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Generalized Neumann-Neumann
Preconditioners for Iterative
Substructuring

Patrick Le Tallec and Marina Vidrascu

1 Introduction

In iterative substructuring, the parallel solution of a complex structural problem is
achieved by splitting the original domain of computation in smaller nonoverlapping
simpler subdomains, and by reducing the initial problem to an interface system with

matrix 5
S=> RIS;R;, S;=K;-B{K;'B;
i

to be solved by a parallel preconditioned conjugate gradient method. Many variants
of this approach have been proposed and investigated in the recent literature, all
associated to different choices of preconditioners. It turns out, in fact, that the interface
problem requires specific preconditioners which take advantage of its particular
structure. Such preconditioners must have nice parallel properties, must be able to
handle arbitrary elliptic operators and discretization grids, and their performance must
be insensitive to the discretization step h and to the number of subdomains. Many such
preconditioners have appeared in the literature, following the early work of Bramble,
Pasciak and Schatz [BPS86] ([CM94], [CMW93], [DW92], [Man90], [Wid88]). For three
dimensional elasticity, efficient results have been obtained using either wire-basket
algorithms such as proposed in Smith [Smi92] or Neumann-Neumann preconditioners
([DLV91], [LeT94]).

This last choice uses as preconditioner the following weighted sum of inverses
[MB93] :

M'=P+(1I-P) <Z DiS;lDﬁ) 1-P),

with P a coarse projection operator, and D; a local partition of unity to be adapted
to coefficients heterogeneities. This preconditioner is very general and can be applied
to linear or nonlinear three dimensional elasticity problems using either matching or
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non matching grids [LSV94], to nonlinear plates or shells problems [LMVed], or to
incompressible flow problems [LP96].

It turns out that all these situations can be described and analyzed by a unique
abstract framework. Indeed, the Neumann-Neummann algorithm is a standard
additive Schwarz algorithm based on an interface space decomposition of the type

V=Vo+) (I-P)D,V..

2

The purpose of this paper is to explain how to efficiently relate the Neumann-
Neumann algorithm to the more classical additive Schwarz framework. The previously
known convergence results of J. Mandel or of the authors are then easily recovered.
More important, this framework leads to several extensions of the algorithm for
situations involving inexact domain solvers or nonconforming 3D mesh refinements.
The efficiency of these different extensions will be illustrated by the results of several
real life numerical experiments.

2 Model Problem and Basic Algorithm

Let us consider a second order elliptic problem with vector unknown u(z) € IR® set
on a given domain Q of IR® with variational formulation

/(; (a(m) Vu(m)) -Vo(z)dr = /QfQ -vdz + o fr -wvda, Yve H(Q). o

Here, H() denotes the space of admissible (finite element) solutions, Qy the part
of the boundary where Neumann boundary conditions are imposed and 92p the part
where Dirichlet boundary conditions are imposed.

Iterative substructuring techniques use non overlapping domain partitions which
split the original domain into small disjoint subdomains and reduce the original
problem to an interface problem solved by an iterative conjugate gradient method.

The first step is thus to split the domain into small local non overlapping subdomains

N
a=Ja,
=1
with interfaces
T; = 09,\09, (2.2)
I =y,l;. (2.3)

The second step is to construct the interface problem. Let K; denote the stiffness
matrix of the subdomain ;

i = [ (a0) V410)) - Vom(a)

i
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and

(B = [ 2@ s+ [ (@) i(o)da
Q QN NON;

the corresponding right hand side. These matrices and right hand sides can obviously
be computed independently on each subdomain. For each subdomain, the degrees of
freedom are then decomposed into internal degrees of freedom X; associated to nodes
which are strictly inside the subdomain 2;, or on the external boundary and interface
degrees of freedom X; associated to nodes lying on the interface between two or more
neighboring subdomains. With this partition, the subdomain stiffness matrix and right
hand side take the form

o K; B; _ F;
Ki= [Bﬁ Kz] o fi= [F,] ' @4

Let us finally denote by X = |J, X; the entire set of interface degrees of freedom,
and by X; = R;X the restriction of X on the boundary of ;. Under this notation,
after addition of the local contributions of all subdomains to the global stiffness matrix
and right hand side, the linear system describing the global equilibrium of the domain
2 takes the block structured form

