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Applications of Quasi-Newton
Methods for the Numerical
Coupling of Some Nonlinear
Problems

C.-H. Lai

1 Introduction

In a typical domain decomposition method, substructure solutions are used to
construct preconditioners that are to be used in a conjugate gradient algorithm applied
to the entire discretised problem. The approach used in this paper is to solve, instead of
the entire discretised problem, the reduced interface problem which arisen from domain
decomposition methods. This research has been motivated by a current project on
viscous/inviscid coupling [LCP96]. In order to couple two models, an iterative scheme
first developed by Schwarz for elliptic problems is usually employed [Sch90]. However
the rate of convergence is not satisfactory, even for linear problems, without the use
of preconditioners.

The interfacial problem along the subproblems interface is usually obtained as
certain defects. Early experiences in this context can be found in [Lai93][Lai94].
The approach is based on a two level scheme. At the finer level, each subproblem
is described by a nonlinear continuous model and solved independent of other
subproblems using a local Newton’s method. These subproblem solutions contribute
to the evaluation of the defects along the interface of subproblems. At the coarse
level, the defect equation is being solved by means of a quasi-Newton method. Two
reasons of using quasi-Newton methods. First, the difficulty in computing the Jacobian
matrix and second, the analytic form of the Jacobian is not known. A comparison of
various quasi-Newton methods for a linear convection-diffusion problem can be found
in [Lai94].

This paper is organised as follows. First, a simple interface problem is introduced
followed by a description of some quasi-Newton methods. The performance of the
nonlinear coupling on distributed computing environment is discussed with numerical
examples.
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2 A Simple Interface Problem

We consider the interface problem of the following two-point boundary value problem,

d?¢ d¢
e 9(z, ¢, %), € Q={zla<z<b} (2.1)
subject to Dirichlet boundary conditions ¢(a) = ¢, and #(b) = ¢p. The domain
Q is split into s + 1 nonoverlapped subdomains, Q, & = 1,2,--- ,s + 1, such that
Q= {UZiiQk} U {U;Zle} where Q = {:I?|:I?k_1 <z < .’l?k}, N = {Il?k_l,.’l?k},
Ty = zr. Each of the subdomains has the following associated two-point boundary
value problem,

d2uk duk

— = — Q 2.2

d.'L'2 g(‘/L.) Uk, dl’ )7 E k ( )
subject to boundary conditions ux(Zr—1) = Ak—1 and ug(zx) = Ak, and u1(zo) = Pa
and us41(Ts+1) = ¢p where zg = a, 41 = b. Let up = ur(z; A) denote the solution
of (2.2) in Q, where A =[A1 A2 -+ As] € Qp C R®. In order to obtain unique values
of ¢'(zx), k=1,2,--- s, we define the defect D : Qp C R®* — R® as

DY) = [De(N)] = [k (@4 ) = i (25 V) (2.3)
and require to solve the defect equation D(A) = 0. The continuity of the function ¢
across the interfaces is implicit in (2.2). The defect equation guarantees the continuity
of ¢' across the interfaces. It can be easily seen that D € C*(Q2p). In the case of two
subdomains, the defect equation has one unknown. In the case of multi-subdomain,
the Jacobian matrix J(A) = D'(A) is a nonsymmetric tridiagonal matrix [Lai94]. If
A = A" is aroot of D(A) = 0, then the function

)\2_1 r=Tk-1
d(x) =< up(z;A*) zp—1 <z < T4 k=1,2,---,5+1 (2.4)
AL T =Ty

where A\§ = ¢ and X;,; = ¢, is a solution of (2.1).

Note that (2.3) is the equilibrium state of the variables Zug(zx;A) and
%Uk_l,_l(.rk; A). There are other equilibrium states, e.g. integrate the difference of the
derivatives along the interface, or perhaps other physically viable states. Once the
mathematical interface coupling is defined, the defect equation can be easily set up
and contributions to the defect equation from different subdomains can be separately
computed which ensures distributed computing tasks.

