution vector “p or z is finally rebuilt from the projections
of the solution of each local problem.

By keeping the same 4"-order accurate spatial discretization for the local problems
than for the initial one, we obtain a “classical” Krylov-Schwarz additive solver:
DDM4(l) BiCGSTAB where § = [.h is half of the overlap within subdomains.
As shown on Figure 4, we also implement a GMRESR, solver preconditioned as above:
DDM4(l)_ GMRESR (k).

We can also discretize and solve the local problems thanks to classical
second-order finite volumes. These algorithms — DDMZ2(!)_.BiCGSTAB and
DDM2(l)_ GMRESR (k) — are eventually accelerated by using a multigrid solver
instead of BICGSTAB(2). In parallel on each subdomain, and totally independently,
V-Cycles are carried out on a hierarchy of grids. We perform 3 pre- and 2
post-smoothing Gauss-Seidel iterations per level, and we solve the 8 x 8 coarsest
problem by BiCGSTAB to obtain the solvers: DDM2MG(!) BiCGSTAB and
DDM2MG (1) .GMRESR (k) (for the test problem studied here, ¥ = 15 avoids
restarting the GMRES algorithm).

We also test the efficiency of a reconjugation technique combined with the
GMRESR-type solvers. Inspired by [Rou95], we store the “best” descent directions
( Ck_recy Vi_rec) = ( €k, Vi) satisfying a bound on GLOBAL_( cf ry—1). In the
following time steps, these directions are reused to start the iteration process from
a better initial guess xo = uj,. = u* + Vg_rec GLOBAL( ci . .( b— A u*)).

4 Convergence Results

As detailed in [KA96a], fourth-order accuracy in time and space is reached

with such a discretization. In the following, we only present results on a test

solution for a dipole diagonally crossing Qo for t € [0,7 = 1]: (u(z,y,t) =
—(t=a)?—(¢—y)? —(t—=)?—(¢—y)?

10 (t—y)e v ,u(z,y,t) = 10 (z —t)e v ). All the tests are run

with diffusive and advective terms both treated implicitly (i.e., m = n +1 in 2.2-2.3).

Results when the advective terms are treated explicitly are collected in [Kor97].

Table 1 displays the convergence rate p1g = 4/ ||]] rrl(‘)’lll‘; observed after ten time
steps for the test solution solved on a 256 x 256 mesh with At = 1.25 x 1072,
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Table 1 Convergence Rate for 256 x 256 Dipole Problem with no Richardson
Extrapolation (e = 1072, es0p = 107*)

Algorithm 2dom. | 4dom. | 8 dom. | 16 dom. | 32 dom. | 64 dom.
Part_BiCGSTAB 5.70e-1 | 5.70e-1 | 5.80e-1 | 5.80e-1 5.80e-1 5.80e-1
Part_BiCGSTAB(2) 2.20e-1 | 2.20e-1 | 2.20e-1 | 2.10e-1 2.30e-1 2.20e-1

DDM4(2)_BiCGSTAB - - 1.60e-2 2.00e-2 1.90e-2

7.80e-4 | 8.30e-4 1.40e-3 1.70e-3

DDM4(4) BiCGSTAB - -

DDM4(8) BiCGSTAB - 1.30e-5 | 6.60e-5 | 2.30e-5 | 2.50e-5 | 3.60e-5
DDM2(2) BiCGSTAB na 3.60e-2 | 3.70e-2 | 3.60e-2 | 4.50e-2 | 4.90e-2
DDM2(4) BiCGSTAB | 6.70e-3 | 9.80e-3 | 9.80e-3 | 1.00e-2 | 1.20e-2 | 1.20e-2
DDM2(8) BiCGSTAB | 6.70¢-3 | 7.40e-3 | 6.40e-3 | 6.60e-3 | 8.00e-3 | 9.00e-3

