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Some Recent Results on Domain
Decomposition Methods for
Eigenvalue Problems

S. H. Lui

1 Introduction

Domain decomposition methods for partial differential equations have traditionally
been classified into two types: the Schwarz type where subdomains overlap and the
Schur complement type where subdomains do not overlap. In this paper, we focus
mainly on Schwarz algorithms for the eigenvalue problem for self-adjoint operators.
Specifically, we study the model problem

—Au = Auon

with homogeneous Dirichlet boundary conditions. Here, Q2 is a bounded open domain
with a smooth boundary. We shall discuss two different Schwarz algorithms with a
brief mention of Schur algorithms. Some open problems will also be raised.

An incomplete list of papers on domain decomposition methods for the eigenvalue
problems is [AGG88], [AG88], [Ben87], [Bou90], [Bou92], [Bd92], [Dri95] [DK92],
[D’y96], [FG94], [HMV95], [Kny87], [KS89], [KS94], [Kro63], [Kuz86a], [Kuz86b],
[LHL94], [Luo92], [Mal92], [Seh89], [Sim74] and [Sko91]. See also the references in
these papers.

2 Schwarz Algorithms

Suppose the domain  is a union of m > 1 overlapping subdomains ; U---UQ,,. We
discuss two Schwarz alternating methods.

Maliassov’s Algorithm

This algorithm works with the variational formulation of the eigenvalue problem.
Let (u,v) denote the usual L2(2) inner product and ||u||> = (u,u). Denote the
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energy inner product in the Sobolev space H§(2) by [u,v] = [, Vu - Vv and let
lull2 = (fQ(Au)2)1/2 for u € H2(Q) N H}(Q). Let the eigenvalues of —A be
A1 < XA < -+ and let ¢; be some eigenfunction corresponding to ;. For any
u € H}(Q) \ 0, define the Rayleigh Quotient

[u, u]

(u,u)”

R(u) =

Maliassov [Mal92] recently gave the following Schwarz Alternating Method to find
the smallest eigenvalue and its associated eigenfunction and ‘proved’ its convergence.

Let u(® € H}(Q)\ 0 with \; < R(u(®) < X5. For n > 0 and 1 < i < m, define the
sequence

At = nf{R(u™F) 4 v;); v; € HE(Q) \ 0 with v; = 0 on Q\ ;)
= R(u(”"'%)).

(We identify the index n + 2 with n and n+ 2 with n +1.) Then lim, 0 A =\
and a subsequence of (™ converges to ¢;.

However, there is a small flaw in the algorithm. The fault lies in his definition of
u(™tm) which may not exist as the following example shows. Consider

—u" = Xu on (0, 2F)

with homogeneous Dirichlet boundary conditions. The smallest eigenvalue is % with
sin 2% as a corresponding eigenfunction. Let ©; be the interval (0,7) and Qs be the
interval (%, 3%). Take
4© — 2sinz, if0<z<m
" | sin2z, ifwgmg%ﬂ.

Then A = 2. Let D; = {v; € H}(0,3F) with v; = 0 on [r, 22]}. Then,

lnf{R(u(O) + /Ul); V1 € Dl} = | lllm R(U(O) + O,E Sin :L')
a|—o0

= 1,

where E'sinz is the function which is sinz on [0, 7] and is 0 on [, 37”] This infimum
cannot be attained by any v; € D;.

Despite this defect, Maliassov’s main ideas are still valid. We now give a correct
algorithm with a proof of convergence. Note that our result holds for an arbitrary
eigenvalue, not just the smallest one. We restrict to the two-subdomain case.

Theorem 1 Fiz p € N. Define H = {f € H}(Q) n H%(Q); (f,¢:) = 0, i =
1,---,p—1} and D; = {f € H; f = 00n Q\ U}, i = 1,2. Let the initial guess
be u® € H \ 0 with A0 = R(u(o)) smaller than the first eigenvalue strictly larger
than Ap. For n > 0 and i = 1,2, define the sequence

Antz) = inf{R(cu("’L%) +v;);c € R,v; € Dy, |eu™5) + ;o = 1}
R(u(m+3)).
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The above infimum is always attained. In case it is attained at more than one pair
(¢c,v;), any one can be taken to define w"2) | Then, limp_yoo (™ = Ap and a
subsequence of u{™ converges to ¢p in the energy norm.

Proof: We first show that the sequence is well-defined. Fix 7 and n. Let ¢; € R
and w; € D; such that z; = ¢;u(™ =) + w; with ||z;]l2 = 1 and R(z;) — A"+ as
J — o0. Since z; is a bounded sequence in (H, || - ||2), there exists a subsequence, which
we label by kj, such that z, — u("+2) for some u(**3) € H \ 0 weakly in the norm
| - ll2 and strongly in the energy norm. Then R(z;) — R(u("2)) as j — oo and the
uniqueness of limit implies A("+2) = R(u(+32)).