3 Some Quasi-Newton Methods

In this section we consider a number of quasi-Newton methods for the solution of the
defect equation D(A) = 0. Let D : Qp C R®* — R*® where Qp is an open and convex
set, D € C1(Qp), D(A*) = 0, J(A*) nonsingular, and, for all X € Qp

IJ(A) = JAII < LIIA = A7 (3.5)
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for some norm ||.||, and some L, p > 0. The general quasi-Newton method for the
solution of D(A) = 0 is given by

Al = A _ oo ip(a) (3.6)

where «,, is a nonsingular matrix approximating the Jacobian matrix J(X). The
convergence result of such an algorithm can be found in [DM74]. We choose six
algorithms for the present comparison: a modified Newton method, Broyden’s method,
Schubert’s method, Schubert-Kim method, Schubert-Powell method and an adaptive-
a method. We are interested to apply these methods to the linear system D(X) =
JA—b =0 where J is an s X s matrix as well as to the nonlinear system D(A) = 0 in
general. For some interface problems, the sparsity structure of the Jacobian matrices
is known, therefore one should employ the so-called Schubert’s update rather than
Broyden’s update. The difference between Broyden’s method and Schubert’s method
is that the former does not take care of the sparsity of the Jacobian matrix while
the latter preserves the sparseness structure of the Jacobian matrix. The naming
convention for the algorithms being tested in this paper is that any name beginning
with Schubert has its sparseness structure of the Jacobian matrix being preserved.

In order to avoid the update of the approximate Jacobian every iteration, a modified
Newton method is applied here in such a way that the Jacobian is only calculated once
and is used in all subsequent iteration.

Algorithm 3.1 Modified Newton’s Method [Lai94]. Given A®) and o, compute
A using (3.6). Then evaluate J(A!)) by means of a finite difference approximation.
Finally use (3.6) to compute A"V by choosing o, = JAY), n=1,2,. ...

ap is chosen as a diagonal matrix or in such a way that its sparseness is the same as
that of the Jacobian matrix. Also a,, is calculated once and is kept for all subsequent
iteration because it is expensive to evaluate the Jacobian matrix in every iterative
step.

One classical technique of choosing o, is called Broyden’s update. Let Q. =
{& € L(R®),u,v € R’ : Gu = v}. Then Broyden’s update is obtained as the
solution to the minimisation problem [DS79] min{||& — an||r : & € Qs,,y,} Where
sp =AY _ Ay — DACTY) — DA™), ||.||F is the Frobenius norm. The
solution of the minimisation problem is given by

D(A(n-i-l))sg
OQnt1 = O + < s.s. > (3.7)

Suppose W and W are nonsingular matrices in L(R*), then a weighted update can also
be obtained as the solution to the minimisation problem [DS79] min{||W (&d—an)W||F :
& € Qs,, y, } and is given by

DA Y)vT
Opy1 = Op + W (38)

where v, = W-TW1s,,.
Algorithm 3.2 Broyden’s Method [DS79]. Given A® and ag, compute A(*+Y)
using (3.6) and a4 using (3.7), forn =0,1,....
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For simplicity aqg is chosen as a diagonal matrix. However the subsequent generated
matrices, a,,, are full matrices. The inverses of these matrices are expensive and there
is no guarantee that these matrices are nonsingular.

Algorithm 3.3 Schubert’s Method [Mar79]. Perform the same steps as that given
in Algorithm 3.2 but the successive updates a,4+1 are made in such a way that the
sparseness structure is preserved.

For simplicity aq is chosen as a diagonal matrix. As in the previous case, the sequence
of matrices generated by (3.6) is not necessarily nonsingular.

Kim and Tewarson [KT92] proposed a weighted mean of (3.7) and (3.8) with
vn = —aITDAM), ie.

DA™ H))sT N MD(,\("“))v};
< Sp,Sp > < Vp,Sp >

ant1 = an + (1 - p) (3.9)

(n+1)y T
where p is chosen to satisfy ||D()‘7)S"||F = ||p

. <Sp,Sp>
obtained as

(n+1)\ T
D(A Yl . .
T Vnsa> ”F from which M 18

—aTD(APTD L >2
= < —a, D( 1 )sSn > : (3.10)
< Sn,sp >< —aIDAMTY) —oTDACTY) >

We implemented the weighted update of Kim and Tewarson by means of Schubert’s
approach, i.e. the sparsity of the Jacobian matrix is preserved.

Algorithm 3.4 Schubert - Kim Method. Given A© and ap, compute A+ using
(3.6) and @, using (3.9), forn =0,1,....

It is worth to note that when p = 1, the method actually fails to converge for some
interface problems, in particular the nonlinear boundary value problem described later.

