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A Distributed Algorithm for 1-D
Nonlinear Heat Conduction with
an Unknown Point Source

C.-H. Lai

1 Introduction

The mean tool face temperature involved in intermittent cutting operations such as
metal cutting and face milling, has a very important influence on the rate of tool
wear and tool life. High temperatures may cause the material to fatigue or deform
under face milling or other cutting operations [Sha84]. Therefore accurate simulation
of temperature distributions of the work piece subject to milling or cutting is vital in
order to lengthen the life time of the tool and to guarantee the quality of the cutting.
In particular, real-time simulation of such temperature distributions is of industrial
interests.

A major barrier in industry is that cutting temperatures are required experimentally
which are then used as empirical data in suitably chosen thermal models. The
measurement of physically meaningful temperatures is extremely difficult. It is
particularly true for the measurement of deformation or shear zone temperatures.
On the other hand, thermal models do not provide direct numerical simulation of
the cutting process based on the governing differential equation [Bec85]. In order to
provide a simulation software for metal cutting, a numerical algorithm is required.
It is natural to assume that the application of a cutting tool at the cutting point
is equivalent to the application of a source at the same point. Therefore if one can
simulate the equivalent source at the cutting point, then one would be able to simulate
the temperature distribution. Such approach is often referred to as an inverse problem
approach. The approach is used in this paper for the modelling of a simplified cutting
process. The aim of this paper is to study a domain decomposition algorithm for the
simulation of temperature distributions along a work piece under cutting operations.

The layout of the paper is as follows. First, a description is given of the model
for an idealised cutting problem. Second, the partitioning of the physical problem
into a number of subproblems is discussed. Third, a distributed numerical algorithm
is introduced. Different numerical schemes are employed in different subdomains in
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order to solve different subproblems. Numerical tests are provided for three different
types of material. An efficiency analysis is also included. Finally, some conclusions are
drawn.

2 An Idealised Cutting Model

Pioneering work in remote sensor methods for the retrieval of temperature
distributions can be found in [LNK67]. Recently, such methods have been developed
into more mature inverse methods [CW88][Ste91][YW86] for various cutting situations.
However, the use of inverse methods becomes pragmatic since analytical temperature
distributions are difficult to derive. In this paper, sensors and numerical methods are
combined to provide solutions to metal cutting problems.

To simplify the cutting problem, a piece of metal of infinite length and of
homogeneous material property along the longitudinal direction, is considered. If the
cutting tool is applied at a position along the width direction, then it is possible to
assume a one-dimensional analogy of the physical problem. Therefore the domain of
interest is along the width only, i.e. zo < £ < z1. Assuming the cutter is applied
at £ = z., then the above cutting problem can be described by the one-dimensional
nonlinear unsteady parabolic heat conduction equation,

00 6k080

= (O30 + Qe —z2) (21)
subject to initial condition #(z,0) = ©(z) and boundary conditions 8(zg,t) = O and
0(z1,t) = ©1 where 6(z,t) is the temperature distribution, k() is the conductivity of
the metal, Q.(¢) is the equivalent source being applied at z = z., and §(x — z.) is the
Dirac delta function. N
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The continuity of the function a—g at £ = x. suggests that fm % g = 0. Hence

- ot
the equivalent source strength can be obtained by integrating (2.1) from z = z_ to
z =z} to give

6 a6
KO g let — kO 5 Lz + Qct) = 0. (2.2)

The above equation is used to retrieve the source strength. Hence the temperature
gradients just to the left (z = z7) and to the right (z = ) of the cutter must be
known. A temperature sensor is attached at x = z,, such that z, < z. < z1, and let
the temperature measured by means of the temperature sensor be 6(zs,t) = T'(¢).
However, it is not necessary to have z; being less than z.. The purpose of the
temperature sensor is to complete the problem described in (2.1) and to allow
the computation of the temperature gradients. The knowledge of the measured
temperature at the sensor is then used to back-calculate average or effective measures
at the cutting point. Such inverse methods avoid the basic difficulties of the direct
method since remote temperatures can be measured more easily and accurately.

For computer simulation purpose, the sensor temperature is modelled by the
sinusoidal function 7T'(t) = asinwt. Its maximum value is governed by the amplitude
a and its variation with respect to time is governed by the angular frequency w.
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3 Problem Partitioning

In order to solve the inverse problem given in (2.1) with the extra condition given at
T = I, the problem is partitioned into three subproblems defined in the subdomains
namely, S;1 = {z: 20 <z <z:},Se={z: 2, <z <2 },and Sz ={z: 2. <z < 21}
The partition is basically driven by the problem at the physical level [Lai94] and the
effect is to remove the unknown source term Q.(t). In other words, the differential
equations in these three subdomains do not involve the Dirac delta function. Since the
temperature is given at £ = z¢ and there is a temperature sensor located at x = z,,
therefore Dirichlet boundary conditions are defined at the boundary of S;. One can
then solve the differential equation to obtain the derivative 3% (z,,t). Hence with the
knowledge of the temperature 6(z,t) acquired by the temperature sensor at z = z,
an initial value problem can be formulated in Ss. Therefore 6(z.,t) can be obtained
by solving the initial value problem. Note that k& drops out because k(u1) = k(us) at
z = z,. Finally another Dirichlet problem can be formulated in S3. Thus, we have the
three subproblems as follow:

SP1: % = %(k(ul)%) in Sl

subject to u1(z,0) = O(z), u1(zo,t) = Op, u1(zs,t) = T'(2).

