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Multilevel Finite Element Riesz
Bases in Sobolev Spaces

Rudolf Lorenz and Peter Oswald

1 Introduction

In this note we discuss some results concerning multilevel finite element schemes
of hierarchical basis (HB) type in connection with discretizing and preconditioning
elliptic problems in Sobolev spaces. Roughly speaking, HB-methods require the
introduction of a hierarchically defined algebraic basis ¥; of locally supported
functions for a scale of finite element discretization spaces Vj, 7 > 0, and aim
at reducing the condition number of discretization matrices for standard elliptic
problems when represented in the basis ¥;. Motivated by recently proposed
modifications to the standard HB-method (Yserentant [Yse86]) such as the 3-point
HB-method of Stevenson [Ste96, Ste97a], the coarse—grid stabilized HB-methods of
Carnicer/Dahmen/Pefia [CDP96], Vassilevski/Wang [VW97a, VW97b] and the Lo-
semiorthogonal prewavelet methods (see [Osw94, Jun94, KO96, Ste97b]), we started in
[LO96] a systematic comparison of their properties. In a first step, we considered finite
element HB-methods with respect to shift-invariant, dyadically refined triangulations
of R?, and studied the range of the smoothness parameter s for which a given HB-
system ¥ = U;>o¥; is a Riesz basis in H*(R%). For those s, discretizations of
H?-elliptic problems in V; with respect to ¥; will lead to stiffness matrices with
uniformly (j-independent) condition numbers, thus resulting in an asymptotically
optimal preconditioning method.

We concentrate here on the case of linear finite elements and d < 3. Section
2 contains the definitions of HB-systems and a brief survey of the connection to
multilevel preconditioners. In Section 3, we report on results obtained in [LO96,
LO97a] for the shift-invariant case. Future research should include extensions of the
theory to realistic domains and partition sequences obtained by adaptive refinement,
as well as a more quantitative investigation of work estimates (condition numbers
versus arithmetical complexity per iteration). In Section 4, we provide the condition
numbers for generic Hj— and L,—discretizations on a square in RR? when using the
HB-examples discussed in Section 3.
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2 HB-Systems for Linear Finite Elements

Throughout this paper, let
VoCViC...cV;=8SUT;) NL2(Q) C... (1)

be the sequence of linear finite element spaces with respect to uniformly and dyadically
refined simplicial partitions 7; of element size =~ 277 of a polyhedral domain Q.
Specifically, as a model case, we consider 2 = R? and the sequence of shift-invariant
(24 —1)-directional partitions 7;. The nodal basis (NB) functions for V; will be denoted
by ¢, p, P € V;, where V; is the vertex set of 7;. We set W; = V;\V;_; for the sets of
vertices newly generated when refining 7;_1, j > 1, Wy = Vy. Points in W; are the
edge midpoints of 7;_;. Finally, let n; = #V;, m; = #W;,.
The HB-systems we look for are of the form

0o J
U= J{p: PeW;}, ¥,=J{wjpr: PeW;}, (2)

j=0 j=0

where the locally supported HB-functions

bip =Y ajpediqe, PEW;, )
QEeV;

are given by their masks (a;j p.). We assume that the size of these masks (i.e., the
number of nonzero coefficients in (3)) is uniformly bounded with respect to j and P.
This implies that the rectangular matrices

I; = ((ajr@))qev; pew; (4)

of dimension n; x m; have O(m;) non-zero entries. We assume that the system of
level-j HB-functions {9; p : P € W;} forms an Ly-stable basis in its Ls-closed span
W;, and that V; admits an Ls-stable direct sum decomposition V; = V;_1+Wj. Here,
L»-stability means that

1> eptiplz, <2779 > Sp (5)

PeWw; PeWw;
for all reasonable coefficient choices resp.
lvjr +wjllE, < llvj-allf, +llwill, Vej-1 €Vir, Ywj €W (6)

We always assume that two-sided estimates expressed by < hold with positive
constants that are independent of parameters and functions, especially, of j. The
assumptions (5), (6) are usually easy to check (since they concern only two adjacent
levels), and imply that the finite sections ¥ ; of the HB-system ¥ are algebraic bases
in Vy, for all J > 0.

However, there is no guarantee for uniform Ls-stability of the ¥; or for stability
of the whole HB-system ¥ in the Ls-norm (or in other norms) under the above
assumptions. This desirable property is, up to scaling, part of the definition of a
Riesz basis.
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Definition 1 A system F = {fi} € H is a Riesz basis in the (real) Hilbert space H
if the mapping

() — Y afi,
l

which is well-defined for finite sequences (c;), can be extended to an isomorphism
between ly and H. In other words, F should be dense and minimal in H, and satisfy

I afilll =D e
1 1

The best possible constants in this two-sided inequality are called Riesz bounds of F in
H.

