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A Domain Decomposition Method
for Micropolar Fluids

Piotr Krzyzanowski

1 Introduction

In this paper, we consider a mixed finite element discretization of the following system
of partial differential equations with Dirichlet boundary conditions:

—(v+nm)Au+ (u-V)u+ Vp =2y curlw + f in Q,

divu =0 in Q,

—c1Aw+ (u-Vw —eVdivw + 4w =2 curlu + g in Q, (1)
U = Ug on 99,

w = wp on 90N}

This system is a mathematical model of stationary flow of a viscous micropolar
fluid, which describes the motion of solid particle suspension in a liquid. Such model
is also a basis for more complicated ones used in applied sciences, for example in the
theory of lubrication [BL95], [Kho90] or in the theory of blood flow [P*74].

The unknowns are the velocity vector u, the pressure p and the internal
microrotation vector w. We denote the external force and the angular momentum
force by f and g, respectively. The usual (constant) kinematic viscosity is denoted by
v > 0, while other positive constants vy, c; and ¢z are additional viscosities introduced
by the field of internal rotation w.

Existence and uniqueness theorems for (1) are proved in [Luk88]. Here, we provide
their discrete counterparts for the mixed finite element discretization of (1). The
nonlinear discrete problem is then solved using the Newton’s method. Each iteration
step requires solution of a linear system with a nonsymmetric indefinite matrix, which
is ill conditioned with respect to the mesh size h.

We propose and analyse a preconditioning method for the linear system, based
on a block diagonal preconditioner. Our goal is to make it possible to reuse the
methods already existing for simpler problems, like for the Poisson equation. Since
the theory and methods for preconditioning the discrete Laplacian are well developed,
our preconditioner can be easily constructed and implemented, using, for example, an
efficient domain decomposition preconditioner.
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The preconditioned system is symmetric and positive definite with respect to
some auxiliary scalar product, so standard iterative methods, like conjugate gradient
method, can be used for this system. Each step of CG method requires solution of
three smaller, independent problems of small computational cost.

Block diagonal preconditioners for Stokes-like problems have been considered by
many authors before, see, for example, [D’y87], [BP8§], [BP90], [RW92], [ES94],
[SW94] or [Kla96]. However, our analysis of the preconditioned system relies neither
on the symmetry nor the positive definiteness of the matrix.

Notation

Throughout the paper we assume that Q is an open, bounded polyhedron in R3 with
Lipschitz continuous boundary. The differential operators A, V, curl, div, appearing in
(1), are defined in a standard way, see [GR86].

We use several function spaces whose properties are described, for example, in
[Ada75]. By H*(Q) we denote the usual Sobolev spaces, identifying H°(Q) with the
L?(Q) space of square integrable functions. The standard norm in H*(Q) is denoted by
|- ||x, while the seminorm by |- |. Hi(£2) denotes the subspace of H!(Q2) of functions
whose traces on 92 are equal to zero, while LZ(Q2) is the subspace of L2(Q2), defined
as L§(Q) = {w € L*(Q) : [, w =0}

For a positive integer N, we denote the inner product in [LZ(Q)]V = L2(Q) x
L2(Q)...x L2(Q) by

N
(u,v) := Z/ u; v; de.
i=1 79

For the inner product in [H}(Q)]Y we use

N N N
() = 7w =33 [ G
j:]- k3 7

Jj=1i=1

By “C” we denote a generic positive constant which, if necessary, we shall distinguish
by subscripts. Where there is no risk of confusion, we shall write H*, H}, L2 instead
of H*(Q), H} (), L2(Q) and use the same symbols for N-fold products of such spaces.

The Discrete Problem

We pose our original problem (1) in a variational form, using the following function
spaces:
V= [Hi ()]?, W = L3(9).
In the rest of the paper we shall assume that the data for problem (1) satisfy
f,9 € [L?(Q)]? and the boundary conditions on u,w are homogeneous.
We cover 2 with a quasi-uniform triangulation [Cia91] 75, dividing Q2 into tetrahedra

K:
U k=2,
KeT,

with the mesh parameter h. We make standard assumption that at least one vertex
of each K € Ty, lies inside €.
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For approximation of the velocity u and pressure p we shall use the Taylor — Hood
finite spaces Vi, W}, (see, e.g. [BF91]),

Vi ={v eV NC) :1;|K€ Py(K) VK €T},
and B
Wh={weWnC(Q):w|.€P(K) VKEeT}.

The microrotation field w is approximated in the same space V}, as the velocity. It is
well known that V}, and W}, satisfy the inf-sup condition.

