54

A Parallel Domain Decomposition
Method for Spline Approximation

C. K. Pink, I. J. Anderson, and J. C. Mason

1 Introduction

The work described in this paper arises from the desire to approximate in a practical
timescale a large set of discrete data with a spline function defined by B-spline basis
functions. The least squares approximation of large sets of data is an important but
time consuming problem, which has applications in many fields including those of
graphics, image processing and computer aided design. We consider this approximation
problem for what we term “uniform” sets of data, and we describe a parallel domain
decomposition method for its solution. We use uniform in its statistical sense, namely
we mean that the data is scattered in such a way that the density of points is fairly
constant throughout the domain of approximation, as in a uniform distribution.

In section 2 we consider the general problem of B-spline approximation, and in
section 3 we describe briefly a method produced by Anderson [And94, And97] for its
efficient solution when considering uniform data sets. In section 4 we consider the
problems involved with producing a parallel method based on this serial approach
and we discuss the solutions of these problems. Results gained from implementing the
parallel algorithm on the KSR-1 [Ken93, Pap93] machine are given and analysed in
section 5.

2 The Two-dimensional Approximation Problem

Given a set of m data, (zx, Yy, fr), we wish to calculate the bivariate spline function
that minimises the sum of the squares of the residuals between the data ordinates and
the spline function evaluated at the data abscissae [Cox87]. The standard definition
of a bivariate tensor-product spline is,

e dy

s(z,y) = DY cigNi(w; NN;(y; ),

i=1 j=1

Ninth International Conference on Domain Decomposition Methods
Editor Petter E. Bjorstad, Magne S. Espedal and David E. Keyes ©1998 DDM.org



458 PINK, ANDERSON & MASON

where N;(z; A) and N, (y; p) are the B-spline basis functions in the z and y dimensions
with respect to the knot sets A and p respectively. The residuals of this fit are
ex = fr. — s(zp,yr) for k =1,2,... ,m. Using vectors we express the function values
and residuals as f and e respectively. We wish to calculate the g, x g, coeflicients,
{ci,;}, which minimise the residual sum of squares, £ = ele.

In order to express the B-splines evaluated at the data points in the form of a
matrix A, we employ a lexicographical ordering of the basis functions. The (k,£)th
element of A is given by ax¢ = N;(zk; A)N;(yr; p), where £ = (j — 1)g, + . Similarly,
the coefficients, {c; ;}, may be expressed in the form of a vector, ¢, using the same
lexicographical ordering. The system of equations resulting from the minimisation
problem,

Ac =T,

is usually overdetermined and thus requires the use of orthogonal transformations, e.g.
Givens rotations, Householder transformations or SVD [GV89], for its solution to be
determined.

The compact support property of B-spline basis functions produces a banded matrix
A. This matrix A has at most n, X ny, non-zero elements in each row, where n, and
ny are the order of the approximation in the z and y dimensions, however these
elements are not in consecutive columns of the matrix. In fact, the bandwidth of the
matrix [Cox82, HH74] is

(ny —1)gs + ngy.

Consequently the solution of this system can be computed in O(mg2n2) [Cox82]
floating point operations (flops). Therefore the solution time of the system of equations
is dependent on both the order of the spline fit (in the y dimension) and the number
of coefficients (in the z dimension).

The dependence of the flop count on the square of the number of coefficients is
the important factor with regards to the solution time. To approximate large sets of
data well, a comparatively large set of knots is needed, and as the size of the data
set increases so we need to increase the size of the knot set. Consequently the linear
system that needs to be solved to find the coefficients of the approximation becomes
too large to be solved in a practical time.

3 Fast Serial B-spline Approximation

Anderson [And94, And97] has developed a serial method that efficiently approximates
large uniform data sets. The basic premise behind the method is to convert an
approximation problem on a large domain with a large data set into a set of smaller
problems that may be solved more rapidly.