For properties of Riesz bases and frames (the latter generalize the stabilty concept to
nonunique decompositions and generating systems) in connection with multiresolution
analysis and multilevel methods, see [Dau92, Dah96, Osw97]. We quote a corollary for
the finite element HB-systems introduced above when applied to variational problems
in Sobolev spaces H*(f2). Consider the symmetric H?®(Q2)-elliptic variational problem
of determining u € H*(2) such that

a(u,v) = (f,v)g-—sxz- Yv€H(Q). (7
We can restrict (7) to Vy: Find uy € V; such that
a(ug,vy) = {f,v5) s s is Yvy€Vy. (8)

Naturally, for C° finite elements, s < 3/2 has to be assumed. For finite-dimensional
V7, (8) leads to different linear systems depending on the choice of a basis in V;. The
choice {¢sp : P € V;} leads to the standard NB discretization

Ajzy = fr, 9)

with a(¢sp,dsQ) resp. (f,dsp)H-sxms being the entries of the matrix resp. right-
hand side of (9). Analogously, taking ¥ ;, we get

AVy; =17 . (10)

The solution vectors z; = (zsp : P € Vy) and yy = (y;,p : P € W;,j < J) represent
the NB and HB coefficients of the solution u; of (8), i.e.,

J
uy = Z zgphsp = Z Z Y5, PP -

PeVy Jj=0 PeW;

If we denote the matrix for the change of basis between HB- and NB-representations
of functions from V; by SY (e.g., z; = SYy) then one easily sees that

AY = (SHTA;ST . (11)

Note that due to (3) a multiplication by S¥ can be implemented in < n; operations.
The constants depend on the mask size bound.
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As is well-known, the condition numbers of A exhibit exponential growth =< 22I57
for s # 0. A desirable feature of a HB-construction would be to get J-independent,
uniformly bounded condition numbers for the HB-stiffness matrix AY. Using the sparse
SY transformation, this would immediately lead to economic iterative solvers for (8).
The theoretical answer is

Theorem 1 Suppose dimV; < co and s < 3/2. Then, the following are equivalent:
(i) The normalized HB-system

U= U{”¢jaP||}_11(Q)¢j,P : Pe Wj}

7=0
is a Riesz basis in H*(2).
(i) The HB-discretization matrices AY in (10) associated with a symmetric H*(Q)-

elliptic variational problem (7) possess uniformly bounded condition numbers after
diagonal scaling.

The upper bound for k((DY)"'AY), where DY is the diagonal part of A, depends
on the Riesz bounds of ¥ and the ellipticity constants of the form a(-,-) (i.e., on the
constants in a(u,u) = ||ul|%. , u € H*(Q)).

We omit the proof which can be given by using the theory of stable subspace splittings
[Osw94], compare also [Osw97]. A reformulation of Theorem 1 (ii) is that

K(C7A7) =0(1), J—oo, CF=87/(D7)7"(5])". (12)

The product C'¥ A; coincides with the matrix representation of the additive Schwarz
operator associated with the splitting

J
Vi= Z Z Wj,P (Wj’p = Span ’(,Z)j’p)
j=0 PeW;

of Vy into the direct sum of one-dimensional subspaces W} p each of which is spanned
by a single HB-function of some level j < J. The scalar products are induced by a(-, -).
See [Osw94, Osw97, LO96, LO9Ta] for more details, also on the recursive definition
of the symmetric preconditioner C7 which, besides the diagonal scaling, involves the
matrices I ; (which actually describe the embedding W; C V), and analogous matrices
I; describing the embedding V;_; C V;, 7 =1,...,J.

