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Nonoverlapping Domain
Decomposition Methods for Inverse
Problems

Karl Kunisch and Xue-Cheng Tai

1 Introduction

Inverse problems related to the estimation of coefficients of partial differential
equations are ill-posed. Practical applications often use the fit-to-data output-
least-squares method to recover the coefficients. In this work, we develop parallel
nonoverlapping domain decomposition algorithms to estimate the diffusion coefficient
associated with elliptic differential equations. In order to realize the domain
decomposition methods, we combine the function decomposition approach of [Tai95a]
and the augmented Lagrangian techniques of [IK90, KT97b]. The output-least-squares
method minimizes the output error over the whole domain. When decomposing the
domain into nonoverlapping subdomains the output error over the whole domain
equals the sum of the output errors in the subdomains. Thus, by borrowing ideas
from [Tai95a], parallel methods can be used to find the minimizer. In this approach
the partial differential equation arises as a constraint in the optimization problem
whose proper treatment is essential. We incorporate it by an augmented Lagrangian
technique.
To present the approach we consider the model problem

-V-(@Vu) = f in Q
{ u = 0 on 00 (1.1)

where  is a domain with boundary 8%, ¢ € L®(Q) and ¢ > a > 0 and f € L?(Q)
is a given function. The problem consists in estimating the functional parameter g
from an observation ug4 of the state variable u. The idea that will be described for this
model problem can be extended to other parameter estimation problems of partial
differential equations.

The fit-to-data formulation for the above estimation problem is given by

(P) min §|q—Qd|%v+ %|U_Ud|%11
subject to (g, u) satisfying (1.1) .
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Here | - |y denotes a norm or seminorm on H?({2),qq is an initial guess for the
parameter and B > 0 stands for the regularization parameter. Thus (P) represents
a regularized least-squares formulation with the partial differential equation as a
constraint. When decomposing the domain 2 into nonoverlapping subdomains the
output error in the whole domain 2 equals the sum of the output errors in the
subdomains. Thus, by borrowing ideas from [Tai95a, Tai95b, Tai94], parallel methods
can be used to find the minimizer. However, the partial differential equation which
arises as a constraint in (P) represents an essential difficulty. This constraint will
be incorporated by an augmented Lagrangian technique of [IK90],[KT97b]. Domain
decomposition methods for solving the state equation (1.1) for given ¢ and f have
been extensively studied. There is a vast literature of which we only mention some
relevant classical papers [BPS86], [BW86] and [MQ89).

2 The Domain Decomposition Approach

Through out this work 2 is assumed to be a two-dimensional, bounded, simply
connected convex domain with piecewise smooth boundary. We decompose 2 into
finitely many nonoverlapping subdomains. The decomposition is carried out in such
a way that all subdomains are marked with two colours, say white and black.
Subdomains do not intersect each other and the union of their closures equals the
closure of 2. Moreover subdomains with the same colour do not meet each other
along edges but rather only at most at one corner. We denote by ©; and Q2 the union
of the white and black subdomains respectively. Let I'; = dQ; and I's = 0Q2s. Then
the interfaces between the subdomains are ' = T'; NIy =T \ 9Q = T's \ 9Q. We shall
utilise the following notation:

Vi = {vlve H'(;), wv=0onT;naN},

W; = {vlve H*(Q;)},

K, = {vlve H?(;), v>a>0ae. inQ;}, fori=1,2,
X1 = Wi xWy, = {U|v|95 S Hz(Qz), 1= 1,2},
Xo = VixVe = {vfy, € H(Q), i=1,2,uv=00n09},
K = KixKy, = {vly, € H*(Q), i=12v>a>0ae. inQ},
X = X1 X X2.

Except for K; and K the above sets represent Hilbert spaces with their conventional
inner products and norms. Each of the subdomains 2; and (2> may consist of some
disconnected components. Thus Wi, for example, can equivalently be expressed as
H;”Zl H?(;), where m denotes the number of disconnected components 4; of €.
The functions from X; and X5 have jumps along the interfaces of Q; and 2,.

For z € X we shall use the notation z = (g1, g2, u1,u2) = (g,u). The function-space
formulation of (P) is given by

(P) min §|q_Qd|%v+ %|’U’_’U’d|i]1
subject to  (g,u) € K x H}(Q) satisfying (1.1).
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Here (g, u) is called solution to (1.1) if
(qVu, Vo)g = (f,v) for all v € Hy ().