As an example, consider the general least squares approximation problem, described
in section 2, on a rectangular domain. The matrix A produced by the system will have
m rows, and bandwidth (n, — 1)g, + n,, and takes O(mqinz) flops to solve. Now
consider this problem as a grid of 10 x 10 subproblems. Each subproblem produces
a matrix A with approximately m /100 rows (because of the uniform distribution of
the data) and a bandwidth of about (n, — 1)g,/10 4+ n,. This system can be solved
in approximately 1/10,000 of the time taken for the original system, and therefore



PARALLEL SPLINE APPROXIMATION 459

solving the 100 subproblems will take about 1/100 of the time taken for the original
system. Clearly, there are time savings that can be made by exploiting this fact.
Simply subdividing the coefficient array and finding these coefficients from
subdomains does not, however, produce the least-squares fit for the overall domain.
The supports of adjacent B-spline basis functions of order n overlap by n — 1 knot
intervals. Therefore the regions of support for neighbouring subsets of coefficients also
overlap by this amount. This means that many data points will be in more than
one region and their values will contribute twice to the overall approximation (a
problem that is called ‘overfitting’ [And94]). To overcome this, after each subdomain
approximation has been formed, the coefficients found are added to the overall

approximation,
1) | 4
cs’? = csj‘] ) + Cij,
where the values {¢; ;} are the coefficients found from the subproblem and {cz(?} are
the coefficients of the overall approximation after r subproblems. This approximation
is evaluated at each data point, and a set of modified function values (or residuals) are

formed as
£lr) — o) — plr=1) _ g(r) — p(r=1) _ Ac(™)

where s(") is the vector of spline values at the data abscissae. Taking these residuals
to be the data ordinates for the subsequent approximation problem means that the
overall approximation will approximate the correct data values.

The serial algorithm is as follows.

o Choose a small rectangular subregion that supports approximately 3n, x 3n,
coefficients and calculate the fit on that region.

e Place the coefficients in the correct position in the overall two-dimensional coefficient
array.

e Calculate the modified function values at the data points.

e Update the data values by replacing them with the modified function values.

o Iterate this procedure until the residuals meet some convergence criterion.

The subregions are chosen by analysing the residuals in the domain and finding
the region where they are largest. Anderson [And94] has proved that this method
converges globally to the true least squares approximation to the data, and, for large
approximation problems, he suggests that the algorithm is of (’)(mn%) [And97]. This
makes it faster by O(g2) when compared to the standard global solution methods.

4 Parallel Algorithm in Two Dimensions

The serial algorithm described above has the potential to work in a parallel
environment. Instead of approximating on just one subregion, we can fit on two or more
of these regions simultaneously, the only restriction on these regions being that they
do not overlap. If this restriction is violated, we would be finding two approximations
to some of the data values. This introduces overfitting into the approximation, the
problem that the serial algorithm had without modified function values. Choosing
enough distinct subregions to employ all of the processing resources is relatively
easy for small numbers of processors. However as the number of processors increases
with respect to the total number of coefficients to be found, it becomes increasingly



460 PINK, ANDERSON & MASON

Figure 1 Selecting subdomains by splitting in only one dimension (strips).

First set of coefficients First set of subdomains Second set of subdomains

©000000000000000000 O
©000000000000e00000O0
©e 00000
© e 00000
000000
© 000000
© 000000
© 000000
® 000000
2000000 1 2 1 2 1 2 1 2
©e 00000
© e 00000
© 000000
© 000000
© 000000
© 000000
® 000000
©0000000000000e00000O0
©0000000000000e00000O0
0000000000000 ee00000O0

difficult to define dynamically sufficient distinct subregions. Also, in a distributed
memory environment, choosing subsets of coefficients dynamically will necessitate a
lot of unwanted data transfer between processors. To overcome all of these problems
we require some systematic way of splitting the domain so that the subdomains are
predefined and fixed rather than chosen dynamically.

Recall that the floating point operation count in the solution of the two-dimensional
problem is O(mg3n3). The small subdomains used by the serial algorithm, have smaller
values of ¢, and, as a result, require far fewer operations to solve. However the number
of coefficients in only one of the two dimensions affects the speed of the solution of
the system. Therefore subdividing the coefficient set, and the domain, in the second
dimension will not affect the global time taken to find the overall approximation.

For the parallel algorithm we consider subdividing the coefficient set in just one
dimension, which splits the domain into long thin overlapping strips (see Figure 1).
With this decomposition of the domain, we see from the second diagram in Figure 1,
that each subdomain overlaps with only two neighbouring regions. Therefore, by
grouping the subdomains into two sets, containing alternate subdomains, half of the
domain can be fitted in parallel. The modified function values have to be calculated
after each parallel section to ensure that we avoid overfitting any of the points. After
both of the sets of subdomains have been fitted, we have completed one iteration
of the parallel algorithm and can begin fitting on the first group of subregions again.
Iterating in this way means that the mathematics of the parallel approximation method
are the same as the serial method, and therefore the proof of convergence for the serial
method [And97] also holds for the parallel method.

