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Ralf Quatember and Wolfgang L. Wendland

1 Introduction

For the computation of thermoelastic and thermoelastic-plastic stress distributions in
engine parts, boundary element methods are used, for instance by the Mercedes-Benz
company. These methods are preferred to FE methods because of the decisively faster
mesh generation (presently three instead of twelve months). Moreover, substructuring
arising from the geometrical data and different material constants on subdomains can
nowadays be realized efficiently on parallel computers. In substructuring, coupling
interfaces have to be introduced in the interior of the original domain.

For the computation of complex structures, serial high performance computers as
the CRAY C 94 are no longer able to handle the large systems of equations and data.
As a result, only rather simple machine parts can currently be simulated with the
traditional software.

In this work, we present a domain decomposition algorithm which is suitable also
for rather complex problems. A numerical comparison between a sequential, a (data-)
parallel, and a domain decomposition boundary element program is presented.

For the practical work, a pure “number crunching” program is not sufficient. Since
we have to solve problems in IR?, the visualization of the input data and the computed
results is an important part of our work as well. Moreover, it is necessary to generate
test meshes for the three-dimensional problems.

Figure 1 shows a typical flow-chart for our project, which is divided into the following
tasks:

1. Generation of the mesh and input data (tractions and displacements) or the
adaption of meshes and input data given by our partner from industry.
2. Controlling of the mesh and mesh refinement if necessary.
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Figure 1 A typical flow-chart of our project

mesh generation meshes from the industrial partner

—

controlling of the meshes/mesh refinement ~—

BEM-SEQ BEM-PAR BEM-DD

computation of 3D elastic problems

visualization of the computed results

3. Solution of the three-dimensional elasticity problem. Here we can use one of
our three boundary element programs:

(a) BEM-SEQ: sequential boundary element program,

(b) BEM-PAR: (data-)parallel boundary element program. This means that
the system of equations is generated distributedly and solved in parallel
on the family of processors, and

(c) BEM-DD: boundary element program for the solution of the problem by
a domain decomposition algorithm on multiple processors.

4. Visualization of the computed results.

In [QSW97] we present a program which handles the visualization and the mesh
generation of surface meshes in IR3. This program manages triangles as well as
quadrangles on the boundary surface, which are described by linear or quadratic form
functions. In section 2 we describe our domain decomposition algorithm and in section
3 we present some numerical results.

2 Domain Decomposition Formulation

Let us consider a three-dimensional thermo-elastic body in the domain Q C IR?® with
given displacements g on the boundary part I'p and given boundary stresses h on the
remaining boundary part I'y.

We further assume that a temperature field 6(z) is given in Q. Then the volume
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forces f can be split into a thermo-elastic (Duhamel-Neumann material law [Kup79])
and an elastic part:

fi=fi— a% [(26(2) +3X(2)) a(@) 8(z)] fori=1,...,3 (2.1)

k3

Here « is the given coefficient of linear heat expansion. For given volume forces we
can write the static equilibrium equations as

ijj(u,z) + fi(x) =0fori=1,...,3 and z € Q, (2.2)

where the stress tensor o;; is related to the strain tensor e;; by Hooke’s law

0ij(u,z) = 8ijA(x) Z exr (U, z) + 2p(x) es5(u, ). (2.3)
k=1

A and p are the well-known Lamé constants. The linear strain-displacement relations
are given by

eij(@) = 5 (105(2) +s4(z)), (2.0

where u. ; denotes the partial derivative with respect to ;. Assuming a given non-
overlapping domain decomposition

p
QZUﬁzWItthmQJ=@fOI"L7é], r; =09Q;, Fij=FiﬂFj,
i=1 (25)

P

we call I's = |J I'; the skeleton. The Lamé constants in (2.3) are assumed to be
i=1

piecewise constant on each of the subdomains:

w(z) = g, Mz)=XiforzeQ;andi=1,...,p. (2.6)
For each subdomain €2;, the Kelvin fundamental solution is defined by

i Ai + 1
Ukl(ﬂv,y) = £ [

_ Ai+3p; 1 5 (zr — yr) (@ —w1)
8mps (N + 2p)