None of the methods described so far has equipped with a technique to advoid
singular matrix a,41. Using the well known determinant property det (I + uvl) =
14 < u,v > for any u and v in R?, one can deduce that if a,, is nonsingular then,
Qny1 is nonsingular if and only if < s,, o, 'y, ># 0. Powell defined a modification to
Broyden’s method given by [MT76]

DM t))sT
Qpt1 = Qp + OHW (3].].)
where 6, is chosen so that a,41 is nonsingular. In other words, we require
|det apy1] > n|det |, |6n —1] <17 (3.12)

for any given n € (0,1). Using the above determinant property, one can easily deduce
the following relation

PR B I¥n| 2 m (3.13)
! LS8 0an -y < '

where v, =< s, ly, >/ < sp,sp >, and sign (0) = 1. We implement, in Algorithm
3.5, the above modification by means of Schubert’s approach.
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Algorithm 3.5 Schubert - Powell Method [Mar79]. Given A©) and aq, compute
A ysing (3.6) and a4y using (3.11) and (3.13) for n =0,1,. ...

It should be noted that while Powell’s modification to Broyden’s method leads to
global and superlinear convergence in the case of linear systems, it does not hold for
general nonlinear functions [MT76].

Finally, we describe an algorithm based on a sequence of adaptive parameters
[Lai94]. Here the technique for a scalar defect equation is essentially an optimal
one-point iteration method where a,, is obtained by setting G' = 0, where G =
A™ — o 1D(A™). This adaptive parameter o, is equivalent to the scalar e-algorithm
[Lai94]. An adaptive a for the extension [Lai94] to s-dimensional problems is

[IDAT) - DA™)]
DA™

Qnt1 = Qnp (3.14)

Algorithm 3.6 Adaptive a [Lai%4]. Given A© and ag, compute AV using (3.6)
and ay,41 using (3.14), for n =0,1,....

Since an arbitrary initial approximation is chosen, there is no guarantee that P
is sufficiently close to A*, in particular for nonlinear problems, which is an essential
requirement for global convergence. One way to generate better initial approximation
for nonlinear problems is to use Algorithm 3.6 which provides a small step during the
initial few updates of the Jacobian. In the numerical tests shown later, Algorithm 3.6
is employed 3 or 4 times before the other algorithms are employed. The number of
iterative updates, n;, as presented in the Tables as shown later includes the above
number of initial iterates. The reason for including these initial iterates in the iteration
count becomes clear when the feasibility for parallel implementation is discussed. A
stopping criterion for the above algorithms is [|[A™ — A*|| < € where A* is given and
€ is a small tolerance.

4 Performance Analysis

Now the approach involved in the present study is to divide the problem into two
levels. At the fine level, the problem is divided into a number of subproblems to be
computed in parallel. At the coarse level, the problem is small enough not to warranty
for parallel implementation and the computational work is taken as the sequential
overhead.

Let M denote the total number of nodes in the entire computational domain.
One work unit is defined as the computational work required to solve the
discretised problem with M nodes. For steady linear problems, solving the entire
computational problem requires one work unit. For nonlinear problems, solving the
entire computational problem requires ns; work unit, where n, is the number of
linearisations. For time dependent problems, solving the entire computational problem
requires mns work units where n; is the number of time steps. Let the entire
computational domain be divided into s + 1 subdomains, M}, be the number of nodes
in the k-th subdomain, £k = 1,2,---,s+1 and n; be the number of updates in order to
obtain a converged solution Alnit) along the interfaces by using a quasi-Newton scheme.
Suppose there is a set of s + 1 concurrent processors and that the connectivity is the
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same as the layout of the subdomains. Since most of the computational work is devoted
to the solutions of subproblems, it is possible to estimate the parallel computing
time by taking the sum of the maximum work unit in any iteration involved in the
subproblem solutions, i.e.

My,
= — 4.1
T nEZI l_max { (4.15)

Hence a quasi-Newton algorithm described previously is considered as a feasible
parallel algorithm provided 7 < m,. Note that the present performance monitor does
not include the overheads required to solve the linear systems and that such overhead
becomes negligible for Algorithm 3.6.

5 Numerical Examples

We consider the following convection dominant flow problem,

¢ dé

2 Vs = 0, ¢0)=0,¢9(1)=1 (5.16)
where v > 1. The domain is subdivided into s 4+ 1 subdomains with interfaces, Iy,
k=1,2,...,s, distributed evenly across the domain. We use exact solutions in each of
the subdomains and are interested to compare the number of iterations, n;, required
to update the function values along the interfaces. The value e of the stopping criterion
is chosen to be 0.5 x 1075. For the present studies, the defect equation system for the
convection diffusion problem is a linear system and Algorithm 3.5 is included in the
test set. The number of iterations are presented in the middle column of Table 1 and
values obtained by using (4.15) are presented in the third column of Table 1. Note
that an ”x” represents divergence of the test. More results can be found in ([Lai93]).