Improving Convergence Rate

A true spline fit of order n needs n knots exterior to the data at each end of the
data set. For the decomposition methods described here the subdomains that are
formed do not have this property. Therefore towards the edges of subdomains, where
fewer than n basis functions cover the data points, the approximation is poor. In the
serial algorithm the regions of poor fit are not fixed, because of the dynamic way in
which the subdomains are chosen, and therefore are not a problem with regards to the
convergence of the approximation. However, the parallel algorithm keeps the domains



PARALLEL SPLINE APPROXIMATION 461

fixed, and so the approximation remains poor in the overlap regions. Hence the
approximation takes a comparatively long time to converge. Changing the subdomains
at each iteration of the parallel method, in a similar way to the serial algorithm,
causes a large amount of data movement and is thus undesirable. An alternative is to
ensure that a true spline fit is formed at every point in the domain in each iteration,
thus preventing these regions of poor approximation from arising. We achieve this by
increasing the amount of overlap in the subregions from n — 1 knots to 2(n — 1). This
means that n — 1 coefficients at the extremes of each subdomain are calculated in
the neighbouring subdomain as well. This does increase the parallel workload in each
iteration by a small amount [Pin97a], but it does not increase the parallel overheads,
and the method converges much more rapidly.

Smaller Domains

The only problem with subdividing the domain into strips is that, for smaller data
fitting problems using many processors, there may not be sufficient subdomains to
employ all of the available processing resources.

For a parallel system with p processors, the length of the full knot set in the leading
dimension is K = ¢, + ny;. The minimum value of K, that allows the domain to be
split only in that dimension and still employ all of the processors, is given by

K=({Ap+2)(n, —1).

The reasons for this are discussed in [Pin97b]. The most commonly used two-
dimensional B-spline fit is bi-cubic (n, = n, = 4), and the minimum length of the
knot set for this order of approximation is thus 6(2p + 1). If the knot set in the
second dimension is of comparable size, then the total number of coefficients needs
to approach 40000 before we are able to utilise 16 processors with this decomposition
of the domain. Two dimensional approximation problems far smaller in size than this
are prohibitively large to solve on a serial machine.

To cope with these smaller domains in a parallel context we must consider
subdividing the coefficient array into small rectangular subsets (first diagram in
Figure 2). We then take the subdomains to be the regions of support of the sets
of B-spline basis functions corresponding to the sets of coefficients (second diagram in
Figure 2). Because each region now has as many as eight other subdomains overlapping
it, the best that we can do with this decomposition of the domain is to approximate
on the domain in four parallel sections. Therefore, more work is introduced into the
program, because the modified function values need to be calculated more often, and
also there are more synchronisation points in the program because of the increase
in distinct parallel sections. However, to effectively utilise 16 processors with this
decomposition of the domain we need at least 64 subregions, and on an approximately
square domain this can be done by decomposing the domain into a grid of 8 x 8
subdomains. For a bi-cubic B-spline approximation we need only a minimum of 54 x 54
(about 3000) coefficients, much less than was the case with the first decomposition
method.

On larger domains, however, subdividing the domain in only one dimension and
therefore using strips as subdomains is the better choice. This decomposition should
allow better load balancing, and less time will be spent calculating the modified



462 PINK, ANDERSON & MASON

Figure 2 Selecting subdomains by splitting in both dimensions (boxes).

First set of coefficients First set of subdomains Fourth set of subdomains
0000000000000 000000O0
0606600606000000006000 | 2 4 2 4 2 4 2 4

000000000000 000000O0O0
000000000000 0000000O0
©00000000000eee0000O0
©0000000000eee 000000

©000000000@e@ee 000000 1 3 1 3 l 3 1 3
©000000000000000000O0
©0000000000000e00000O0
000000000000 000000O0O0
000000000000 000000O0O0
©O00000000000000000O0O0

©O00000000000000000O0O0 2 4 2 4 2 4 2 4
©O00000000000000000O0O0
©000000000@00e 000000
©000000000000000000O0
©0000000000000e00000O0

©0000000000000e00000O0 1 3 1 3 l 3 1 3
0000000000000 ee00000O0

function values.

Decomposition Algorithm

When decomposing the domain in only one dimension, we must ensure that we
produce a multiple of 2p strips to allow an equal distribution of subdomains across
the processors. The width of the subdomain, ¢,, must not be too large because of the
increase in time taken to solve large domains [And94, Pin97b]. If the problem is not
large enough to split in only one dimension, we need to subdivide both dimensions of
the domain, and this complicates the decomposition. The decomposition algorithm is
summarized below, but a more in depth discussion of it is given in [Pin97b].