DDM2MG(;§)_BiCGSTAB 5.90e-3 | 7.60e-3 | 1.30e-2 1.40e-2 1.40e-2 1.80e-2

DDM4(2)-.GMRESR - - 9.20e-2 9.40e-2 1.10e-1 1.20e-1
DDM4(4)-.GMRESR - - 2.60e-2 2.70e-2 2.90e-2 3.30e-2
DDM4(8)_.GMRESR - 2.40e-3 | 2.50e-3 2.70e-3 3.20e-3 4.30e-3
DDM2(2)-GMRESR 1.30e-1 | 1.70e-1 | 1.70e-1 1.70e-1 1.90e-1 2.00e-1
DDM2(4)_.GMRESR 7.10e-2 | 8.40e-2 | 8.50e-2 8.70e-2 9.40e-2 1.00e-1
DDM2(8)-.GMRESR 5.10e-2 | 5.40e-2 | 5.60e-2 5.70e-2 6.30e-2 6.80e-2
DDM2MG(8)_.GMRESR na 7.20e-2 | 1.00e-1 1.00e-1 1.00e-1 9.50e-2
v = 1072, ¢ = 1078, €s10p = 107%, and N the number of iterations needed to
meet this convergence criteria (N > 10). No Richardson extrapolation is used and no
reconjugation technique is activated to ameliorate the initial guess (i.e., xo = u™).

As awaited for a DDM-based method, the convergence rate appears better when the
overlap d increases, and worse when the number of involved subdomains increases.
The better rate observed in the case of DDM4 _BiCGSTAB solvers comes from
the preconditioning step called twice for this algorithm instead of just once for the
DDM4_GMRESR solvers.

Table 2 illustrates a classical result: if the overlap d is kept proportional to the
size of the local subdomains H, the number of iterations needed for a domain
decomposition preconditioned solver is asymptotically bounded independently of h.
With no preconditioner, one asymptotically needs O(1/h) iterations as shown for
Part_BiCGSTAB. Other calculations not presented here also show independence in
H/h.

So far, we have not investigated the need for a coarse grid solver but a forthcoming
article will further examine the “scaling” behavior of the convergence rates.

5 Parallel Performance Results

Even if the convergence rate is better, the elapsed times of an algorithm on up-
to-date parallel computers can vary widely, being highly sensitive to the workload
compared to the amount of communication needed to run an algorithm on several
processors. Domain decomposition techniques are therefore particularly well-adapted
to distributed computing because of the high data locality of the preconditioning step.
We present here timing results measured on the Cray T3D.

In Table 3, we first observe a certain hierarchy among the solvers tested in Parallel.
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Table 2 Behavior of the different algorithms when the relative overlap % is kept

constant. Test made on 64 Cray T3D nodes, to calculate one time step (e = 10716
—20
estop = 10 )

Algorithm global mesh | local mesh | [ | # iterations | time(s)
Part_BiCGSTAB 128x 128 16x 16 - 34 1
Part_BiCGSTAB 256 256 32x 32 - 75 8
Part_BiCGSTAB 384x 384 48x 48 - 107 23
Part_BiCGSTAB 512x 512 64x 64 147 55
Part_BiCGSTAB 640x 640 80x 80 - 204 117
Part_BiCGSTAB 768x 768 96x 96 - 223 181

DDM4(!)_.BiCGSTAB 128x 128 16x 16 1 15 15
DDM4(!)_BiCGSTAB 256X 256 32x 32 2 10 73
DDM4(!)_.BiCGSTAB 384x 384 48x 48 3 12 323
DDM4(l)_BiCGSTAB 512x 512 6dx 64 | 4 9 537
DDM4(!)_.BiCGSTAB 640x 640 80x 80 5 10 1233
DDM4(!) . BiCGSTAB 768X 768 96x 96 6 - -
DDM2(l)_.BiCGSTAB 128x 128 16x 16 1 16 3
DDM2(1)_.BiCGSTAB 256X 256 32x 32 2 13 20
DDM2(!)_BiCGSTAB 384x 384 48x 48 3 12 60
DDM2(1)_.BiCGSTAB 512x 512 64x 64 4 11 129
DDM2(!)_BiCGSTAB 640x 640 80x 80 5 11 249
DDM2(1)_.BiCGSTAB 768X 768 96x 96 6 11 418
Part_BiCGSTAB 120x 120 15%x 15 - 32 2
Part_BiCGSTAB 240x 240 30x 30 - 64 7
Part_BiCGSTAB 480x 480 60x 60 - 129 42
Part_BiCGSTAB 960x 960 120x 120 - 319 400
DDM2MG(l)_BiCGSTAB 120x 120 15%x 15 1 16 3
DDM2MG(!)_BiCGSTAB 240x 240 30x 30 2 14 17
DDM2MG(!)_BiCGSTAB 480x 480 60x 60 4 14 86
DDM2MG(!) BiCGSTAB 960x 960 120x 120 8 14 194

