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Intelligent Interfaces of a Schwarz
Domain Decomposition Method
via Genetic Algorithms for Solving
Nonlinear PDEs: Application to
Transonic Flows Simulations

Jacques Periaux, Bertrand Mantel and Hong Quan Chen

1 Introduction

Genetic Algorithms (GAs) mimic natural selection based on the Darwinian Survival
of the Fittest principle. These evolution algorithms inspired from biology share digital
information and have been introduced by J.H. Holland [Hol92]. A fitness function is
chosen to classify individuals of a population in terms of their adaptation to their
environment. Those individuals are candidate solutions of a minimization problem
and have a digital DNA representation by binary strings. The robustness of Genetic
Algorithms rely essentially on genetic recombination involving selection, crossover, and
mutation random operators. They are able to explore very large search spaces to find
near-global minima whilst traditional methods with gradient information may fail.

An implementation of GAs for the solution of nonlinear flow problems using domain
decomposition methods is presented. It is shown that the conventional Schwarz
iterative methods for the matching of overlapped subdomain solutions can be extended
to nonlinear situations with a genetic treatment at the interfaces. The fitness function
considered in this problem is the distance of local solutions on the overlapping regions.
Intelligent interfaces act by disseminating genetic information at one node located
on the interface to neighbors for appropriate boundary conditions. Combining the
domain decomposition method with the evolution process, converged genetic solutions
of transonic shocked flows in nozzles and around lifting multi airfoils are computed
successfully.

A particular emphasis is given to the effect of discretization on convergence
speed and parallel properties of the evolution method. The available results show
that the new method based on local niching strategy has the potential to remove
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the dependence of mesh size without a preconditioner and can be also very easily
implemented on a distributed parallel computer due to its inherent parallelism.

2 Brief Description of Genetic Algorithms

In order to construct implementations of GAs for the solution of nonlinear flow
problems using domain decomposition methods, we will briefly restate some of the
principle of optimization available in open literature using GAs. Consider a parameter
optimization problem of minimizing the cost index J = f(z) , where the parameter is
z . The first step of optimization process is to code the parameter z as a finite-length
string because GAs work with a coding of the parameter set. Here we take a binary
string, say of length 8 , such that the lower bound X,,;, for the variable maps to
00000000 and the upper bound X,,,, maps to 11111111 , with a linear mapping in
between. The length of string is governed by the required accuracy of the solution.
Keep in mind that in general, the string might represent a possible solution to the
problem parameterized.

With the described coding, a population of randomly generated strings, say of
population size N, would be used as a starting point of the GAs. The strings are then
decoded and evaluated to obtain a quantitative measure of how well (fitness values)
they behave as possible problem solutions, and transformed to form next generation
of size N by using GA-operators. This process continues for successive generations
until convergence is achieved or a near optimal solution is found. We can see that the
operators play the leading role in the whole processing of the GAs.

There are many existing GA-operators. Among them, three operators: reproduction,
crossover, and mutation (which is widely known as the simplest form of a genetic
algorithm, namely SGA [Gol89)]), are used for many practical uses. Reproduction is
a process by which strings with better fitness values receive correspondingly large
numbers of copies in the following generation, which is similar to the concept of
“survival of the fittest” in the Darwinian theory. The reproduction operator can be
implemented artificially in a number of ways, such as Roulette Wheel Selection. In
this paper we use Tournament Selection[Gol89] , a simple method of implementing
reproduction, to fill up the mating pool where newly reproduced strings are placed
and await the action of the other operators.

After reproduction, the operator crossover follows in three steps. First, two newly
produced strings are randomly chosen as parents from the mating pool. Second,
a position along the two strings is selected uniformly at random. Finally, based
on a probability crossover P,, the paired strings exchange all characters following
the crossing site. Clearly, the crossover propagates a structured random information
exchange between better fitted parents to produce two offsprings which are expected to
combine the better fitted characters of their parents. The operator that merely causes
a random alteration of a string position based on probability P, is called mutation.
In present case, this involves changing a bit 1 to a 0 and vice versa. In general, the
mutation operator improves the population diversity and prevents the convergence to
local minima. For a more thorough discussion of the theoretical foundations of the
GAs see the works of J. H. Holland [Hol92] and D. E. Goldberg [Gol89).
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Figure 1 Description of a nozzle with two subdomains
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3 Implementations of GAs for the Domain Decomposition
Problem

Description of the Problem

The problems of transonic flows in a nozzle and particularly the flows around a
lifting airfoil will be investigated in this paper. In order to present general idea of
implementations of genetic algorithms for the domain decomposition problem, we will
first describe the problem based on the flows in a simple nozzle for sake of simplicity.
As shown in Figure 1 , we decompose the computational domain €2 in two subdomains
Q; and Q, with overlapping Q5 whose interfaces are denoted by y; and s . We shall
take values, g; on 7; and g» on s, as extra boundary conditions in order to obtain
solution in each subdomain. Using domain decomposition techniques, the problem can
be reduced to minimize the following function:

~ 1
TGig) =3 | &1 - & |, (1)

where ®; and ®, are the solutions in the overlapping subdomain Q15 , || @ || denotes
an appropriate norm and g; the decoded values of genetic g; representation. In the
following sections we will present new derivative-free methods of optimization to
minimize the above function J based on genetic algorithms.