1. If g, > (4p + 2)(ny — 1), then we can split the domain in one dimension.
(a) Find s such that

(43p+ 2)(”2 - 1) <¢ < (4p(8 + 1) + 2)(”1 - 1) s € ]N,
and split the domain into 2sp, approximately equal in size, subdomains.

2. Otherwise:

(a) Find the smallest non-identity factor of p, r say.

(b) If g, > (4(p/r) +2)(n, — 1) then we may proceed. If this is not the case we
use the next smallest factor of p and try the same test until it is satisfied
for some r a factor of p.

(c) Check to ensure that g, > (4r + 2)(n, — 1). If this is not the case then
we cannot split the domain into enough subregions to employ all of the
processors.

(d) Split the z dimension into 2(p/r) equal subdomains and the y dimension
into 27 equal subdomains to produce a set of 4p subdomains.

Implementation on Parallel Architectures

The two-dimensional algorithm is readily implemented on a shared memory
architecture such as the KSR-1. Its implementation on a distributed memory - message
passing environment is more complicated and the details of this are given in [Pin97b].



PARALLEL SPLINE APPROXIMATION 463

Figure 3 Speedup gained on the KSR-1.

16

14

12} strips

S Do

3 _ - boxes
3 -

3 -

2

&

2 4 6 8 10 12 14 16
Number of processors

5 Results

We ran the program with two different sets of data and knots. The data sets used
contained 50,000 and 200,000 points, and these sets were approximated using 54 x 54
and 204 x 54 coefficients respectively. Timings for the computational part of the
program were made with the data sets on up to 16 processors and these timings
can be found in the technical report [Pin97b]. From these timings, the speedups of the
parallel system were calculated and these are shown in Figure 3.

The domain with 54 x 54 coefficients, labelled “boxes” in Figure 3, was decomposed
in both dimensions, but the larger problem was decomposed using strips as subdomains
and is labelled “strips” in Figure 3. Both methods give very good speedups on the
KSR-1. On 16 processors the small problem has a speedup of 10.4 and the larger
problem a speedup of 13.1. This difference is due to the better load balancing which is
achieved when using strips as subdomains. With optimum load balancing there should
in fact be little difference in the speedups obtained from the two decompositions when
implemented on the KSR-1.

6 Conclusions

A parallel algorithm that utilises domain decomposition has been described. The
results from a practical implementation of the method on the KSR-1 parallel machine
show that good speedups can be achieved on two-dimensional problems with data sets
which have a uniform distribution of points. The method is sufficiently versatile to be
applicable to problems of higher dimension.

Acknowledgement

We should like to thank NAg Ltd. for their support of this work and we should also like
to thank Manchester Computing Centre for granting the use of the KSR-1 machine
and the London School of Dentistry for supplying the data used in this report.



464 PINK, ANDERSON & MASON

REFERENCES

[And94] Anderson 1. J. (1994) Efficient multivariate approzimation for large sets of
structured data. PhD thesis, University of Huddersfield, Huddersfield, U.K.

[And97] Anderson I. J. (1997) A piecewise approach to piecewise approximation.
Preprint.

[Cox82] Cox M. G. (1982) Direct versus iterative methods of solution for multivariate
spline-fitting problems. IMA J. Numer. Anal. 2: 73-81.

[Cox87] Cox M. G. (1987) Data approximation by splines in one and two variables. In
The State of the Art in Numerical Analysis, pages 111-138.

[GV89] Golub G. H. and Van Loan C. F. (1989) Matriz Computations. John Hopkins
University Press, Baltimore, Maryland.

[HH74] Halliday J. and Hayes J. G. (1974) Least squares fitting of cubic spline surfaces
to general data. J. Inst. Math. and Applics. 14: 89-103.

[Ken93] Kendall Square Research Corporation, Waltham, Ma, USA (October 1993)
KSR Parallel Programming, second edition.

[Pap93] Papadimitriou P. (December 1993) The KSR-1—A numerical analyst’s
perspective. Numerical Analysis Report 242, University of Manchester/UMIST.
[Pin97a] Pink C. K. (February 1997) Evaluating B-spline approximations in parallel

in one and two dimensions. Technical Report 9705, University of Huddersfield.
[Pin97b] Pink C. K. (January 1997) Parallel B-spline approximation of large sets of
uniform data. Technical Report 9706, University of Huddersfield.



