20

Convergence Rate of Schwarz-type
Methods for an Arbitrary Number
of Subdomains

Frederic Nataf and Francis Nier

1 Introduction

The original Schwarz method is based on the use of Dirichlet boundary conditions as
interface conditions (see [Lio89] and references therein). Convergence can be reached
only with overlapping subdomains. As a result, the convergence is very slow when
the overlap is small. In order to speed up the convergence and to be able to handle
nonoverlapping subdomains, it has been proposed in [Lio89] to replace the Dirichlet
boundary conditions by Fourier or more complex boundary conditions. The question
is then to choose the best interface conditions both in terms of convergence rate and of
easiness of use and implementation. In order to make a proper choice, it is important
to quantify the effect of the boundary conditions on the convergence. This is usually
done by a Fourier analysis for a two-domain decomposition (see [Des90], [CNR91],
[CQI93], [TB94], [NR95], and [Jap96]).

A natural question is then what happens when there are more than two subdomains.
In [NN97], we prove the convergence of three Schwarz-type algorithms. We establish
a link between the convergence rate of a two-subdomain decomposition and the
convergence for a decomposition into an arbitrary number of subdomains.

2 Two-domain Decomposition Convergence Rate
In order to find good interface conditions, a common practice is to consider the problem

set on R? decomposed into two half-planes. If we have to solve £(u) = f on R2, the
Schwarz algorithm is

Lt = fin R2, Bia(uf™) = Bia(u}) at z =0
L) = fin RY, By (uh) = By (u}) at =0
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The operators B2 and Bs; are interface conditions to be chosen. As an example, Bi2 21
can be sought in the form of a partial differential operator of order two in the tangential
direction Byy = 0, + o + 30, + 78§y. The convergence rate will depend on the value
of the coefficients o, 8 and «y. Usually the study is made by freezing the coefficients
so that Fourier transform in the direction ¢ can be used. The dual variable is denoted
by k. It is then easy to compute explicitly a formula for the convergence rate p as a
function of the Fourier variable k. For instance, if absorbing boundary conditions of
order O wrt k are used for Bi2 21, p equals zero at k = 0 and tends to 1 as k tends to
infinity (see [Des90], [NR95]). One may also be tempted to optimize the convergence
rate with respect to some of the coefficients a, 8 or 7 (see [TB94], [Jap96]). This kind
of study yields valuable information. For more details on the importance of interface
conditions and also a numerical study, see the proceedings of C. Japhet [Jap96] in this
volume.

Now, a natural question is what happens when there is an arbitrary number N of
subdomains. The answer is not obvious since it amounts to estimating the norms of a
2N — 2 squared matrix raised to any power n.

3 The Main Result

In [NNO97], we prove the convergence of three Schwarz-type methods with or without
overlapping. We also establish a link between the two-domain convergence rate and
the convergence for an arbitrary number of subdomains.

The space R*! is decomposed into N vertical strips. A constant coefficient
advection-diffusion equation is solved: £(u) = f. The velocity in the direction z is
positive. The flow goes from the left to the right. Three methods are considered.
In the first method, the update is simultaneous in all the subdomains. This is
the additive Schwarz method (ASM). In the second algorithm, the update is made
sequentially by sweeping over the domains following the direction of the flow (FDS)
(see [HIKW92], [Joh92], [Nat96]). The last method is a variation of the previous
one. The approximations in the subdomains are updated by double sweeps over the
subdomains (DS).

The result is the following

Theorem 3.1 There exists a function p(k) taking its values in [0,1) independent of
N so that €7 (k) the k-th component of the error in the Fourier space for the method
1 1s estimated as follows:

167 (k)| < Ci(R)p(k)™/P for n > ms,
where [m] denotes the integer part of m. The values of p; and n; depend on the method:
pasm = 2N -2, prps = N-1, pps =1, nasy =2N+1, npps =2N -1, nps = 3.

