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On the Use of Multigrid as a
Preconditioner

C.W. Qosterlee and T. Washio

1 Introduction

In the search for robust and efficient Krylov subspace methods, multigrid is being
considered as a preconditioner. With preconditioners based on multigrid it is expected
that robust convergence can be achieved for a large class of problems. GMRES [SS86]
is used as the Krylov subspace solver. Singularly perturbed 2D problems of both
convection-diffusion and of jumping coeflicients type are considered, for which the
design of optimal standard multigrid is not easy. For these problems the multigrid
method is being compared as a solver and as a preconditioner. Eigenvalue spectra
of the multigrid iteration matrix are analyzed to understand the convergence of the
algorithms.

In the domain decomposition context we can think of the method as a robust
subdomain solver. Also, the parallel multiblock method can be seen as an alternative
for domain decomposition techniques on regular grids: The method is parallelized with
grid partitioning [MFLT91].

The purpose of this work is not to derive optimal multigrid methods for specific
problems, but to construct a robust well-parallelizable solver, in which the smoother
as well as the coarse grid correction is fixed. Another robust multigrid variant for
solving scalar partial differential equations is Algebraic Multigrid (AMG) by Ruge
and Stiiben [RS87], in which the smoother is fixed but the transfer operators depend
on the connections in a matrix. Efficient parallelization of AMG is, however, not
trivial. Matrix-dependent transfer operators are employed so that problems with
convection dominance, as well as problems with jumping coefficients, can be solved
efficiently. The operators have been designed so that problems on grids with arbitrary
mesh sizes, not just powers of two (+1), can be solved with similar efficiency. The
algorithm uses the prolongation operators introduced by de Zeeuw [Zee90]. The
multigrid algorithm employs Galerkin coarsening [Hac85], [Wes92] for building the
matrices on coarser grids. The alternating zebra line Gauss-Seidel relaxation method
is used as the smoother, since it is a robust smoother for anisotropic problems and it
is efficiently parallelizable. In [Ket82] an early comparison of multigrid and multigrid
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preconditioned CG for symmetric model equations showed the promising robustness
of the latter method.

The solution method is analyzed in order to understand the convergence behavior
of multigrid used as a solver and as a preconditioner. The eigenvalue spectrum of
the multigrid iteration matrix for the singularly perturbed problems is calculated in
Section 3. Interesting subjects for the convergence behavior are the spectral radius
and the eigenvalue distribution. Numerical results are also presented in Section 3. The
benefits of the constructed multigrid preconditioned Krylov methods are shown for
a convection-diffusion problem and a problem with jumping coefficients on fine grids
solved on the NEC Cenju—3 MIMD machine [HCH*96]. The message-passing is done
with MPIL.

2 The Multigrid Preconditioned Krylov Methods

We concentrate on linear matrix systems with nine diagonals,
Ap = b. (2.1)
Matrix A has right preconditioning as follows:
AK Y (K¢)=b . (2.2)

The Krylov subspace method that is used for solving (2.2) is GMRES(m) [SS86].
Matrix K ! in (2.2) is approximated by one iteration of the multigrid method.
Using a preconditioner as solver. A preconditioner, like the multigrid preconditioner,
is a candidate for use as a solver. An iteration of a multigrid solver is equivalent to a
Richardson iteration on the preconditioned matrix. With K being the iteration matrix,
multigrid can be written as follows:

K¢* D) 4 (A— K)p™ = . (2.3)
This formulation is equivalent to,

Pt = k) 4 K '(b— A¢(k)) = ¢ 4 K=tp(k), p(ktl) — (I- AK_l)r(k) .
(2.4)

The multigrid solver is implemented as a Richardson iteration with a left multigrid
preconditioner for A. The convergence of (2.4) can be investigated by analyzing the
spectrum of the iteration matrix. The spectral radius of ] — AK~! determines the
convergence. This spectrum is analyzed in Section 3 for the multigrid method for the
problems tested on 332 and 652 grids. With this spectrum we can also investigate the
convergence of GMRES, since the spectra of left and right preconditioned matrices
are the same.