Using the fact that ¢ € L>°(2) provided that ¢ € K, it is simple to argue the existence
of a solution z* = (¢*,u*) to (P). Next we define the mappings

e1: X - W, er: X = Vs,

such that for z € X,e1(z) € V1 and ex(z) € V, are the solutions to the following
problems (2.2) and (2.4):

(Ve1,Vur)a, + (e1,v1)0, = (a1 Vui, Vi), — (f,v1)e,
for all v1 € H3 (1) ,
e1 =u3 —usonl,
e1r=0o0noQNTry.

(2.2)

For any v € V5, let Rv be an extension to {2; satisfying Rv = 0on 0Q NI, Rv =v
onI', and

|1Rv|| 10,y < Crllvlla(e,)s (2.3)

with constant C; independent of v € V5. Note that the harmonic extension operator
Ry defined by Rgv =00n 9Q2NTy, Rgv =v on I" and

(VRuv,V$)o, =0, V¢ € H(h)

satisfies the required properties. For numerical purposes we prefer to use a different
extension which will be introduced in section 5. With R thus defined, let es € V5 be
the solution to

(Ves, V), + (€2,v2)0, = (¢2Vuz, Vu2)a, — (f,v2)0,
+{us — u1,v)a0, + (@1 Vui, VRva)q, — (f, Rvs)q, for all v € V53,
ea=00n00QNT, . (2.4)

With e; and es defined we introduce e : X — X5 by
e(z) = (e1(z), e2(z)).
We choose | - | in (P) to be the piecewise H2(£2) norm on ; and Q3 and define
B8 1
Ji(z) = §||Q1 — qallf20, + §||U1 — ud| 3 qy)
h@) = Bl aalBiae, + 3l vl o,
2 2
J(ib) = J1(£U) + Jz(l‘)
We shall focus on the minimization problem

(PP) J(z)

Its relation to (P) is established in the following lemma: (see [KT97a])

min
(q,u)EK x X2, (g,u)=0.

Lemma 2.1 z* = (¢*,u*) is a minimizer of (PP) if and only if it is a minimizer of

(P).
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3 The Augmented Lagrangian Method

In this section we develop parallel nonoverlapping domain decomposition algorithms
for (PP). In [Tai95a, Tai95b] the following problem was considered:

m

min Y Fi(z), KcV.
z€EK o

Under the assumption that K is convex and closed in the Hilbert space V' and that
the functions F; are convex or uniformly convex several parallel algorithms based on
the augmented Lagrangian method were obtained. Problem (PP) does not fit into
this class of problems since the constraints of (PP) are not convex. We shall therefore
combine the ideas from [Tai95a, Tai95b] and the techniques from [IK90], [KT97b] to
overcome this difficulty.

Let us review some of the results of [KT97b] and consider

B

1
. 2 2
m — —||lu — . 3.5
e(q,u)=0, (;,r«lL)erXQ 2 llg — qallx, + 5l —udllx, (3.5)

2

In [KT97b], the constraint e is assumed to have the special structure

e(g,u) = b(q,u) + 1 (q) +l2(u) + f,

withb: X =Y, I; € L(X:,Y), f€Y, (qausd) €X, X =X x Xy, and ba
bounded bilinear form satisfying

16(g, w)lly < [Ibll llgllx; llullx, for all (¢,u) € X.

Here X;,X> and Y are real Hilbert spaces. In the context of Section 2 the spaces
X; assume the specific meaning explained there and ¥ = X5. For any q € X; let
A, € L(X5,Y) denote the operator defined by

Aqv = b(g,v) + l2(v).
Under the conditions

(H1) e is continuous from the weak topology on X to the weak topology on Y,
(which guarantees the existence of a solution z* = (¢*,u*) to (3.5)),
(H2) Ay« is a homeomorphism from X, to Y,

(H3) [lu* — uallx, [|(A5) 2w xo) 1Bl < VB,
the solution z* to (3.5) is unique and the following

Algorithm 1
Step 1. Choose Ag,c > 0,0 € (0,c]. Forn=1,2,...do:
Step 2. Determine ™ as the solution to

(Pauz) min L.(z, \"™) over z € K x X».

Step 3. set A" = A"~! 4 ge(z"),
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produces a sequence {z"} such that lim, , . 2" = z*. If ¢* € int K and o is chosen
appropriately then z™ converges linearly in X to z*. Moreover A" converges weekly
in Y to A*, where A* is the Lagrange multiplier associated to the constraint e(z) = 0.
In the above algorithm L.(z, ) is the augmented Lagrangian functional

8 1 c
Le(w,2) = 5 llg = aall’, + 5llv — vall’, + A e(@)y + 5lle@)]3-

In [KT97al, it was shown that (PP) fits into the general framework of problem (3.5)
and that (H1) - (H3) are satisfied.