SPy: U2 — 2 (f(yy)%%2)in S,

ot . oz Bm_ _ Bua(zs,t) _ Oui(zs,t)
subject to wua(z,0) = O(z), ua(zs,t) = T'(t), =552~ = 5.2
SP;: % = a%(k(ug%) in S3

subject to uz(z,0) = O(z), uz(z,t) = ua(zc,t), us(z1,t) = O1.

The above three subproblems are well-defined [Bec85][Zwi89], and a unique solution
exists for each of them. The direct sum of these subproblem solutions gives the
temperature distribution of the original problem, i.e.

ui(z,t), €S
0(z,t) = ua(z,t), £ €Sy . (3.3)
uz(z,t), = €Ss

Note that the above algorithm is intrinsically sequential. However, a careful load
balancing would make a distributed algorithm with minimal communication possible.

4 The Distributed Numerical Algorithm

One obvious way of distributing subproblems is to employ as many loosely coupled
workstations as the number of subproblems. In the present case there should be three
workstations. It is possible to treat the algorithm as a pipe line process, in which
case the solution of SP; at a new time step will be computed first and then SPs,
etc. Therefore there is a time-lag for SP; compare with SPy and SPy, i.e. all of the
three workstations are occupied with work at the beginning of the third time step and
before the last two time steps. Let Wsp; denotes the computational work involved in
solving SP;. The situation Wsp; # Wsps # Wsps yields a distributed algorithm
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with computing time depending on max{Wgsp1, Wsp2, Wsp3}. Since the sensor is
located in the neighbourhood of the cutter, therefore the subdomain Sy is usually
very small. On the other hand, u;(zs,t) = T'(t) is known, the subproblem SP; can be
operated completely independent of SP> and SPs. It is therefore possible to reduce
the communication time by putting SP, and SPs into a workstation for sequential
process. In such situation, the computation of the source strength does not involve
inter-processor communication. To maintain load balancing in the two workstations,
we require Wsp1 ~ Wsps + Wsps. The equality means that the two processes are
synchronised. If Wsp1 # Wspa + Wsps, then it is important that W is sent
from the first processor to the second processor and is kept in the local memory of the
second processor for the use in subsequent computations. For synchronised processes,
such storage is not necessary. The distributed algorithm is given as:

Distributed Algorithm for Metal Cutting Process
Processor 1:
for i = 1, number_of_steps
t:=ix At;
Compute the solution of SP; at time ¢; Compute
Non-blocking Send W to Processor 2;
end-for
Processor 2:
for i = 1, number_of_steps
t := i * At; Blocking Receive %ff’t) from Processor 1;
Compute the solution of SP, at time t;
Compute the solution of SPs at time t;
Compute augzga;s,t) and auaégis’t);Retrieve Qc(t) using (2.2);
end-for

Oui(zs,t) .
ox ’

The meaning of non-blocking send in the above algorithm is that computation in the
sending processor resumes as soon as the message is safely on its way to the receiving
processor. The meaning of blocking receive in the above algorithm is that the receiving
processor has to wait until the correct message from the sending processor has arrived.

Numerical Schemes

A first order forward difference approximation of the temporal derivative and a
second order central difference approximation of the spatial derivatives are used in
the subproblems SP; and SP;. An explicit scheme is resulted from the difference
approximation. Dropping the subscripts used in denoting the subdomains, the explicit
scheme for SP; and SP; can be written as

u™ = rbMu) + (1= (@™ + 5M))u + raull) (4.4)

where 4 denotes the i-th grid point, r = (AA—::)?’ al(") = M, bgn) = %, (n)
denotes the time-step, At is the step size along the temporal axis and Az is the mesh
size along the spatial axis z.

The subproblem S P, becomes a second order initial value problem along the spatial

dimension when the first order backward difference approximation, denoted as m, of
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Table 1 Conductivity parameters.