K, 0o - 0 B.R, X B
0 Kz . 0 B2R2 Xz F2
0 0 - Ky ByRy Xy Fy
RiB! RiB; - R4BL Y. RIKR; X >, RLF;

This system is ideally solved by block Gaussian elimination of the internal degrees
of freedom X;, yielding

X;= (Ki)_l(E - B X)). (2.5)

In mathematical terms, this elimination amounts to the parallel solution of local
equilibrium problems set on subdomains 2; with fixed Dirichlet boundary conditions.
After elimination we obtain the reduced interface system

i
Introducing the so-called local Schur complement matrix

S; = Kz — Bz(f(i)_lBi, (26)

this interface system takes the final form :

) _RIS;R)X =) RUF, - BY{(K,)™'F)). (2.7)
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Problem (2.7) is equivalent to our original equilibrium problem, but is only written
in terms of the interface unknowns X.

The main idea of modern domain decomposition methods is to solve problem
(2.7) by an iterative preconditioned conjugate gradient algorithm. These iterative
techniques never require the explicit calculation of matrix S since they form the
matrix vector product SX by solving auxiliary Dirichlet problems (2.5) on the local
subdomains [LV96]. The main issue conditioning the success and parallel efficiency
of such techniques is then the choice of the preconditioner M. This preconditioner
must be easy to implement in a parallel environment and must lead to a scalable
algorithm when the number of processors increases. Additive Schwarz methods give a
very general and efficient way of constructing such preconditioners.

3 Abstract Additive Schwarz Method

Let us consider the solution of the abstract variational problem
a(u,v) = (f,v),Yv € V,u € V, (3.8)

where V is a given Hilbert space with duality product (., .), and a an elliptic continuous
symmetric bilinear form defined on V.
We suppose that the space V can be decomposed into the sum

V=LVog+ LV +LVy+...+IxVy, (3.9)

where I; is a given continuous linear extension map from the local space V; to the
global space V. On each subspace V;, we introduce a symmetric elliptic bilinear form
bi(.,.). We denote by A : V — V' the linear operator associated to the form a

(Au,v) = a(u,v),Yu,v € V,

and by B; : V; — V! the linear operator associated to the form b;.

With this notation, the additive Schwarz method for solving our original problem
(3.8) is defined as the conjugate gradient method preconditioned by the following sum
of local operators

M~ =ILBy' Lt +...+ INBy' 1. (3.10)

This preconditioner is quite easy to compute since its action on a given element L € V'
is simply equal to the sum

N
M™L =" Lu,
i=0
where u; € V; is the solution of the local variational problem
bi(ui,vi) = <L,I{U,‘),VU,‘ €V;.

As usual, the efficiency of the above preconditioned conjugate gradient method is
inversely proportional to the condition number of the operator M~ A which we control
by carefully choosing the subspaces I;V; [CM94].
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4 Generalized Neumann-Neumann Preconditioner

We have seen earlier that the interface problem (2.7) takes the abstract form

O RISIR)X=FeV, (4.11)

with R; the restriction from the space V of global interface values X to the space V;
of local interface values X;. Such an abstract problem can be solved in all generality
by a Neumann-Neumann algorithm which preconditions the sum S = )" RﬁSiRi by
a two level weighted sum of the inverses M~! = Y D;(S;) !D!. From a theoretical
point of view, this algorithm turns out to be a particular case of the above additive
Schwarz method.

For constructing such an abstract Neumann-Neumann preconditioner, we first need
to choose

1. a partition of unity D; : V; — V satisfying

N
> DiR; =Id|y.

i=1

For implementation reasons (flexibility and parallelism), the map D; must
be as local as possible. The generic choice consists in defining D; on each
interface degree of freedom v(F;) by : Div(F) = Zuv(Pg) if the [ degree
of freedom of V corresponds to the k degree of freedom of V;, and by
D;v(P,) = 0, if not. Here p; is a local measure of the stiffness of subdomain
Q; (for example an average Young modulus on ©;) and p = )" peq; Pi is the
sum of p; on all subdomains §; containing F;.
2. an approximate local operator S; such that

S=> Ri{S;R;

is spectrally equivalent to S : w_(Sv,v) < (Sv,v) < w4 (Sw,v), Vv e V.

