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Two-level Schwarz Methods for
Indefinite Integral Equations

M. Maischak, Ernst P. Stephan and Thanh Tran

1 Introduction

In this paper we consider additive Schwarz preconditioners for indefinite linear systems
arising from the h-version of the boundary element method (BEM) for solving
Helmholtz problems. Here we extend the approach introduced by Cai and Widlund
[CW92] for finite element discretizations to boundary element discretizations. We
report on two-level methods applied to the h-version of the Galerkin method for
weakly singular and hypersingular integral equations of the first kind on the interval
I' = (~1,1). The Neumann problem for the Helmholtz equation in IR*\T' leads to the
hypersingular integral equation

i 0 0
Dun(e) = —55 [ o HS iz —yDo) dsy = 0u(@), z €T (L)
Correspondingly the Dirichlet problem leads to the weakly singular integral equation
Vb(e) = [ ke =y)pw)ds, = 92(@), z €T, (12)

There H} is the Hankel function of the first kind and of order zero, Imk > 0, k # 0
and % denotes the normal derivative on I'.

It was shown in [SW90, SW84] that for g; € H~'/2(T') equation (1.1) has a unique
solution in HY/2(T") := H/*(T') whereas for given g, € H'/2(T) equation (1.2) has
a unique solution in H~/2(T) (the dual of H/2(T')). (For definitions of the Sobolev
spaces see [LM72]). Note that Dy, is a pseudodifferential operator B, of order a = 1
and V}, of order & = —1 mapping H(T') into H~*/2(T') both satisfying B, = Aq + Ka
with a positive definite operator A, and a compact operator K,.

With f = g1 in (1.1) and f = g2 in (1.2) the boundary element Galerkin schemes

for the above integral equations (o =1 or a = —1) read as follows:
For a given subspace X§ of H%/2 find ux € X such that
(Baun, ®)r2ry = (f, )2y for all ¢ € X§. (1.3)
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These Galerkin schemes lead to very large indefinite systems of linear equations with
dense and ill-conditioned system matrices and therefore iterative methods require
good preconditioners [ST97a, ST97b, MS97, MST97]. We report on additive Schwarz
methods applied to (1.3) which are efficient preconditioners for the GMRES method.
For efficient Schwarz preconditioners for positive definite boundary integral equations
see [T'S97, HS96, Ste96].

2 Preconditioners for the Hypersingular Operator

As subspace X}, we use the subspace S}(T) of continuous, piecewise linear functions
on a quasi-uniform mesh which vanish at the endpoints of I'. Let ¢;-‘, j=1...,N—-1
denote the hat function which takes value 1 at the meshpoint z; and 0 at other mesh
points. These functions form a basis for S}(I'). We then decompose S = Si(I') as

S=8S+S51+...+Snv_1 (2.4)

where So = Si(T) is defined as S (I') with mesh size H = 2h and S; = span {¢/} for
j=1,...,N—1.
Let operators @Q; be defined via

<B1Qj11),’l)j) = <B1U),’Uj) Yw € S, v; € Sj,j =0,1,...,N—-1. (25)

Then the additive Schwarz operator is given by @ = Qo+ ...+ Qn—1 and the additive
Schwarz method consists in solving

QUN = bN (26)
with RHS by = Y. b; where
(bj,’Uj):<f,’Uj) VUjESj, 7j=0,1,... , N—-1. (27)

Then as shown in [ST97a] this algorithm when used with the GMRES method gives
an efficient solver for the Galerkin scheme (1.3), namely the rates of convergence of
the Schwarz operator is bounded from above independently of the number of degrees
of freedom if the mesh size of the coarse space Sy is sufficiently small. As proved in
[CW92] the rate of convergence of the GMRES method when used to solve (2.6) is

2

. C,
given as 1 — =% where
1

2 s <A1’U, Q’U) 2 _ <A1Q’U, Q’U)
O oy M OTIE o) 9
In view of this result we show in [ST97a] that Cy and C; are independent of the
number of degrees of freedom.

To get rid of a large coarse subspace Sy we consider in [MS97] a non-overlapping
method where one has a coarse mesh which is almost independent of the fine mesh.

The coarse mesh: We divide I into disjoint subdomains I';, 2 = 1,... ,J, so that
I = U/, T;. The length of I; is denoted by H;.
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The fine mesh: We further divide each I'; into disjoint subintervals I';;, j =
1,...,N;, so that T; = U;y:"lf‘ij. The maximum length of the subintervals in I'; is
denoted by h;. For the non-overlapping method, we require that the fine mesh is
locally quasi-uniform, i.e., it is quasi-uniform in each subdomain.

The additive Schwarz method is designed via an appropriate decomposition of Sy, (T")

J N;
Su(T) = Su(T) & D P ST (Ts)) (2.9)

i=1 j=1
where
Su(l) :={veC() : vlr, e PL(Iy) fori=1,...,J; v(£l) =0}
S?(I‘ij) = {v € P1([s;) : v =0 at the endpoints of ';;}, i =1,...,J, j=1,... ,N;.