Remark: In tabulated results, a dash “-” means that the calculation was not
pursued because of a predicted high elapsed time of computation. An “na”
means that the result is not available.
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Table 3 Elapsed time (s) to perform 10 time steps for a 256 x 256 Problem on
Cray T3D with no Richardson Extrapolation (¢ = 1078, e510p = 107%)

Algorithm 2 dom. | 4dom. | 8 dom. | 16 dom. | 32 dom. | 64 dom.
Part_BiCGSTAB 629 307 158 78 46 25
Part_BiCGSTAB(2) 582 293 153 78 44 25
DDM4(2)_BiCGSTAB - - - 1432 778 396
DDM4(4)_BiCGSTAB - - 1745 909 519 255
DDM4(8)_BiCGSTAB - 2155 1239 711 435 245
DDM2(2)_-BiCGSTAB - 775 400 208 106 56
DDM2(4)-BiCGSTAB 833 655 352 190 105 57
DDM2(8)_-BiCGSTAB 873 666 359 218 125 80
DDM2MG(8)_BiCGSTAB 628 327 177 86 49 26
DDM4(2)-.GMRESR - - - 1190 685 329
DDM4(4)-.GMRESR - - 1704 890 513 258
DDM4(8)-.GMRESR - 2151 1244 712 443 247
DDM2(2)-GMRESR 1059 739 379 197 108 57
DDM2(4)-GMRESR 845 552 295 159 85 52
DDM2(8)-.GMRESR 771 506 291 168 99 59
DDM2MG(8)_.GMRESR na 267 166 73 41 22

For all purely partitioned solvers, Part_ BiCGSTAB(2) and Part BIiCGSTAB
show the same efficiency and score surprisingly well. In comparison, the “classical”
domain decomposition preconditioning technique performs poorly: in all configurations
of overlap and amount of nodes, Part BICGSTAB and Part BiCGSTAB(2)
greatly exceed DDM4(l) BiCGSTAB and DDM4(!)_ GMRESR in term of
elapsed time. With a 4t"-order discretization, the better rate of convergence obtained
thanks to DDM-preconditioning doesn’t counterbalance the overload of computation
demanded to solve each local problem quasi-exactly.

One can significantly improve this disappointing result with a conventional second-
order finite volume solver combined with a multigrid acceleration technique. As
shown on Tables 4 and 3, the resolution of the local problems discretized at the
order 2 scores better than classical DDM4-preconditioned solver. Only a multigrid
acceleration of this DDM2-solver equals or performs better than Part_BiCGSTAB
or Part BICGSTAB(2). Table 2 clearly tilts in favor of a multigrid second order
preconditioner as soon as the amount of local points is sufficiently important to achieve
a decent acceleration (194s vs 400s for the 960 x 960 mesh).

The influence of the size of the overlapping § exhibits different optimal values
for each algorithm. However, for the Krylov additive Schwarz solvers taken with an
optimal overlapping, the GMRESR-based solver always appears slightly faster than
BiCGSTAB-global solvers. It may come from the different number of synchronization
points present in both algorithms: they are more numerous in GMRESR but localized
in the orthogonalization loop whereas they are spread out all over the algorithm for
BiCGSTAB. The collected global reduction operations are not indeed as penalizing as
the alternation of stencil calls.

Finally, if compared with Table 3, Table 4 underlines the important influence of the
Richardson extrapolation taken as initial guess: for the same stopping criteria €stop,
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Table 4 Elapsed time observed (s) to perform 10 time steps for a 256 x 256 Dipole
Problem on Cray T3D with Richardson Extrapolation (¢ = 107® and es0p = 10™%)

Algorithm 2 dom. | 4 dom. | 8 dom. | 16 dom. | 32 dom. | 64 dom.
Part BICGSTAB 455 226 119 59 33 19
Part_BiCGSTAB(2) 467 230 123 60 35 19
DDM4(8)_BiCGSTAB - 2183 1269 719 447 246
DDM2(8)_.BiCGSTAB 683 432 240 144 84 48
DDM2MG(8)_BiCGSTAB 411 238 146 74 40 22
DDM2(8)_.GMRESR 553 370 212 123 78 50
DDM2MG(8)_GMRESR na 205 128 53 30 16
DDM4(8)_.GMRESR /Reconj - 1649 946 542 330 185
DDM2(8)_GMRESR,/Reconj 568 360 207 119 72 43
DDM2MG(8)_GMRESR /Reconj na 190 117 55 30 17

then observed elapsed time highly decreases for all tested algorithms. One can also
note the insignificant impact of the reconjugation technique.
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