Due to the ellipticity of the operator, we also prove that the function p is almost
equal to the two-domain decomposition convergence rate. A connection is thus
established between the study of convergence with two subdomains and the case with
N subdomains.
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The proof is unusual since it relies on techniques originating in formal language
theory. It is worth noticing that this result is sharper than the estimate of the spectral
radius of the iteration matrix. Indeed, the result would be something like: for any
positive e there exists some positive constant C. so that for n larger than some integer
Ne, the error is bounded by C. (p + €)™. While, here, the constant is known explicitly
and the estimate is valid from a rank which is an explicit function of N.

4 Sketch of the Proof

Reformulation of the Algorithm

The proof is in two steps. First the algorithms are reformulated so that the unknowns
are functions living on the boundaries of the subdomains. Then, we conclude with an
algebraic trick.

The first part is very classical (see [NRAS94], [NN97]). Let H denote a vector of
functions living on the boundaries of the subdomains. It may be seen that H satisfies
a linear equation:

(Id—T)(H) =G

The matrix-vector product 7 (H) consists in solving in parallel a boundary value
problem in each subdomain. The operator 7 is split into the sum of four operators
T = Tu + Trr + T + Tir- This enables us to give a compact form of the iteration
matrices of the different algorithms (simply 7 for the additive Schwarz method, Trps
for the flow directed algorithm and by Tps for the double sweeps algorithm):

Trps = (Id — Ti — Tor) N (Tot + Tor)
Tps = (Id — Trr — Trt) " Id — T — Tor) ™ (T + Tiw) (Trt + Tor)

The basis for the algebraic trick is the following set of relations:

T t=TN =0 T =TwTu=0; Ti=T2=0 (1)
777'77[:7;17;7':0; 77l7;‘l=7;‘7‘7;7'=o

It is worth noticing that these relations come from the structure of the matrices and
do not depend on the value of the coefficients.
By using formal language theory, we prove the following.

Theorem 4.1 If

N-2 ‘ N-2 )
p = Tl 1721 QN7 O 1Tl < 1,
i=0 =0

Then,

”Tn” < C(l _p)—l p[n/(zN—z)—s/z] fOT n > 2N
1 T#psll < C(1 —p)~t p/N=D=21 for n > 2N —2
IT5sll < C(A+p)p™~" for n>2
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where the constant C is given explicitly
C =1+ p/IITerlD) 0+ p/ITeall + £/ I Tl Ter 1)

Another way to look at this result is to remark that when 7. or 7, is zero, the
operators 7, Trps and Tpgs are nilpotent at different orders. When 7. and 7,; are not
zero, this result quantifies the perturbation to nilpotency they bring. Les us emphasize
the fact that the proof is purely combinatorial. We never use the explicit form of the
operators 7.

5 Complete Proof of a Simplified Result

In this section, we give a flavor of the proof of the algebraic result. We prove the
simplest statement related to our techniques by way of example. (We remark that this
particular statement could be obtained in other ways.)

Theorem 5.1 Let T and A be two operators so that T is nilpotent of order N — 1
and p = ||A]| Zﬁigz IT?| < 1. Then, we have the following estimate:

(T + A)f|| < Cpli/V=1)

where C is given explicitly.

A simple estimate

A simple way (in our context) to look at this problem is to use the standard estimate:
1T+ A <T@+ DI < AT+ Al (2)

But, in our case, this estimate is very poor since it does not use the nilpotency of T'.
Indeed, in the expansion of (T" + A)?,

(T+ A =T+ AT ' + TAT*" 2 + T?AT" 3 + . ..

many terms are zero. More precisely, all the terms containing 7™V ~! are zero. There
are many terms of this kind. The problem is how to track them so that to improve (2).
It is at this point that formal language theory is relevant. It will enable us to track
rigorously the terms which are known to be zero.