The mixed variational formulation of the approximate problem (1) in the finite
element spaces V, C V, Wy, C W is as follows:

Problem 1.1 Find (up,pn,wn) € Vi X Wy, x Vi, such that

(v + v1)(Vup, Vv) + d(up, up, v) — (pr, divv) = 2v (curl wp,v) + (f,v),

(le ’U:h,(]) = 07

c1(Vwp, VE) + d(un, w, €) + ca(divwp, div &) + 4vy (wh, §) 2)
= 2vy (curlup, &) + (g,€),

for all (v,q,&) in Vi X Wy x V.
Here, d(-,-,-) denotes the convective term, defined either as
> ov;
i (v, w) = (- V), w) = z_j /Q ui g

or, following [Tem79],

da(u, v, w) = % (((u -V)v,w) — ((u- V)w,v))

for any u,v,w € [H'(2)]3. Note that if divu = 0 then d; (u, -, -) = da2(u, -, -). The form
da(-, -, -) is by the definition skew-symmetric with respect to the last two arguments
(which reflects the skew-symmetry of ((u - V)v,w) on the solution u of (1)).

2 Existence and Uniqueness Results

We begin with a general existence result for the case when the form d(-, -, -) is equal
to da(sy +y *)-

Theorem 2.1 For any f,g9 € L? and any positive v, v, c1,cy there exists at least one
triple (up,ph,wn) € Vi X Wy X Vi, which solves the discrete nonlinear system (2).
Moreover, the solution is unique, provided that the data f, g are sufficiently small with
respect to v,v1,¢1,Co.

Remark 2.1 The “small data” assumption in Theorem 2.1 reflects similar
requirements of the uniqueness statement for the continuous case, see [Luk88].
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The next theorem is valid for d(-,-,-) = di(-,-,-) or da(-,-,) and provides a
generalization of the discrete Navier—Stokes local uniqueness and approximation result
of [GR86] for the discrete micropolar equations.

Theorem 2.2 Let us set A = (v + v1)~ L. Let A be a compact interval in Ry and
assume that {(A, (u(X), Ap(A),w(A)) : X € A} is a branch of nonsingular solutions of
(1) such that u(X) € H*1 p(A) € H', w(\) € H*! forl =1 orl = 2 and for all
X € A. Then there exists hg (small enough), such that for h < hg there ezists a unique
smooth function A € A — (up(A), Apn(A),wrn (X)) € Vi, x Wy, x Vi, such that:

(i) {(X, (up(A), App(A),wr (X)) : A € A} is a branch of nonsingular solutions of
Problem 1.1,
(i) there exists C > 0, independent of h and X, such that for all A € A

[un(A) = N1 + [Mlpr(X) = pWlo + lwn(X) —w A
< CR' (|l i1 + POl + [l ) li+1)

For the proofs of Theorem 2.1 and Theorem 2.2 we refer the reader to [Krz96].
Existence and local uniqueness results stated in Theorem 2.1 and in Theorem 2.2 can
be easily extended to other conforming finite elements satisfying the inf-sup condition.

3 A Preconditioning Method for Newton’s Iteration Step

In this section we propose and analyse a preconditioning method for one step of
Newton’s method for Problem 1.1.

Newton’s algorithm. Given (u}, pt,w?) € Vi x Wy xVj, find (up ™, pptt, with) €
Vi, x W}, x V,, which satisfies

(v + 1) (VT Vo) + d(uf, uf ™, v) + d(uf ™t ul, v) — (pr, divo)
= 2u; (curl W, v) + d(uf, uf, v) + (f,v),
< (div uZ*’l,q) =0, (3)
a1 (Vo™ VeE) +d(up, wpth, &) + d(up™, wl, &) + ca(divwth, dive)
+ v (W™, ) = 2 (curlup™, €) + d(uf, wf, €) + (9,€)

\

for all (v,q,&) € Vi, x Wy, X Vp,.

Actually, we are dealing with a family of such problems, indexed by the mesh
parameter h. Under assumptions as in Theorem 2.2 the Newton’s method is locally
quadratically convergent to the solution of the discrete system. The rate of convergence
is affected by the parameter A = (v + v,)~1, but is independent (see [Krz96]) of the
mesh parameter h.

We are going to analyse a preconditioning method for these problems so that the
resulting problem is given by a symmetric positive definite operator whose condition
number is independent of h. Let us denote for short (u}*', it wi*t) by (u,p,w).
Define linear operators A, B,C,T4,Tg by variational identities for all u,v € V} and
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w € Wh:
VsVl (Au0) = (0 + ) (Va, Vo) + d(uf, u, v) + d(u, 4], v),
B:V, —» Wy, ((Bu,w)) = —(divy,w), B': W =V, {((B'w,u))=—(divu,w),
C:V, =V, ((Cu,v)) = c1(Vw, V&) + d(u}, w, &) + c2(divw, div€) + 41 (w, §),
Ta: Vi =V, ((Tau,v)) = —2v (curlw,v),
TC : Vh — V}{7 <<TC’U,,’U)) = _2V1(Curlu7€) + d(’U,, w}T:: f)

The dual pairing between V}, and V), or W}, and W}, respectively, is denoted by
((,-)). We use the same symbol for these two different pairings, since its meaning will
be always clear form the context. Then we can express (3) in an operator form:

Problem 3.1 For F = (¢,9,¢) € V) x W}, x V), find (u,p,w) € Vi, x Wy, x Vj, such
that

U A B Ty U
ML p | = B 0 0 p | =F.
w Te 0 C w

The following lemma is a consequence of Theorem 2.2, see [Krz96].