Up to now, Neumann-Neumann methods used the original Schur complement
S; as a local operator, but our most recent tests and analysis show that one
can choose different local operators S;. In practice, one uses the local Schur
complement of a simplified (unrefined, undeformed, homogenized..) problem.
The calculation of its local inverse will then reduce to the solution of an
approximate Neumann problem.

3. a S; orthogonal decomposition of each local space V;,¢=1,2,--- | N, into

Vi=V{®Z.

Above, the local coarse space Z; contains all potential local singularities, that
is functions v; whose extensions D;v; are of very large (usually H dependent)
energy. In particular, the space Z; must be such that

Kersi CZ;CV;.
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For elasticity problems, Z; is usually taken as the space of local rigid body
motions. For plate and shell problems, a better choice is to choose [LMVed]
Z; as the orthogonal to the space

V{ = {v € V;,u = 0 at cross points}.

We then define the generalized Neumann-Neumann domain decomposition
technique as the additive Schwarz algorithm solving S on the space V of interface
restrictions of elements of H({?) , with

1. coarse space Vy = Zfil D;Z; C V, endowed with the scalar product g,

2. local spaces V2,4 =1,2,--- , N endowed with the scalar product B; = gi,

3. extensions I; = (I —P)D;, with P the S orthogonal projection of V onto V.
The above choice of extension map is in fact the key point of the Neumann-
Neummann algorithm.

By construction, this Neumann-Neummann algorithm corresponds to the
preconditioning operator

M~ =8§;' + Y (I -P)D:S;'Di(I - P),

in which we recognize a direct generalization of the expression initially proposed in
[MB93].

To see how this abstract algorithm can be numerically implemented, we detail below
the application of the operator M~! to a given element » of V’'. From the above
construction, we first need to project the residual onto the coarse space by solving the
coarse problem _

(Suo,v0) = (r,v0),Vvo € Vo,

to compute the local contributions w; by solving in parallel the local ”Neumann”
problems

u; € V? : (giui,vi) = (r,(I — P)D;v;),
= (r — Sug, D;v;) Yu; € V?,

to project these local contributions onto the coarse space
<S(ZZ Dizi),vo) = <Zz D;u;, g’Uo), Yvo € Vo, z2; € Z;,
and to set
N
M lr= ug + ZD,(’U,z — Zz)
i=1
Using the general theory, we then have
Theorem 1 The above abstract Neumann-Neumann preconditioner satisfies

Anaa(M7'S) _ (Ne+ Doy o IDivill%

Amin(M™1S) w- i geve vl

CondM™'S) =

with Ne the mazimum number of neighbors of a given subdomain.
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Proof. The minimal eigenvalue M,;,(M~!S) can be bounded from below by
the well-known partition lemma classically used in the analysis of additive Schwarz
methods. For this purpose, we split any v € V into

v=Pv+ (I —P)v=1Iwo+v,.
From the local decomposition of each local space V;, each local component R;v; can

be decomposed into R;v, = v; + z;,v; € V?, z; € Z;. By introducing our partition of
unity D;, we then have

vy = (I—P)ZDiRiUJ_
i

Z(I — P)Dz(vz + Zz)

I I
™ -
I
& |
3
S
§

By orthogonality of the local decomposition, we then verify

Zbi(vi,vi) = ZSU,,vZ <Z i(vi + 25),vi + 2)

Z<SiRiUJ_7 RiUJ_) = <S1)L, 'UJ_).

i

By orthogonality again, we have

bo(vo,v0) + Y bi(vi,vi) < (Swo,vo) + (Svi,v.)
i

= (Sv,v) <wi(Sv,v).