3 Riesz Bases in H*(R)%: Examples

In general, the verification of the Riesz basis property of a given HB-system in Sobolev
spaces is not trivial. It has to do with tools like Jackson-Bernstein inequalities for
scales of approximating spaces (such as {V;}) but also with the study of associated
biorthogonal systems. We refer to [Dah96]. A considerable simplification is possible
under the assumption of shift-invariance (i.e., we assume uniform dyadic simplicial
partitions of Q = RY, V; = 27972, and that the HB-system is actually produced
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by translating and dilating 2¢ — 1 ¢-functions associated with the different edge
directions). This assumption is typical for wavelet analysis, and allowed us in [LO96]
to obtain a number of sharp results on the s-range for which the Riesz basis property
holds for particular systems. Lack of space prevents us from presenting details on the
theoretical tools used to produce these s-intervals. Instead we provide examples for the
linear finite element case which have been considered in more detail in [LO96], and are
often modeled after HB-constructions for bounded domains taken from the literature.
The results reported here can be seen as qualitative information on the interior part of
the associated HB-construction for domains. The Sobolev exponents of some practical
importance are s = 1 and s = 0 (second order elliptic problems (including Helmholtz
terms), Fredholm integral equations of second kind), as well as s = +1/2 (boundary
integral equations of first kind, interface problems in domain decomposition methods).

Details are given for d = 2. In this case, the grid is three-directional (as in Figure
1 a) below). The t-functions associated with the different edge directions (horizontal,
vertical, and diagonal) will be labeled by h, v, and d. Whenever possible, we give the
corresponding HB-construction for bounded polyhedral domains, and then specialize
to the shift-invariant case. Furthermore, we set 19 p = ¢ p for all P € V.

Example 1 Standard HB (Yserentant [Yse86]). This system is given by
¢j,P:¢j,P7P€Wj7 ]217
and is the simplest of all HB-systems.

Theorem 2 The normalized standard HB-system ¥ is a Riesz basis in H*(Q) if and
only if d/2 < s <3/2 (d<2).

The case s = 1, d = 2, is not included here, in coincidence with the known fact [Yse86]
that the standard HB-method of Yserentant is only suboptimal: x((D})"tAY) x J2
there.

Example 2 Eztended NB system. Though not fitting into the discussion of Riesz bases,
we would like to mention the following interpretation of the optimality (see [Osw94],
Section 4.2) of the BPX-preconditioner introduced by Bramble/Pasciak/Xu [BPX90].
We call ® = {¢;p : P € V;,j > 0} an extended NB-system or BPX-system, and
denote by ® the corresponding H*()-normalized system. Note that @ is not minimal.
The finite sections ®; of this system obtained by taking only NB functions with j < J
are generating systems (not bases) for V. Nevertheless, we have

Theorem 3 For arbitrary d > 1, the normalized BPX-system $isa frame in H*(Q)
iff 0 <s<3/2.

It should be mentioned that this simple enlargement of the standard HB-system
not only improves the theoretical properties of the latter for d > 2. The practical
performance (simplicity of implementation, operation count per preconditoning step,
condition number bounds for H!-problems) is surprisingly good.

Example 3 Ly-semiorthogonal prewavelet systems (Kotyczka/Oswald [Osw94, KO96],
Junkherr [Jun94], Stevenson [Ste97b]). We call a HB-system an Ls-semiorthogonal
prewavelet system if it is obtained by choosing the finite masks in (3) such that all
¢;,p are Ly-orthogonal to V;_1, j > 1, and (5) still holds. It turns out (see [Osw94],
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Figure 1 Masks for 9,: a) Lo-semiorthogonal prewavelet system, b) 3-point
HB-system, c) 2-point HB-system, and d) notation for Example 5.
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Section 4.4 for a similar argument) that the proof of Theorem 3 and the definition of
Sobolev spaces with negative s by duality immediately imply

Theorem 4 The normalized version ¥ of an Ly semiorthogonal prewavelet system is
a Riesz basis for H*(Q) if —3/2 < s < 3/2.

Thus, such systems cover most of the potential applications in an asymptotically
optimal sense. For the shift-invariant case, an example with smallest possible support
of the v; p has been constructed in [KO96] for d = 2. Figure 1 a) shows the mask for
thy. The other two masks are obtained by suitable rotation. For general Q C R?, a
mask construction has been proposed in [LO96], however, there is no rigorous proof
of (5) for this case. Generalizations to d > 3 along the lines of [KO96, Jun94] do
not seem to be of practical interest. One reason is the relatively large masks (e.g.,
an average of 29 non-zero coefficients is needed to satisfy the orthogonality constraint
for d = 3 (uniform refinement case)). Very recently, Stevenson [Ste97b] came up with
an alternative construction of Ls-semiorthogonal prewavelets which is suitable for
all d < 3. However, the s-values of interest are also covered by much simpler HB-
constructions (see below).

Finally let us mention that, from a theoretical (and practical) point of view, the
construction of HB-systems consisting of functions ; p which are orthogonal resp.
semiorthogonal with respect to the variational scalar product a(-, -) would be desirable.
However, for d > 2 and the H*(R%) scalar product (s > 0) such systems cannot have
uniformly bounded mask size, see [LO97Db].