4 Nonoverlapping Domain Decomposition for (P,,;)

In this section we describe a Gauss-Seidel iteration to solve (Py..). We utilise the
decomposition of  into M white and M black subdomains as described at the
beginning of Section 2 and use M parallel processors. Each processor takes care of
a white and a neighbouring black subdomain.

Let us recall the augmented Lagrangian functional that appears as the cost
functional in (Ppye):

Le(z,A) = Ji(z) + J2(z) + (A1, e1(2))v; + (A2, e2())vs
+5ller(@)l13;, + §llea(2)I3,

and z = (q1,q2,u1,u2) = (¢g,u) € X. We note that J; is only a function of
z; = (gi,u;),1 = 1,2. The coupling between z; and z occurs through the boundary
constraints described by e; and es. In the Gauss-Seidel algorithm L. (z, A) is minimized
with respect to z in the following order: ¢; — u3 — ¢ — u2. The algorithm is:

Algorithm 2

(i) Choose u™® € Xy,q5"° € Wy if n =1, else set u™® = u"1,¢3° = g7~ 1.

(ii) For k=1,2... do: find ¢* ,u"* such that

a) LC(qIL u?k l,qgk 1 nk 1 )‘n 1)SL ((h,’u?k 17q;bk 1 nk 1 /\n 1)
for all q1 EkKl . . . . .

1 1 1 1

b) Le(gP* up®, ap ™ up® 7N A1) < Le(gp* un, gt upF T A,
for all uy E .

C) LC(q?’kJ n,qu;lk7u721,k—17An—l) SLC(Q?’ka a 7‘127ng ! An—l),
or all ¢g» € K.

d :); n,k q2 nk 2nk n,k )‘n—l < n,k nk: )\n—l 1l

) C(ql 7QZ y Ug ™y )_ C(ql , U 5q2 , U2, ),fora Us € ‘/2

The sequences {u]"*} and {¢/"*} converge to the solution of (P,y), see [KT97a).

5 Numerical Tests.

Experiments for one and two dimensional problems were carried out. Uniform
triangular mesh and linear finite element functions were used for 2D approximations.
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Table 1 The numerical errors of the first 10 steps.

Iteration err, erry

1 0.03938 | 0.3363

2 0.02473 | 0.01972

3 0.0191 | 0.007926
4 0.01607 | 0.004409
5 0.01418 | 0.002879
6 0.01292 | 0.002071
7 0.01204 | 0.001589
8 0.01142 | 0.001273
9 0.01096 | 0.001055
10 0.01064 | 0.0008957

For a given ¢* and f, the observation u4 is obtained by adding uniformly distributed
random numbers in [—§, 4] to the finite element solution at the nodal points. In the
simulations, Algorithm 2 is applied to find the minimizer of (P, ) and only 3 iterations
are performed between the subproblems a)-b)—c)-d) in our computations. A very
simple extension operator is used in the computations by choosing Rv = v in Q5 and
Ru(z;) = 0 if z; is an inner node of ;. Condition (2.3) is fulfilled with a constant Cy
depending on the mesh size h. Our one dimensional tests show that the convergence
rate does not depend on the size of the extension. This may be due to the fact that
the most important source for inaccurate reconstruction of q is the ill-posedness of the
estimation problem.

From our numerical experiments, we find that there are two issues that require
special care in using Algorithm 2. First, it must be guaranteed that the subproblems
a) and c) of Algorithm 2 are identifiable when decomposing the domain. Sufficient
conditions for the identifiability can be found in [IK94]. Second, identifying go from
c) of Algorithm 2 is very sensitive to observation errors and the errors caused by
the initial values. One way to overcome such a problem is to choose the boundary
conditions according to the flow directions. Dirichlet boundary conditions shall be
used in the outflow boundaries and Neumann boundary conditions need to be used
on the inflow boundaries. This is beyond the scope of the present work and shall be
reported in detail in [KT97a].

Figure 1 depicts a typical numerical result. We identify g(z,y) = €*¥ from u(z,y) =
sin(3nz)sin(3ry). The domain Q = (0,1) x (0, 1) is divided into 3 x 3 = 9 subdomains.
Dirichlet boundary conditions are used for the subdomains at the 4 corners and the one
in the middle. Extension operators are used for the other subdomains. Observation
error is added with § = 0.01. In the computations, we use mesh size h = 1/30,
¢ = 100, ¢ = 100, and 8 = 0.1. The convergence for the first 10 iterations are
shown in Table 1. In the table, err; = |l¢f — ¢*[lz2(0,) + |8 — ¢*[lL2(0,) and

errg = g — a7 lzzo) + llag — qg_1||L2(Q2)-
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Figure 1 The identified parameter by domain decomposition.
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