The multigrid preconditioner. The multigrid preconditioner implemented is now
discussed in some more detail. The multigrid correction scheme [Hac85, Wes92] is
used for solving the linear equations. Here, the robustness and efficiency of the F-
cycle is evaluated. The multigrid F-cycle is a hybrid between the cheap V-cycle and the
expensive W-cycle. The smoother is the alternating zebra line Gauss-Seidel smoother.
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First, all odd (white) lines are processed in one direction, after which all even (black)
lines are processed. This procedure takes place in the z- and y-directions. Fourier
smoothing analysis for model equations, presented in [Wes92], indicates the robustness
of this smoother. The algorithm evaluated adopts the "upwind” prolongation operator
by de Zeeuw [Zee90]. This operator is specially designed for problems with jumping
coefficients and for second-order differential equations with a dominating first-order
derivative. As already indicated in [Den83] it is appropriate for the construction of
transfer operators for unsymmetric matrices to split a matrix A into a symmetric and
an antisymmetric part:
S =

(A+AT), T=4-85=_(A-47) . (2.5)

N =
N =

The investigated transfer operators are also based on this splitting. Analysis of this
operator and the numerical experiments in [Zee90] shows the very interesting behavior
of these operators. Restriction RE is defined as the transpose of the prolongation
operator. The coarse grid matrices AL are defined with Galerkin coarsening [Hac85],
[Wes92],

AM = 4, (2.6)
AL = REAMHIPIHL 1<L<M-1. (2.7)

M represents the finest grid level.
Grid partitioning. If grid applications are to be implemented on parallel computers,
a straightforward approach is to use grid partitioning. This means that the original
domain  is split into P parts (subdomains) in such a way that, with respect to the
finest grid, each subdomain consists of (roughly) the same number of grid points.
Because of the only local dependencies of grid points, each process needs foreign
data only from boundary areas of neighbor subdomains. After a smoothing step
is performed, data have to be communicated along the artificial boundaries (see
Figure 1). The extension of the single grid case to parallel multigrid is obvious: On the
finest grid level, all communication is a strictly local one. Similarly, also on all coarser
grids necessary communication is “local” relatively to the corresponding grid level.
Parallelism is straightforward in Krylov methods, except for the multigrid
preconditioner, the matrix-vector and inner products, which need communication
among neighboring processors for the problems under consideration. We would like to
point out that in our approach all parallel algorithms are algorithmically equivalent to
their non—partitioned versions: the results of the partitioned and the non—partitioned
versions are identical.

3 Numerical Results

The equations investigated are two 2D singularly perturbed problems. A convection-
diffusion equation with a dominating convection term and an interface problem are
solved. We concentrate on ”difficult” problems for multigrid. As the initial guess
#© = 0 is used for all problems. Restart parameter m is set to 20 here. After
some efficiency tests, we choose no pre-smoothing and 2 post-smoothing iterations;
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Figure 1 A regular grid partitioned into 16 subgrids. To each subgrid an overlap
area is assigned needed for data exchange in the exchange phase.
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on the coarsest grid 2 smoothing iterations are performed (v3 = 2) in order to keep
the parallel method as cheap as possible. For the problems investigated this did not
influence convergence negatively, since the coarsest grid is always a 32 grid. The results
presented are the number of iterations (n) to reduce the Ls-norm of the initial residual
with 8 orders of magnitude (|[r(™]|2/||r® ||z < 10~8). Furthermore, the elapsed time
for this number of iterations obtained on the NEC Cenju-3 MIMD machine [HCH96]
is presented. For all problems 32 processors are used in a 4 x 8 configuration.
Rotating convection-diffusion equation. The first problem is a rotating convection-
diffusion problem,

—eA¢ + a(x,y)@ + b(m,y)@ =10onQ2=(0,1) x(0,1) . (3.8)
or oy

Here, a(z,y) = —sin(wz). cos(my), b(z,y) = sin(my). cos(mz)
Dirichlet boundary conditions are prescribed: ¢|r = sin(wz) + sin(137z) + sin(7y) +
sin(137y).
A convection dominated test case is chosen: ¢ = 107°. The convection terms are
discretized with a standard upwind discretization. A first order upwind discretization
is chosen, since this is still a linear discretization, which can be tested and evaluated.
The final target is a second order (nonlinear) discretization with a limiter, for which
the components chosen here in multigrid (and the linear GMRES solver) are not
appropriate. However, it is a useful discretization for understanding the behavior of our
multigrid as a preconditioner and as a solver. We investigate the eigenvalue spectrum
of the Richardson iteration matrix (2.4) on a 33? and a 652 grid. The spectra are
presented in Figure 2. As can be seen, most eigenvalues are clustered around 0, only
the largest eigenvalues are outside the clustering. The spectral radius determines the
convergence of multigrid as a solver, as is well-known. This spectral radius increases
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on finer grids as can be seen in Figure 2. However, it is found that the eigenvectors
belonging to the larger eigenvalues are very soon captured into the Krylov subspace
when multigrid is used as a preconditioner, and that therefore the convergence is
accelerated considerably.