Table 1 Linear problem: v = 50.

s+1 s+1

4 8 16 32 64 4 8 16 32 64
Alg. it T
3.1 2 2 2 2 2 0.500 0.250 0.125 0.063 0.031
3.2 6 14 25 48 88 1.500 1.750 1.563 1.500 1.375
3.3 7 13 19 21 36 1.750 1.625 1.188 0.656 0.563
3.4 7 13 18 24 X 1.750 1.625 1.125 0.750 X
3.5 9 14 16 22 36 2.250 1.750 1.000 0.688 0.563
3.6 10 19 31 51 102 2.500 2.375 1.938 1.594 1.594

Obviously, Algorithm 3.1 is very attractive but the construction of J (/\(1)) requires
2s subproblem solvers. Algorithms 3.3, 3.4, and 3.5 are more efficient compare with
3.2 and 3.6.
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Table 2 Nonlinear problem: ¢ =1 and b = 0.5, 161 mesh points.

s+1 s+1

(ns = 4) 4 8 16 32 4 8 16 32
Alg. Nit T
3.1 12 11 12 11 3.000 1.375 0.750 0.343
3.2 11 17 34 57 2.750 2.125 2.125 1.781
3.3 10 18 19 17 2.500 2.250 1.188 0.531
3.4 11 17 X X 2.750 2.125 X X
3.6 12 20 72 114 3.000 2.500 4.500 3.563

Next, we consider the nonlinear elliptic boundary value problem,

LEHDD) = @), 60 =0,601) =1, (517)

where K(¢) = a + b¢ is the thermal conductivity and f(z) = 2a + 6bz? for real
numbers of a and b. The analytic solution of the problem is ¢ = z2. Since the problem is
nonlinear, therefore the defect equation is also nonlinear. In order to solve the nonlinear
subproblem, a linearisation based on Newton’s method is applied at the subproblem
level and a finite difference method is then applied to the linearised subproblem, i.e.
F'(ug)(upe™ — ug) = —F(uy) where F(uy) = f(z) — %(K(uk)%). The resulting set
of linear equation is solved by a Gaussian elimination. It is not intended in this paper
to study the efficiency of linear solvers at the subproblem level, and there are plenty
of fast linear solvers available. The important issue here is the convergence rate of the
quasi-Newton method, i.e. the number of updates, n;, of the defect equation along the
interface. Results for a = 1.0 and b = 0.5 are presented for the cases of 161 and 321
mesh points. Since the defect equation is a nonlinear system, Algorithm 3.5 does not
guarantee that the approximate Jacobian matrices to be nonsingular and therefore it
is not included in the test set. Tables 2 and 3 show the relationship between n; and
s+ 1 for the nonlinear boundary value problem.

Table 3 Nonlinear problem: a =1 and b = 0.5, 321 mesh points.

s+1 s+1

(ns = 4) 4 8 16 32 64 4 8 16 32 64
Alg. Nit T
3.1 13 11 13 14 30 3.250 1.375 0.813 0.438 0.469
3.2 11 17 36 57 121 2.750 2.125 2.250 1.781 1.891
3.3 10 19 19 20 21 2.500 2.375 1.188 0.625 0.328
3.4 11 18 28 b'e X 2.750 2.250 1.750 X X
3.6 13 23 61 126 206 3.250 2.875 3.813 3.938 3.219
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For test problems with 161 mesh points, one cannot have 64 subdomains. The
weighted mean method described in Algorithm 3.4 seems to be less attractive
for nonlinear problems because it diverges for a fairly small number of interfacial
unknowns. In general, quasi-Newton methods performs better for nonlinear boundary
value problems compare with linear boundary value problems.

6 Conclusions

A novel application of quasi-Newton methods for the solution of interface problems
arisen from domain decomposition methods is examined. Performance analysis shows
that Algorithms 3.2, 3.3, and 3.4 have been identified to be suitable for nonlinear
problems. Algorithm 3.6 is included as a feasible parallel algorithm for nonlinear
problems but is not suitable for linear problems. Algorithm 3.1 is extremely effective
for linear problems only if enough parallel processors are available to construct the
Jacobian. Algorithm 3.6 is also important in the sense that it provides stable early
iterates in Algorithm 3.1 at a cheap overhead in order to produce an approximate
solution in the neighbour of the exact solution. Extension to 2-D problems is currently
being studied.
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