Then the corresponding algorithm consists in solving (2.6) with the Schwarz operator

Q=Qo+Qu+...+Qsn;,.
Here fori = 1,...,J;j =1,...,N; and for any w € S,(T), Qijw € S?(I';;) is the
solution of the boundary element equation

(B1Qijw,vij) = (Biw,vij) Vo € SY(Ty5) (2.10)
and Qow € Sy(T") solves
(B1Qow,vo) = (Biw,vo) Vwo € Su(T). (2.11)
In [MS97] we show for Hy sufficiently small and H; < Hy that Co, Cy in (2.8) satisty
H.
—1 115 —
(ON IS%XJ (1 + log » ) and C; = const. (2.12)

3 Preconditioners for the Weakly Singular Operator

As subspace XK,I we use the space Sp(I') of piecewise constant functions on a
quasiuniform mesh of I'. Let d);?, j=1,...,N—1 denote the hat function in Section 2

and let the Haar basis function x;-‘ be defined as the derivative of d);?. These functions
X;-L together with the constant function 1 form a basis for S = SY(I'). We then
decompose S as

5’:5’0-1-5’1+,,.+S’N_1 (313)
where Sy is defined as Sy (") with mesh size H = 2h and where S; = span{x"},
for j = 1,...,N — 1. Then an associate additive Schwarz method can be defined

for the weakly singular integral equation via operators (); which are given by (2.5)
with B_; instead B; and S, ,S_'j substituting S, S; respectively. Analogously to (2.9) a
non-overlapping subspace decomposition of S may be introduced and corresponding
operators Q, Qo, Q;; when using B_; instead of B; in (2.11).

Then again for (3.13) the additive Schwarz method yields a GMRES method with
convergence rates strictly less than 1 independently of the degrees of freedom [ST97b]
whereas in the non-overlapping case again the constants Cp,C; of (2.8) show the
behavior (2.12).
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4 Numerical Results

The numerical experiments for the hypersingular integral equation (1.1) with g;(z) = 1
and wavenumber k£ = 2.0 on a quasiuniform mesh were performed on a SUN-
Sparcstation 4/470 at the Institute for Applied Mathematics at University of
Hannover. Here we give the eigenvalues and condition numbers which are linked to
the rate of convergence by C; = Amax and Cyp = /Amin. Table 1 gives the absolute
values Amin, Amax and the condition number of the unpreconditioned Galerkin system
(1.3) and of the additive Schwarz preconditioner (2.6) with H = 2h.

In Table 2 the condition numbers for the additive Schwarz operator defined by (2.10)
and (2.11) are given for different quotients H/h.

Table 1 Hypersingular integral equation (1.1) with g;(z) = 1: quasiuniform
h-version, wavenumber k = 2.0

Stiffness matrix 2-level
N Amin Amax cond Amin Amax cond
31 8.8633d-02 | 1.1308 | 12.7586 || 1.0045 | 2.2324 | 2.2224
63 4.5142d-02 | 1.1333 | 25.1050 || 0.9923 | 2.2312 | 2.2484
127 || 2.2750d-02 | 1.1339 | 49.8413 || 0.9880 | 2.2304 | 2.2573
255 || 1.1399d-02 | 1.1340 | 99.4872 || 0.9875 | 2.2302 | 2.2582
511 || 5.7018d-03 | 1.1341 | 198.9038 || 0.9884 | 2.2300 | 2.2560
1023 || 2.8509d-03 | 1.1341 | 397.8011 || 0.9896 | 2.2299 | 2.2532

Table 2 Condition numbers for additive Schwarz operator of the hypersingular
integral equation (1.1) with g1(z) = 1: quasiuniform h-version, wavenumber k = 2.0

N\H/m| 2| 4| 8| 16| 32| 64| 128

64 || 3.7124 | 3.9360 | 5.0803 | 5.9118 | 6.3642
128 || 3.5003 | 4.0075 | 5.1320 | 6.1031 | 6.7030 | 7.0320
256 || 3.3507 | 4.0258 | 5.2133 | 6.4471 | 7.5519 | 8.2994 | 8.3348
512 || 3.2436 | 4.0305 | 5.2341 | 6.5358 | 7.9045 | 9.1635 | 10.0478

5 Conclusion

The numerical examples clearly underline the theoretical results, i.e. the condition
numbers of both methods are independent of the number of degrees of freedom but
the condition numbers for the additive Schwarz operator defined by (2.10) and (2.11)
depend logarithmically on H/h. Whereas the first method is only of theoretical interest
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due to the large coarse grid space, the second method can be implemented in an
efficient and parallel way if we choose the size of the subspaces appropriately.
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