+ .
it o=yl [ —yf? ] (2.7)

Let ((T},(-,-))) be the corresponding boundary stress of the field of the fundamental
solution. Then the solution of the differential equation (2.2) is given by the Somigliana
representation formula for = € ; in each of the subdomains Q;:

cuti(@) = [ Uion) 60 ds, ~ [ T uiw)ds, + [ Uto.) Fitw) dsy.
Ly I Q; (28)

The solution u* satisfy the boundary conditions on the individual parts of the exterior
boundary,

ui(z) = g for z € Tp and t'(z) = hfor z € Ty (2.9)
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and the coupling conditions on the skeleton,
t'(z) + t/(z) = 0 and u'(z) — v’ () = 0 for all z € T;;. (2.10)

For the computation of the unknown Cauchy data (u;,t;) we use the integral equation
resulting from (2.8):

(Vit*) (z) = <% I+ Kz) u'(z) + (N,f’) (z) for z € T;. (2.11)

Vi denotes the single layer potential, K; denotes the double layer potential and
N; denotes the Newton potential. Introducing the Steklov-Poincaré operator by the
equation

1
S; = %_1 (5 I+ K,) (212)
we obtain from (2.11) the Dirichlet-Neumann mapping
=St + V,IN; f = Siu’ + £ (2.13)

With this mapping, the equivalent variational formulation for the solution of the mixed
boundary value problem (2.2) can be written as:
Find u € H/?(T's) with ulr, = g and u’

/Su z)ds, = /h z)ds,; — /f’ ’ z)ds, (2.14)

z—lrl i= 11"1

holds for all v € HY/?(T's) with v|r, = 0.
Let T'gy be a triangulation of the boundary ' = 9Q with maximal mesh size H and

Zuk’ “(z) € Vg € HY*(T's), (2.15)

a finite representation of the displacements with respect to a B-spline basis of degree
vy. On the subspace Vi, the variational problem (2.14) leads to

/ShuH z)ds, = f(vm), (2.16)
i= 11"

where S! are approximations of the local Steklov-Poincaré operators S? on an
appropriately chosen fine grid boundary element discretization W, on I';,

Shog =t € Wi c H™Y2(Ty). (2.17)

t! can be found by the solution of the local finite-dimensional variational problem

) 1 ) N
(Vi t}“Th>L2(F_) = <<§ I+ Kz) u}l(x),Th> for all 7, € W,
' L(T3) (2.18)



788 QUATEMBER & WENDLAND

With appropriate Wh, this formulation is valid for Galerkin methods as well as for
collocation methods for the computation of the approximations of the local Steklov-
Poincaré operators S?.

The unique solvability of the variational problem (2.14) results from the Wi-
ellipticity and boundedness of the local Steklov-Poincaré operators S [HW92].

For a sufficient refinement h with h < c¢cH, the positive definiteness of the
approximate operators S follows for the Galerkin scheme by the Strang lemma and
therefore implies for H — 0 the convergence of the approximate solutions of (2.16) to
the solution of (2.14) and (2.2), respectively [HSW95].

Equation (2.16) together with the constraints 2.18) leads to the following algorithm:

1. Choose for the Dirichlet data along the coupling and Neumann boundaries
a start solution ufy. . with ur,, = g.

2. Solve pure Dirichlet problems for the realization of the local Steklov-Poincaré
operators and compute the corresponding local Neumann data, t¥.

3. Check the compatibility conditions along the coupling and Neumann
boundaries. If a given accuracy is reached, stop the algorithm.

4. Otherwise correct the Dirichlet data u‘kr"'c ! with a preconditioned iterative
method and continue with step 2.

This algorithm leads to a linear system of equations of the form

1 -~
Mrvt (5 My, + Kh> u=f (2.19)

with a positive definite stiffness matrix and an unsymmetric perturbation. For the
solution of (2.19) one can use the minimal correction method [QSW96, SN89] as well as
some generalized methods of conjugate gradients, like BICGStab [vdV92] or GMRES
[SS86].