Thus, the partition lemma holds with Cy = w4, which implies that A,,;, is bounded
from below by i

On the other hand, the derivation of an optimal upper bound for Ay, (M™1S)
requires specific orthogonality arguments which do not easily fit into the classical
theory of additive Schwarz methods. Indeed, using orthogonality and the contraction
properties of the projection (I — P), we have

(SM™'SX,M~'SX) = (S(uo+ Z (I — P)Dyu;), uo + Z (I — P)D;u;)
= SUo,UO SZ I P ,UZ,Z(I — P)Dlul)

< SUO;“O S ZDzuz; ZDzuz

By introducing the number of neighbors N; of a given subdomain ;
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N; = Number of j #i,3u; € V;,3u; € V;,(SDyu;, Djuj) # 0,
the continuity constant of D;
(SD;v;, D;v;)
c;= sup ——=—— =
viev?  (Sivi,v;)

and using Cauchy Schwarz, we then deduce

(SM™'SX,M™'SX) < (Sug,uo) +max(N; +1) Y (SDju;, Diu;)
K3

i

< <§’U,0, ’U,0> + ma.x(Nz + ].) c; Z(siui, ’U,z)

i

< (SX, Pug) + max(N; + 1) ¢; Z(SX, Liu;)
< [max(N; +1) ¢(SX,M~'SX)
< [max(N; +1) ](SX, X)*(SM™1SX, M~!1SX)2.

/\maz(M_ls) = max (S){’){) = max (%){,)f) <S){"X:>
x (MX,X) x (§X,X) (MX, X)
&~ ~ -~ 1
-1Qy —1Q ¥\ 2
< Lo SM §)_(,Mlsx) < L max(Wet 1)
w- X (8%, X)° wo

If we particularize this abstract convergence result to specific elasticity problems
with specific choices of local spaces and coarse grid operators , we recover the following
quite general convergence theorem [LeT94], [LMVed] :

Theorem 2 Using the above Neumann-Neumann preconditioner in the framework of
three-dimensional linear elasticity problems or of plate problems, the condition number
of the operator M8 is bounded by

H;
Cond(M™'S) < %[1 + Inmax 7]2, (4.12)

-~

the constant C' being independent of the subdomains diameters H;, discretization steps
h;, aspect ratios a; and averaged coefficients p;.

The above result guarantees the scalability of the proposed algorithm with respect
to the number of subdomains (H; independence), and its robustness with respect to
strongly heterogeneous elasticity coefficients (p; independence). This independence
with respect to coefficient jumps is due to our specific choice of weighting factors
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Du(P) = %v(Pk).

But the abstract convergence result is more general because it handles situations
using inexact subdomain solvers Sl-_1 in the preconditioning step. The next paragraph

illustrates this possibility.

5 Application to a Large-scale Problem with Local Refinement

Many large scale engineering problems require additional care and precision next to
junctions of complex geometries. A simple way for achieving this in an industrial
framework consists in first defining a global conforming finite element mesh of
the whole domain {2, to be partitioned as usual into conforming non overlapping
subdomains 2;. In order to improve the local accuracy of the finite element solution, we
then refine the finite element mesh of several subdomains (but not of all subdomains)
by subdividing each original element of these subdomains into 2,4,8,16,... sub
elements of same nature. After such local refinements the global mesh is no longer
conforming : on the interface between a refined domain 2; and an unrefined domain
2;, several nodes of §2; will have no equivalent on Q; (Figure 1).

Figure 1 Nonconforming mesh refinement : refined nodes on the right domain have
no counterpart on the left domain.
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This lack of conformity can be handled by the so called slave node approach used
in Bramble, Ewing, Parashkevov and Pasciak [BEPP92]. In this approach, all finite
element displacement fields are imposed to be pointwise continuous at all subdomain
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interfaces. In other words, the finite element space definition is kept as
H(Q) = {vh : Q —» R3, vy, continuous, v, = 0 on 8Qp,
Vhyy, = V1 © vl e [Q4()]?, for all elements T} of all subdomains Q,}