Figure 2 Subdomains with marked overlappings (mesh size: 87 x 15)
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Implementation 1 without niching

For the function being optimized, the variables are rewritten in a code to form a
structured string that GAs can directly operate on. For the problem described above,
binary codings for multiparameters are used, and we only code g; , which can be

gii; i=1,N (N parameters)

each g1; is coded in [; bits, thus the length of the string can be L =1, .
i

Figure 3 Iso-Mach lines in each subdomain , Mach= 0.8, Attack= 0.0°
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Let us consider population size 25 (i.e. 25 strings). GAs decode each string to return
the values of g1; . With g;; known, we can compute the solutions of the domain €,
namely ®;. Like Schwarz’s alternative method, we take g» based on @1, (i.e. go =
®; |,,) , thus the solution , ®; , in the domain Q5 can be calculated. Now, we send
both values in overlapping to cost function:

- 1
J(g1) = 3 | @1 — @5 || (3.2)

Thus , each string has cost value. New generation of strings can be produced by
performing GA-operators and applying survival of the fittest principle.

Implementation 2 with niching

Similar to the Implementation 1 of GAs, we make parameters in each overlapping
subdomain belong to one local niche. In each local niche, choose one or several
parameters as important parameters. All important parameters are then coded but




INTELLIGENT INTERFACES OF A SCHWARZ DDM VIA GAS 579

Figure 4 Non-lifting case , Mach= 0.8, Attack= 0.0°
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other parameters are nested or coded in a nested way. This could mean that N
parameters (g1; , i=1,N) belong to one local niche. We choose g11 as key parameter,
which is coded in [ bits, and other parameters are nested to the decoded value, g17.
The nested values can be calculated

A =g1i—gn (3-3)

each A; can be coded now in I; bits. Keep in mind that A;(i = 2, N) are nested values
and the length of I;(¢ > 2) can be short as compared with that for key parameter.
This means that we can use local niching strategy to keep the proper representation
space, which may reduce the effect of the size of discretization.

In this paper we predict A; based on numerical information, which can be

AP = g7 — gty (3-4)

where the superscript n is corresponding to the n-th generation and g7, are obtained
from the previous solution ®5 in the domain €25. For simplicity the values of A; can
be kept the same in one generation and can be updated with the fittest individual of
the previous evaluations.
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Figure 5 Iso-Mach lines in each subdomain , Mach= 0.75, Attack= 2.0°
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4 Results and Discussion

The methods presented have been tested for the solution of nonlinear transonic flows
in a nozzle with two or three subdomains of two different mesh sizes. Significant
improvements of the implementation with niching have been achieved as compared
with the method without niching. The numerical results show that the new method
based on local niching strategy can accelerate the speed of convergence and has the
potential to remove the dependence of mesh size without a preconditioner (see [PC96]
and [PMC96] for details).

For the computations presented here, transonic flows past a lifting or non-lifting
airfoil with multi subdomains are considered as further extension. The extension can be
carried out in a straightforward way. The formulae of fitness function can be rewritten
as follows:

K
J(@1, G2 Ge) =Y J@) i=1,K (4.5)

where K is the number of subdomain and g; are the decoded values of genetic g;
representation on each interface of subdomains.

As shown in Figure 2, we decompose the whole domain in 5 subdomains and hence
with 5 marked overlappings, which are placed symmetrically. The C-mesh, consisting
of 87 x 15 was used. This means that on each interface of overlapping we have more
than 15 parameters. Based on the local niching strategy, we choose one parameter for
each interface as the key parameter. In the present case , 5 key parameters, which are
located on the body surface, are to be coded to form a multi parameter string. It should
be emphasized that two of these points are located just at the trailing edge, where the
cutting lines are located in order to have unique potential. As a result, the circulation
can be calculated based on potential values of these two coded points. This means
that the lifting circulation is coded implicitly and is fixed for each evaluation, which is
different from the traditional method for iteratively determining the circulation. Thus
the present case is quite complicated as compared with that used in the nozzle.
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Figure 6 lifting case , Mach= 0.75, Attack= 2.0°
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The numerical results for both non-lifting case with Mach= 0.80 and angle of attack
= 0° and lifting case with Mach= 0.75 and angle of attack = 2.0° are presented in the
Figures 3-6. It should be noted that the results of the non-lifting case are obtained
by forcing symmetric conditions, such as zero circulation, which results in reducing
the search space, thus it appears to have fast convergence as compared with that
of lifting case. The iso-Mach lines of figures show the continuity of the solution in
the overlapping subdomains. It should be mentioned that the method presented can
benefit parallelism from both GAs and domain decomposition methods.

5 Conclusion

The conventional Schwarz iterative method can be extended to nonlinear situations
with the genetic treatment on the interface of subdomain without preconditioner
and the method presented has the potentiality to avoid the effect of the size of
discretization. The solutions of other PDEs using the same concept of GAs are
currently underinvestigation.
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companions of classical domain decomposition methods.
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