Since A("*+3) is a non-increasing sequence which is bounded below by Ap, it must

converge to some number, say, A. Since u(® is a bounded sequence in (H, || -||2), there
exists some subsequence which we label by n; such that

ulni) 5y
in the energy norm for some v € H \ 0. Thus

lim R (u(™)) = R(u) = A.
j—oo
We now show that (A, u) is an eigenpair of —A. Observe that for any t € R, n > 1
andv; € D;, i =1,2,
R (u(nj) +t,,1) > A +3)

and
R (u(”j) + tvz) > R(u("f_H'%)) = Ani=1+3)

Taking the limit as § — oo in the above inequalities, we obtain R(u+tv;) > A, i = 1,2
which is equivalent to

t2([vi, vi] = Mloill?) + 2t ([w, vi] = A, v:)) + [u,u] = Aflu]]?

>
t([vi, vi] = Mlvill?) + 2t ([w, 03] — Au, v:)) >

This is possible only if [u,v;] = A(u,v;). Since the subdomains are overlapping, H =
D; + D,. Now any v € H}(Q) N H?(Q) can be represented as v = vy + vy + 377, a;d;
with v; € D; and a; € R. Noting that (u,¢) = 0, | = 1,--- ,p — 1, we obtain
[u,v] = A(u,v). Since H}(Q) N H2(Q) is dense in HY(Q), [u,v] = A(u,v) for all
v € H}(Q). Thus u is an eigenfunction with corresponding eigenvalue A. By the
variational principle for eigenvalues and the choice of initial guess, we must have
A= Ap.

The general multiple-subdomain case is considered in [Lui96c]. jFrom the point
of view of parallel computation, the above algorithm is not satisfactory because the
computation on subdomain €2; must precede that on Q;,,. We now propose a version in
which the computation in each subdomain can be carried out simultaneously. However,
the calculation of the eigenvalue A, must precede that of A,;1. We shall consider the
general m-subdomain case. The notation will be as in the previous theorem with the
exception that we no longer identify an element indexed by n + 1 with one indexed by
n+ .
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Theorem 2 Fiz p € IN. Let the initial guess be u(® ¢ H \ 0 with () = R(u(®)
smaller than the first eigenvalue strictly larger than A,. For n > 0 and 1 < i < m,
define the sequences

Aot = inf{R(cu™ +v;); ¢ € R,v; € Dy, |leu™ + vl =1}
= R(u("tm))

and

A+ = R(u(™t1)) = min {R (Z ciu(""'%)) ; Zcf = 1} .
=0

=0

The above infimum is always attained and in case the infimum is attained at more
than one pair (c,v;), then define u("*=) from any one of them. Similarly for the
mianimization problem. Then, lim,_,oo A" = Ap and a subsequence of u{™ converges
to ¢p in the energy norm.

The proof is very similar to that of the previous theorem and can be found in
[Lui96¢].

Note that in the statement of these theorems, only a subsequence converges. If the
eigenvalue that we seek is a multiple eigenvalue, it is quite possible that different
subsequences converge to different eigenfunctions corresponding to the same multiple
eigenvalue. We are currently investigating whether the entire sequence converges in
case the eigenvalue is simple.

If the initial Rayleigh Quotient is sufficiently large, then the Maliassov sequence for a
3-subdomain example converges to a different eigenvalue ([Lui96c]). These occurrences
are rare and from our limited experience, the algorithms do converge globally in
practice. We conjecture that global convergence holds for the 2-subdomain case.
This article does not touch upon implementation issues. For an efficient hierarchical
implementation and further theoretical results of Maliassov’s algorithm, see the article
by Chan and Sharapov elsewhere in this volume.

Another Schwarz Algorithm

We now discuss briefly another Schwarz algorithm which transmits information
between the subdomains by boundary functions. Consider 2 to be an union of two
overlapping subdomain ©Q; and Q5. Let I'; be 923 N5 and T's be 925 N Q5. The idea
is to solve an eigenvalue problem in each subdomain with Robin boundary conditions.
In this section, we are only concerned with the smallest eigenvalue and its associated
eigenfunction which is nonzero in Q.

For any positive integer i, define ug’) as the solution of the eigenvalue problem
—Augi) = )\guéi) on (2» with boundary conditions ugi) =0on 802 \ Ty and géi)ugi) +
(9) )

8;22 = 0onTI's, where géz) is an estimate of the true boundary function on T’y
approximated by ugl):

o, i Ouf’
gé)ug)—i- Bnlz =0 on I's.
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Here, n; denotes the unit outward normal on §2;. Define ugi’Ll) as the solution of

the eigenvalue problem on ; with boundary conditions ugiﬂ) = 0on 9090 \I'1 and

i . (i41)
giz)ugﬂ_l) + 61:9171 =0on T, where

o au(i)
gPul? + 8—1121 =0onT;.