With this choice, on any nonconforming interface, the values of the displacement field
at any interface node P} of the refined subdomain €2; which is not shared by the
neighboring subdomain 2; are constrained to be equal to the value at this point of
the €2; finite element interpolation of this field

wP)= Y u(P)ei (P).

kETNOR

Here T is the finite element of subdomain Q; which contains P/, P,g are the interface
nodes of this element, and ¢F (z) is the nodal element shape function associated to
the node P,f . By construction, the interface nodes P,f of Q; are shared by ();, and by
the imposed continuity of the displacement field at the interface, the above continuity
constraints can be rewritten as

uP)= Y uP)ei (F). (5.13)

keTNON;

Therefore, the additional degrees of freedom introduced by refinement on the
interface 0€); are not directly related to any degree of freedom of €2, but only to
degrees of freedom of 2;. They must then be considered as internal degrees of freedom
of ;, that is as elements of the set X;, and do not participate to the interface problem.
In other words, the mesh refinement of the subdomain Q; will modify the local stiffness
matrix K; (new finite elements are added and the internal kinematic constraint (5.13)
must be taken into account), will add elements to the set X; of internal unknowns,
but will not modify the list and definition of the interface degrees of freedom X;.
In particular, the interface problem keeps the same structure and dimension as in
the unrefined case. Such situations can therefore be easily solved by our generalized
Neumann-Neumann algorithm, using as interface preconditioner S the (much cheaper)
interface preconditioner of the unrefined case.

We have applied this strategy to the calculation of part of a protection wall in a 3D
offshore platform subjected to an external pressure. This problem can be written in
the following form :

Find the displacement field u(z), of a three-dimensional structure 2, subjected to
a given external loading. The external forces acting onto the body can be reduced to
surface tractions fT acting on the part dQx of the boundary 8. These tractions
represent the external pressure or the action of icebergs on the structure. The
displacement u;(z) is imposed on the remaining part dQp = 9Q — 9Qn of the
boundary.

The governing equilibrium equations reduced then to the strong form :



GENERALIZED NEUMANN-NEUMANN PRECONDITIONERS 423

—div(E(z) e(u)) = 0in Q,
E(z) e(u)n = fF on dQy,
u(z) = 0ondQp,

with E(x) the local elasticity tensor, and &(u) the linearized strain tensor
1 ¢
e(u) = 3 (Vu + (Vu)?).

For isotropic materials, we have simply

Ev E

A - div(u)Id + A+ V)E(u).

E(z) e(u) =
The platform is supposed to be made of an isotropic elastic material (E = .3710'! and
v = .2 ) and is discretized using second order hexahedral finite elements. The domain
is cut into 5 subdomains. Three calculations were performed. The first one uses 5
coarse compatible subdomains. The total mesh is rather coarse, with element aspect
ratios of 5. Four subdomains are of equal size and contain each 209 elements, 1616
nodes and 4848 degrees of freedom. The fifth subdomains has 88 elements, 714 nodes
(2142 d.o.f). Then this fifth subdomain is refined (Figure 2) and thus the resulting
decomposition uses non matching grids. The refined domain contains 748 elements,
4181 nodes (12543 d.o.f). Finally all the subdomains were refined. In order to fit in the
computer memory a decomposition in 18 subdomains was needed for the fully refined
case. The number of subdomain iterations, for a precision of 1076 in the conjugate
gradient algorithm, is 53 for the coarse decomposition, 57 for the incompatible one
and 65 for the fine one. For the coarse decomposition the calculated condition number
is 408.24, compared to 457.75 for the incompatible one. In both cases, the dimension
of the interface problem is 2436. As far as accuracy is concerned, the non matching
grid gives results comparable to those of the totally refined case. In summary, partial
refinement is as accurate as full refinement but is associated to an interface problem
whose complexity and cost is as cheap as the unrefined case when solved by our
generalized Neumann - Neumann technique.
Similar costs are also observed when solving nonlinear elasticity problems with
frozen interface preconditioner [LV96], which validates the generalized Neumann
Neumann algorithm in real life numerical examples.
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Figure 2 Non matching grid decomposition of the offshore problem.