Lemma 3.1 Suppose that the assumptions of Theorem 2.2 hold with sufficiently small
ho. In addition, let us assume that (u}l,p},w}) is close enough to the solution of
Problem 1.1. Then for any F € V,, x Wy x V, there exists a unique solution (u,p,w)
of Problem 3.1 and

ully + llpllo + llwlls < C(lollv; + [l9llw; + llellv;)
with C independent of h.

With the inner product ((-,-)) in V, we associate the discrete Laplace operator
—Ap : Vi, = V], defined by ((—Apu,v)) = ((u,v)). We also define canonical mapping
J : Wy — W, (the “mass matrix” operator), ({(Jp,q)) = (p,q).

Let Ao : Vi, = V) be a good preconditioner for the discrete Laplace operator —Ap,
so that

(i) {{Aou,v)) = ((Aov,u)) for all u,v € V4,
(ii) there exist constants ay,as > 0, independent of h, such that

a1 ((—=Anu,u)) < ((Aou, u)) < a{(—Apu,u)) (4)

for all u € Vj,
(iii) Ay is easy to apply.

Likewise, we introduce (cf. [K1a96]) a good preconditioner for the “mass matrix”
operator, Jo : Wy, = W}, ie.

(IV) <<J0p7 q)) = <<J0q7p)> for all p,q € Wh,
(v) there exist constants (81,082 > 0, independent of h, such that

Bi{{Ip,p)) < ({Jop,p)) < B2{(Jp, D)) (5)
for all p € Wy,
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(vi) Jy!is easy to apply.

In the implementation, efficient preconditioners Ay and Jy may be obtained using
domain decomposition methods.
Introducing a block diagonal operator matrix

A 0 0
MO = 0 JO 0 ) (6)
0 0 A
we define a preconditioned version of problem (3).
Problem 3.2 Find (u,p,w) € Vi X Wy, x V3, such that
u

MGMMGZM| p | = MM MG F.

w

Lemma 3.2 The operator P = Mg M'Mg'M is self-adjoint with respect to the
auziliary scalar product [-,-] defined as

p || g || = (4w, 0) + ((Jop,q)) + ({Aow, 2))- (7)

The main result of this section is an estimate of the condition number of the operator
P in the norm induced by [-,-].

Theorem 3.3 Let P be defined as in Lemma 3.2. Suppose Lemma 3.1 holds and
Ag, Jo satisfy assumptions (i) — (vi) of this section. Then there exist positive constants
my,ms, independent of h, such that

() ()=l (2)-()) == 12) ()

for any (u,p,w) € Vi, x Wy, x V4.

g3

Proof. We have

(5
|\

Since there exist constants 7y;,7v2 > 0, and 61,02 > 0, independent of h, such that

gl < (6 AT ) < wllél, Vo e Vi,
Sllall2 < (g, I3 a)) < &allgllZ Vg€ Wy,

g e

} = ((Au+ B'p + Taw, Ay ' (Au + B'p + Taw))) + ((Bu, J; ' Bu))

4 (8)
+ ((Teu+ Cw, Ay " (Teu + Cw))).

(9)



DD FOR MICROPOLAR FLUIDS 161

we obtain
u U
Pl oo |, |p > m1[|Au + B'p + Taw|[3y + 61]|Bull§ + 1| Teu + Cwlff,,
w w

which by Lemma 3.1 together with (4) and (5) yields the lower bound

u u u u
Pl »|,| »p >C p |,| »p
w w w w

Similarly we can establish the upper bound. Indeed, from (9) together with (8) we
have

() (u)]
LP p|,| » JSVzIIAu+B’p+TAwIIZV,¢+6z||Bu|I%+'yz||Tcu+CwII"’v,;
w w

< C(|Aully, +1B'pllY,; + ITawl, + ||Bull§ + [[Teully, + |ICw]R,)-

Obviously, each of the operators A, B, C,T4,Tp is bounded from above independently
of h. Estimating each term in the sum, we get

u u u u
Pl »|,| »p <C p |, » ||,
w w w w

which completes the proof.

4 Remarks

The resulting system can be solved by the conjugate gradient method since its matrix
is symmetric and positive definite. By Theorem 3.3, the number of iterations required
for reducing the residual by a given factor is independent of h. As it has been pointed
out in [BP8§], computing the inner product during the CG step requires only one
solution of a system with the operator M.

Many authors contributed to the area of numerical solution of saddle point problems,
see for example [D’y87], [BP88], [BP90], [RW92], [ES94], [SW94], [K1a96], addressing
mostly (if not exclusively) the symmetric operator case. The idea of symmetrizing
the saddle point system with the aid of a preconditioner for the Laplacian has been
considered previously in, for example, [D’y87] and [BP90]. However, our analysis
remains also valid for nonsymmetric operators.

In the case of v, = ¢; = ¢ = 0 our system reduces to Newton’s linearization of the
Navier-Stokes equations, therefore our preconditioner applies also to this particular
case. Moreover, this preconditioning method generalizes to the case of abstract saddle
point equations with nonsymmetric, indefinite diagonal part. Different preconditioning
methods for these problems will be analysed in a forthcoming paper.
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