Note that gy) is an estimate of the true boundary function on I'; approximated by

ugz). The above sequences are defined once we specify the initial iterate ugl). Note that
we introduced the sequence of boundary functions g(¥ for explanation purpose only.
The actual boundary conditions can be simplified to

i1 .
u(i) augl ) B aug”

(i+1) — r
2 3”1 8”1 t 0 on !

and

SO0 o ou
! 6"12 2 6712
We have not been able to show convergence of the above sequences. The method does

converge in the few numerical experiments that we have tried. Local convergence and
the exact rate of convergence for the one-dimensional problem is shown in [Lui96a]:

=0on Is.

Theorem 3 The Schwarz alternating method for the one—dimensional eigenvalue
problem converges if the initial guess is sufficiently close to the true solution.

For 0 < a < b < m, let the subdomains covering [0, 7] be (0,b) and (a, ). The
sequences of eigenvalue problems reduce to

—ugi)” = /\gi)ugi) on (0,b), ugi)(o) =0, ugi)ugi_l)’ - ugi_l)ugi)l|m:b =0
and

_ugi)” = )\gi)ugi) on (a,), ugi)u:(li)l - Ugi)“:(zi)l =0, “gi) (m) =0

r=a

fori =1,2,.... The sequences are defined after prescribing the ‘initial condition’ ugo).

The exact solutions are:
ugi) (z) = sin(ayz), ugi) (z) = sin(Bi(mr — z)), i=1,2,...

where the constants a; and (3; are determined by the interior boundary conditions.
After some algebra, we find that these constants are the smallest positive roots of the
equations

,Bz'—l cot (,Bi_l(ﬂ' - b)) + oy cot(aib) =0 (21)
and

a;cot{asa) + Bicot (Bi(m—a))=0,i=1,2,.... (2.2)
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Once the value of By has been specified, these sequences are well-defined. The proof
of convergence reduces to showing that both the sequences a; and (3; converge to one.
The rate of convergence can be measured by

r~—7ai_1 and s~—i7_1
Tl — 1 ’ i1 — 1]
It can be shown that
w—b
. . COt(ﬂ- - b) " sin?(7—b) cota — sir?Z a
lim r; = lim s; = — =T
1—00 1—0o0 COt(’/T — 0,) — m cotb — sinZb

For 0 < a < b < m, it can be shown that 0 < r < 1 and thus the sequences «a; and §;
converge to 1 at rate r asymptotically.

3 Schur Algorithms

The first domain decomposition algorithm for eigenvalue problems was derived by
Kron [Kro63] and it is a Schur-type algorithm. Most of the papers listed earlier
also belong to this category. For simplicity, let the domain consist of two non—
overlapping subdomains €2,y with interface I' separating them. Assume that the
discrete eigenvalue problem can be written in the form

All 0 AlS u Ul
0 A22 A23 U2 = U2 . (33)
Afs Ag;; A33 Uus us

Here, A is some eigenvalue, u; is the vector of unknowns in €2;,7 = 1,2 and w3 is the
vector of unknowns along the interface. The matrices A;; are assumed to be symmetric.

Formally, we may solve for u; and wug in terms of ug. Substituting the results into
the third equation in (3.3), we obtain

S()\)’U,s = [(Ags — )\) — A{3(A11 — )\)_lA13 — Ag; (Azz — )\)_IA23]U3 =0.

The matrix S is of dimension equal to the number of unknowns on the interface I' and
is thus much smaller than the size of the original matrix. Under some mild conditions
([Lui96b)), the eigenvalues of the original global matrix are precisely the values of A
at which S()) has a zero eigenvalue. One way of accomplishing this is to find a root of
the nonlinear equation f(A) = det S(A\) = 0. It can be shown that f has poles at the
union of the set of eigenvalues of A;; and of Ass. If an initial guess is not very close
to the desired eigenvalue, it is quite possible that an iterate of Newton’s or secant
method may jump to a different interval bounded by different poles of f.

For instance, we consider the case of finding the first (smallest) eigenvalue A; of
the global matrix with an upper bound +y; which is a simple pole of f. For simplicity,
assume that A is the only eigenvalue less than ;. Because 7; is a pole of f, a natural
method is to find the zero of the de-singularized function g(A) = (A — 71) f()\) using
Newton’s, secant or Muller’s method safeguarded by bisection. See also [AGG88].
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Once a zero eigenvalue of S()) has been found, one inverse iteration, for instance,
may be used to determine its corresponding eigenvector uz. The other components
u; and wy of an eigenvector of the global matrix can subsequently be found from
subdomain solves. See [Lui96b] for some theoretical results concerning the relationships
among poles and zeroes of the eigenvalues of S and the eigenvalues of the original
matrix. In [LG96], the smallest eigenvalue was computed using inverse iteration and
employing preconditioned Krylov space methods. An open problem here is how to
compute interior eigenvalues without the explicit formation of the matrix S. The
explicit formation of S permits us to use direct methods to compute its inertia which
in turn permits us to compute any specified eigenvalue ([Seh89]). Currently, there is
no known fast method to determine the inertia of a matrix using only the knowledge
of the action of the matrix on a vector. Without knowing the inertia, it does not seem
possible to have an algorithm which guarantees that a prescribed eigenvalue is found.
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