Example 4 3-point HB-system (Stevenson [Ste96, Ste97a]). If Lo-semiorthogonality
is weakened, simplifications are possible. Let Py, P> denote the endpoints of the edge
in 7;_; which contains P € W; as midpoint. Set

Yip =Yjp + a1;p + a2¥j p,
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and choose a1, as such that

> e p(@um1(Q) =0 Vujy € Vi

QeV;

Here, the choice pj,¢ = |supp ¢;,0|/3 guarantees that the corresponding quadrature
formula EQ ti,0u(Q) is exact w. r. t. V;. Thus, the construction can be interpreted
as replacing Ls-orthogonality by discrete Lo-orthogonality.

This HB-system has been studied, both theoretically and numerically, by Stevenson
[Ste96, Ste97a] for d = 2, 3. For the shift-invariant case (the masks for this case are
edge- and d-independent, see Figure 1 b)), we showed in [LO96]

Theorem 5 The normalized 3-point HB-system of Stevenson is a Riesz basis in
H*(RY), d < 3, iff —0.992036 < s < 3/2.

For partial results and numerical evidence in the case of general Q, see [Ste96, Ste97a].
It turns out that in the shift-invariant case, one can construct a whole family of
analogous, edge-oriented, HB-systems (see [LO96]Section 4.1, [LO97a]Section 3.2).
The simplest one leads to a 2-point HB-system, see Figure 1 ¢) for the mask of v,
with the corresponding s-interval still covering the Lo-case: —0.044117 < s < 3/2. It
is not quite clear at the moment what the correct 2-point HB-definition is for general
Q.

Example 5 Coarse-grid stabilized HB-systems (Carnicer/Dahmen/Pena [CDP96],
Vassilevski/Wang [VW97a, VW97b]). The common idea is to define

Yip=Idj —Qj—1)pjp, PeW;, j>1,

where Qj—1 : V; — Vj_1, and Id; denotes the identity on V. For @Q;_i,
quasi-interpolant operators are suggested in [CDP96], Section 4.2, while [VW97b]
prefers the use of approximations to the exact La-orthogonal projection obtained by
approximately inverting the L,-Gram matrix of the nodal basis in V;_;. The most
economical proposals from these papers lead to

4
$ip=d;p— Y aipji1p, PEW, (13)

i=1

where P; denote the vertices of the two triangles in 7;_; sharing the edge ep (with
obvious modifications for P near the boundary). Compare Figure 1 d). As a rule all
a; are non-zero, thus, these proposals are essentially 5-point HB-systems.

For d = 2, the shift-invariant case was analyzed in [LO96], where we concentrated
on the specific, one-parameter family of masks given by

ag=a=a, az3=a3=1/8—a (aeR). (14)

This class is remarkable in that the 1)-functions satisfy moment conditions of order
2, a property, which is desirable if stiffness matrix compression is an issue (e.g., for
integral equation applications). The following table shows the s-range for which the
scaled coarse-grid stabilized HB-system ¥ specified by (13), (14), is a Riesz basis in
H*(R?) for some a (the reader may view this as the last theorem of this note). In
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Table 1 Coarse-grid stabilized HB-systems: Results

a-value s-range comments
5/48 0.248094 < s < 3/2 m = =1 in [VW9Tb]
1/8 0.022818 < s < 3/2  complexity as 3-point HB
1/6  —0.357680 < s < 3/2 [CDP96]
3/16 —0.440765 < s < 3/2 maximal s-range,[CS93]
1/4 0.396793 < s < 3/2

[LO97a]Section 3.2, a more detailed table is given. E.g., we have found that for these
systems the Riesz basis property holds in Ly(IR?%) if 0.1271146 < a < 0.220647 resp.
in H'(R?) if 0.028759 < a < 0.3014364. This shows a certain robustness of such
constructions (provided that the moment conditions are preserved).

The intervals in Table 1 suggest that the counterparts for general {2 might well
work, at least, for second order elliptic problems (s = 1). However, there are no
definite results in this direction so far. Compare [VW97a] for theoretical results on
the existence (with possibly quite large masks) of coarse-grid stabilized HB-Riesz bases
for H*(Q2), s > 0. A crude message from the above examples is that fine-grid corrected
HB of simple structure seem to have better properties than coarse-grid stabilized HB-
systems. However, the condition number computations presented below will slightly
correct this impression.