Elements of Formal Language Theory

Let us introduce some definitions and concepts dealing with formal language theory.
Let ¢ and a be two letters. By combining these letters, it is possible to form words
e.g. at, att (also denoted at?), and so on. These words can also be combined to form
words by concatenation; e.g. at.t> = at*. We also say that at? is the product of at by
t3. It is very convenient to introduce a neutral word 1 for this operation: 1.w = w for
any word w. For a word m we define its length |m/| as the number of letters it is made
of, e.g. |at®a| =5 .
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Another important concept is the lexis X* generated by a set of words X: it is the
set of words obtained by concatenations of the words of X plus the neutral word 1,
e.g.

X ={t?,at}, X*=1{1,at, t*, t?at, at®, atat, t*,...}
The generating set X is said to be free if for any word in X* there is only way to write
it as a product of words of X. In the previous example, X is free. This is not always
the case as is shown in the next example:

X; = {t*, 1%}, ' € X} and t'? = 1545 = 4.4 4% .

When a basis X is free, we can define without ambiguity the length of a word m in
X* relatively to X. It is the number of words of X m is made of and it is denoted by
|m|x, e.g. with X defined as above, |at3|x = 2 (while |at3| = 4).

Our problem deals with norms of operators and not with words. We need a bridge
between normed operators and words. It is the operator mop from the lexis {¢,a}* to
the set of matrices. To a word, we associate the corresponding product of matrices, e.g.
mop(t) =T, mop(a) = A, mop(atta) = AT? A. We also define the weight of a word m
as ||m|| = ||mop(m)|| and the weight of a set of words P by ||P[| = >_ . cp|lm|. The
following inequalities will be useful in the sequel.

Property 1 Let P be a free generating set of weight smaller than one; then, we have

, P
[{m € P*/||lm|p > j}| < 57
1-|1P|

Property 2 Let Py, P be two sets of words; we have:
1P Pe|| < (| Pyl].[| P2l

where P;.P, is the set of all the products of a word of P, by a word of Ps.
The proofs are very simple and may be found in [NN97].

Proof

At this point, we have all that is necessary in order to prove the theorem.
In our context, it is interesting to look at

W = {m € {a,t}*/t" ! is not a substring of m}.

Indeed, we know that for every word m not in W, the corresponding operator mop(m)
is zero. It can be seen easily that W can be factorized as

W ={1,t,t2,... .tV 2} {a,at,... ,atV "2}* (3)

Let Wy = {1,¢,¢2,... ,tNV =2},

We have to estimate the norm of (A + T')7. The first equality will be obtained by
writing (A + T')7 as the sum of mop(m) over the words m of length j. By noticing
that for a word m not in W, mop(m) = 0, we see that the sum can be taken over W.

A+ =1 Y mopm)l=1II Y mopm).

|m|=j, m€{a,t}* |m|=4, meW
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Now, by factorization (3) of W, we have that a word m in W can be written as a
product wy mp with w; € Wy and mp € P*. Since the length of a word in W; is
smaller or equal to N — 2, the length of mp is larger or equal to j — (N — 2). By using
this and property 2, we get the estimate:

1A +T) || < WAl [l{rm € P*/Im| > 5 — (N = 2)}.

In order to continue, we remark that the larger length of a word in P is N — 1. It
follows that a word in P* whose length is larger than j — (N — 2) has a length relative
to P larger than I=("=2) Hence,

i-(N-2)

IA+ TV < Wl [{m € P* flmlp 2 2222

In order to conclude the proof, we simply apply Property 1 and obtain

W] ||p||[753(v]‘:2)]_

[(A+T)| <
1—|P||

with || P < p.

6 Conclusion

We have given a unified proof of convergence for three Schwarz-type algorithms.
We have also established a link between the convergence rate for a two-domain
decomposition and for a decomposition into an arbitrary number of subdomains.

We see at least two continuations to this work. First, it would be interesting to
extend our proof to the case of an arbitrary decomposition. Second, we have studied
Schwarz-type methods which can be seen as Jacobi or Gauss-Seidel algorithms applied
to the substructured problem. It is possible that formal language theory could also
be applied successfully to general iterative methods such as GMRES or BICGSTAB
algorithms when applied to problems of this type:

(Id— (T + A)(H) =G

where T is nilpotent.
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