For the preconditioning of these methods we use a hierarchical splitting of the
unknown function u € H/2(T's) according to (2.15), (2.18). Let w be the g-dimensional
set of all coarse grid nodes of our domain decomposition (2.5). Then there exists a
unique splitting

u(z) = Z u;(z) + i(z) (2.20)

with
uj = u(z;), (z;) =0for z; €w (2.21)

and with the “harmonic” basis functions *j(-) solving the differential equation (2.2) in
the subdomains ;. This leads to the coupled variational formulation:

Find the pair (ug,i) assuming the given Dirichlet data on the boundary T'p such
that the coarse grid system

p

[t esomdo + Y (Starof,) = fie™) (2.22)

Q =1
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and the fine grid compatibility conditions

p

Y (SEuH + )y, Ty, )y, = f2(9) (2.23)

i=1

hold for all test functions (v ,#) which are zero on T'p.

The coarse grid system is nothing more than a finite-element formulation with
respect to the given domain decomposition with harmonic basis functions. Due to this
property, the global stiffness matrix can be computed with the local Steklov-Poincaré
operators. Moreover, the solution on this coarse grid can be interpreted as a mapping
uH = Rii of the fine grid function @ onto coarse grid functions.

Inserting this mapping into the compatibility conditions, we have to find a fine grid
solution which satisfies the modified compatibility conditions

p

> (Si(@+ Ra)r,, oy, )y, = £(7) (2.24)

i=1

for all test functions o.

The solution process includes only one additional step to solve the coarse grid system
for any given fine grid solution. Namely, replace in the algorithm at the beginning of
this section the function ur, by @ . and insert between steps 1 and 2 the additional
procedure

1.5 Solve for the current fine grid solution ﬂ\krc the coarse grid system and

compute the momentary complete iterate “\krc'

For the solution of the variational problem (2.24) along the coupling interfaces I';;
we need appropriate preconditioning. A reasonable choice is the Neumann-Neumann
preconditioner [LT94]

p
Mt =Y)"s, (2.25)
=1

which uses the inverse Steklov-Poincaré operators S; ! that can be computed by the
solution of local mixed Dirichlet-Neumann or pure Neumann problems. The solution
of pure Neumann problems needs some more care because one has to incorporate
equilibrium equations. Here we use a modified Neumann series [HW72] in an extended
algorithm including a coarse grid solver.

3 Numerical Examples

As a practical example we analyze and compute a three-dimensional crank shaft from
our industrial partner Mercedes-Benz, discretisized with 872 boundary elements and
438 boundary points. The computation was performed on one hand with our sequential
and (data-)parallel programs, and on the other hand with the domain decomposition
algorithm presented here, in particular with a decomposition into two subdomains.
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Presently we are developing a program which can treat more than two subdomains
and a better memory management such that finer discretizations can be handled, too.

All our computations were performed on a SUN SparcStation 20 with a 90 MHz
HyperSparc processor and 128 MB main memory; and also on a Parsytec PowerXplorer
with eight MPC601 processors and 32 MB main memory for each processor.
The presented computation times are pure processor times or processor plus
communication times. For the determination of the efficiencies we compared the
computation times (including the communication times) on 2, 4 and 8 processors
with the computation time (without communication) on one processor.

Figure 2 Example for a practical computation: crank shaft (Mercedes-Benz)

Table 1 Computational times for the numerical computation of the crank shaft
discretisized with 872 elements and 438 points (2616 unknowns)

PowerXplorer SUN
BEM-PAR BEM-DD BEM-SEQ
Proc: 1 2 4 8 2 1
time (sec): 249.6 143.0 76.9 44.6 139.3 198.5
efficiency: 100% | 87.3% 87.3% 70.0% 89.6% —

Figure 2 shows the result of these computations. In case of the iterative solution a
stopping tolerance of 10~* was chosen. Table 1 shows the computation times needed.
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For finer discretizations and subdivisions in more than two subdomains we believe
that the comparison between the different algorithms will result even more in favour
of the domain decomposition method.

Numerical results for the significantly simpler example of the Laplacian in two
dimensions and a subdivision into 16 subdomains obtained by O. Steinbach in [Ste94]
show the efficiency of the presented algorithm and we expect similar results for the
three-dimensional case.
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