4 Condition Numbers

The impression that a “larger s-interval” for the Riesz basis property to hold means
“better practical performance” is misleading (though, by some kind of interpolation
argument, one might expect good preconditioning effects if the s corresponding to
a given variational problem is in the central part of the computed interval). On the
other hand, when elliptic operators including parts of different order are the main
concern, a large s-interval might be of benefit. In any case, numerical estimations of
Riesz bounds resp. condition numbers x((D¥)"1AY) and other performance testing
are recommended.

The following tables serve as an orientation for the more practically interested
reader. We only present calculations of condition numbers x((DY)~1AY) for d = 2
and s = 0,1 (boundary integral equations, where s = +1/2, are not addressed).
The domain is the unit square, computations are done on standard uniform dyadic
triangulations, and zero boundary conditions were imposed on the spaces V;. The
bilinear forms is the Ly-scalar product (s = 0) resp. is induced by the Laplace operator
(s = 1). The index j = 0 corresponds to stepsize hy = 1/2, thus resulting in a one-
dimensional Vj. The largest problems (J = 7) have dimension 65025. Everything else
is implemented exactly as described above. For the 2-point HB-system, the choice of
P; is to the right of and/or above P (compare Figure 1 ¢) for the notation). In the
remaining boundary strip, the HB functions of Example 1 have been taken.
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Table 2 Hj-case: Condition numbers x((DY)"*AY)

J stHB BPX 3ptHB 2ptHB a=5/48 a=1/8 a=1/6 a=3/16
1 4.56 2.87 4.96 6.60 3.45 3.37 3.39 3.45
2 10.59 5.31 8.81 19.83 6.51 5.51 5.28 5.31
3 19.53 7.06 11.60 38.45 10.48 8.26 6.66 6.57
4 3185 8.27 13.56 53.03 14.20 10.68 8.10 7.81
5 47.14 9.22 15.22 63.36 17.41 12.76 9.17 8.72
6 65.38 9.99 16.44 71.39 20.33 14.52 10.05 9.51
7 86.15 10.64 17.25 77.54 22.76 15.87 10.81 10.17
Table 3 Ls-case: Condition numbers x((DY) *AY)
J stHB BPX 3ptHB 2ptHB a=5/48 a=1/8 a=1/6 a=3/16
1 22 3.94 2.86 7.2 6.3 5.63 4.73 4.50
2 111 8.24 4.02 22.1 16.2 11.74 7.16 7.34
3 543  12.60 4.70 43.7 33.9 20.56 10.08 9.44
4 2565 16.75 5.10 72.5 60.3 30.73 12.26 11.37
5 11852  20.75 5.41 138.2 100.5 42.86 14.30 13.00
6 - 24.68 5.66 188.2 160.1 57.07 16.13 14.39

We finish with two observations. First, for all examples included in Tables 2 and
3 (standard HB, BPX, 3-point HB, 2-point HB, and coarse-grid stabilized HB for
a = 5/48 (from [VW9Tb]), a = 1/8, a = 1/6 (from [CDP96]), and a = 3/16 (see
[CS93])), the arithmetical costs per pcg-iteration would be almost the same if one
neglects the overhead for computing masks. The pcg-step for the 5-point examples
(Example 5) is asymptotically more expensive than the pcg-step only by a factor
1.2 for the cheapest method (standard HB). Similar considerations can be found in
[Ste97b].

Secondly, when experimenting we found (for the first time) some HB-proposals
which give for the H}-case the same condition number behavior as in the BPX-method.
This was interesting to us because so far all numerical evidence (also with other,
wavelet based additive preconditioners) showed the superiority of the simple, frame-
based BPX-algorithm by a factor of about 2, at least. Compare also the experiments
in [VW97b] with different variants of coarse-grid stabilized HB-methods for d = 2 and
d = 3. On the other hand, some cheap HB-proposals such as the 2-point HB-system
which was mentioned in connection with Example 4, did not fulfill our expectations.

Further theoretical work and numerical testing is planned, in particular, for more
general partitions, d = 3, and including the multiplicative (i.e., multigrid V-cycle)
versions of the considered HB-methods. Another aspect which we wish to take up in the
future is the design of HB-systems with small mask size and sufficiently many moment
conditions for applications to integral equations where one wishes to cover the Sobolev
spaces with s = 0 and s = £1/2. In the shift-invariant case, some simple proposals



RIESZ BASES IN SOBOLEV SPACES 187

based on P0-elements have been discussed in [LO97a]. The methods of [LO96, LO97a|
also allow similar investigations for C'-elements.
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