Figure 2 The eigenvalue spectra for the rotating convection-diffusion problem on
two consecutive grid sizes.
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Table 1 presents the convergence results of multigrid as a solver and as a
preconditioner on three different grid sizes, 1292, 2572 and 5132. It can be seen that
multigrid used as preconditioner handles this test case with dominating convection
very well. Very satisfactory convergence associated with small elapsed times is found
in most cases with the F-cycle. (With the V-cycle used as a preconditioner the best
elapsed times are found, but the number of iterations is increasing with a higher degree
than with the F-cycle for large grid sizes.)

An interface problem. Next, an interface problem is considered. This type of problems
has been investigated with multigrid, for example in [Zee90]. The problem to be solved
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Table 1 Iterations (n) and elapsed time in seconds for the rotating
convection-diffusion equation.

grid: 1292 257> 5132
method:
multigrid as solver (15) 5.1 || (20) 10.1 || (29) 24.8
multigrid as preconditioner | (10) 3.5 || (12) 6.1 || (16) 14.3

looks as follows:

o _0p 8 0p ~
6—$D1% —+ 6_yD26_y = ]. on Q = (0, ].) X (0,1) . (39)

Dirichlet conditions are used:

1 1
¢p=1 on{z< 5/\y:O} andon {z=0Ay < 5}; elsewhere ¢ = 0. (3.10)

The computational domain with the values of the jumping diffusion coefficients D,
and D is presented in Figure 3. The discretization is vertex-centered and all diffusion

Figure 3 The domain for the interface problem
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coefficients are assumed in the vertices. For the discretized diffusion coefficient between
two vertices the harmonic average of the neighboring coefficients is taken.

Clearly multigrid can solve many interface problems, presented for example in
[Zee90]. Here we constructed a difficult problem, where the robust components of our
multigrid method are not satisfactory. The Krylov acceleration is really needed for
convergence. The eigenvalue spectrum obtained with multigrid is presented in Figure
5. In Figure 5 we see two eigenvalues close to 1, so multigrid convergence is already
very slow on this coarse grid. The convergence of GMRES(20) with multigrid as a
preconditioner on the 332 grid is shown in Figure 4. Multigrid as a preconditioner is
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Figure 4 The convergence of GMRES(30) with multigrid preconditioner, 33% grid.
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converging well. In Figure 4 it can be seen that for the problem on a 332 grid the
first 9 GMRES iterations do not reduce the residual very much, but after iteration 9
fast convergence is obtained. In our analysis of the evolution of the Krylov subspace
it is found that the vector belonging to a second eigenvalue of I — AK~! around 1 is
obtained in the Krylov space in the 9th iteration, and then GMRES starts converging
very rapidly. For this test problem the convergence of the preconditioned Krylov
methods with the multigrid preconditioner on three very fine grids is presented. The
number of GMRES(20) iterations (n) and the elapsed time are presented in Table 2.
The GMRES convergence is influenced by the fact that the restart parameter is 20;
a larger parameter results in faster convergence. Again the F-cycle is preferred for its
robustness and efficiency.

Figure 5 The eigenvalue spectrum for the interface problem on a 332 grid, F(0,2)
cycle.
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Table 2 GMRES(20) iterations (n) and elapsed time in seconds for the interface
problem.

grid: 2577 5132 7697
cycle: | GMRES || GMRES || GMRES
F | (34) 19.0 || (33) 30.6 || (36) 52.9

4 Conclusion

In the present work a multigrid method has been evaluated as a solver and as a
preconditioner for GMRES. The problems investigated were singularly perturbed.
The behavior of the multigrid method is much more robust when it is used as a
preconditioner, since then the convergence is not sensitive to parameter changes. For
the test problems many of the eigenvalues of a multigrid iteration matrix are clustered
around the origin. In some cases there are some isolated large eigenvalues which limit
the multigrid convergence, but are captured nicely by a Krylov acceleration technique.
The most efficient results are obtained when the method is used as a preconditioner.
The multigrid F-cycle is used, since it is robust and efficient. The convergence behavior
can be well understood by investigating the eigenvalue spectrum of the iteration
matrix.
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