Material a b c d
A 0.5 -1.1 1.0 -1.0
B 0.8 -0.5 0.01 -0.01
C 1.0 -0.3 0.0001 -0.0001

the temporal derivative at £ = x, is substituted into % of SP,. A one-step modified
Euler integration scheme is applied to solve the initial value problem and is written
as in the following pair of calculations,

(Z>*:<z)+mi’ (z)newz(z>+%{i+f}’ (4.5)

*

wherevz%—ﬁ,lzi( Z ) = ( %_U%U2 ) andfzi( Z > . A second order
accurate solution may be obtained for each of the three subproblems. Therefore it

is expected to have a second order accurate global solution for the inverse problem
(2.1). The effect of global truncation errors for SP, is minimised because of the small
size of the subdomain which usually consists of only a few modified Euler steps. Since
the numerical schemes in SP; and SP3 are explicit, therefore the CFL condition,

At < %}'}2 where K = max{k{™}, must be satisfied.

A sequential Fortran program has been written to perform the above tasks. PVM
(Parallel Virtual Machine) [Gei94] is used to provide distributive directives in order
that the tasks can be distributed onto a network of Sun workstations. For the present

studies, only two Sun workstations are required.

Numerical Tests

A number of tests was performed by taking the conductivity as k(u) = a + bu + cu? +
du®, where a, b, ¢, and d are parameters used to describe the material property of
a piece of metal. Table 1 shows three sets of different conductivity parameters used
in the subsequent tests. The nonlinearity of the conductivity decreases as |c| and |d|
decreases. In particular the last set of conductivity parameters represents almost a
constant conductivity. For the conductivity as shown in Table 1, & and w are chosen
to be 0.4 and 27 respectively. The boundary points are located at £ = z¢ and z;. The
initial value ©(z) and the boundary values ©®g and ©; are chosen to be zeros. The
locations of the sensor and the cutter, i.e. z; and z., are chosen to be 0.4 and 0.5
respectively. Numerical results are provided for two mesh sizes Az = % and Az = %
and the corresponding At’s are chosen to be 0.001 and 0.0002. The resulting numbers
of modified Euler steps in SP» are two and four respectively. Temperature distributions
at t = 1.1 seconds are shown in Figure 1. The results show that Az has little effect on
the temperature distribution. Source strength variations with respect to ¢ for different
mesh sizes are also similar.
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Efficiency Analysis

In order to study the parallel computational work, the number of elementary
operations per grid point per time-step is needed. The number of elementary
operations involved in the numerical schemes are listed in Table 2. In this analysis, it is
assumed that the workstations are loosely coupled in a local network such as Ethernet.
It is easy to work out the number of operations for the explicit scheme as 43. Let ¢,
be the CPU time required to perform 43 floating point operations, then the CPU time
required to march one time-step in SP; and SP; are nits and nsts respectively where
ny and ng are the number of grid points in SP; and SP;. By counting the operations
involved in the modified Euler’s method, the CPU time required to march one time-
step forward in SP is %nzts. Therefore the following parallel computational time for
n time steps is estimated,

56 56
tp = nits + 4—371215s + nsts + (n — 1) max{nits, Enzts + nsts} + te

where . is the average communication time between any two workstations. The speed-
up can then be estimated as

56
S=(ny+ ETLQ +ng)tsn/t, (4.6)
It is natural to ignore ¢, during evening or weekend runs, and as n — oo, the ideal
speed-up is obtained as

ny + %nz + ns3

5= max{n1, 35ns + n3} (4.7)

The relation
ng = %ng + ns (4.8)
is used to check the load balancing of the distributed algorithm. For the case
ny > %nz—i-ng, S = 1+%2—f+2—?, for the case ny = %nQ—i—ng, S = 2, and
for the case ny < 33ny +n3, S = (%Z—f + Z—f)_l + 1. Therefore, the speed-up ratio

satisfies 1 < S, < 2, for any positive integer n;. If the problem size approaches the
limits Z—f — 0 and Z—f — 1, then the ideal speed-up approaches 2. Figures 2 and 3
confirm the above result by plotting CPU times against various problem sizes in both
sequential and distributed runs. The results shown in these figures were run on SUN
SPARC5 workstations connected locally by Ethernet.

The analysis above shows that the use of multi-step methods for the solutions of
the initial value problem in S P, is not recommended because the communication time
will increase. However, if SP; is a small subdomain which requires SP» to be solved
with SP; in a processor in order to achieve load balance, then multi-step methods can
be employed which do not increase the communication time.

5 Conclusions

The use of the distributed algorithm for the retrieval of heat source at the cutter and
the calculation of the temperature distribution is presented. PVM is used to examine
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Table 2 Operations count.

Elementary Operations

k(u) k' (u) T m %’ a; b; f ( u )
9 7 2 2 17 20 11 23 27 29

Figure 1 Temperature distributions for h = % and h = % at t = 1.1s.
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the efficiency of the algorithm in a distributed environment. Numerical results show
that the algorithm is scalable. Fast and parallel numerical schemes may then be used

within individual subproblems to reduce the overall computing time.
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Figure 3 Speedup ratio.
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