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Reuse of Krylov Spaces in the
Solution of Large-scale Nonlinear
Elasticity Problems

Christian Rey and Francoise Léné

1 Introduction

We present the Generalized Krylov Correction, an acceleration technique for the
solution to a series of symmetric linear problems with several right-hand sides and
matrices, and with its efficiency on an industrial three-dimensional nonlinear elasticity
problem. Such a technique is based upon the reuse of Krylov spaces.

Nonlinear elasticity problems are a category of problems often encountered in the
field of solid and structural mechanics. The techniques the most generally used for their
solution are Newton-type methods [Kel83]. These mainly consist in the construction
of a series of linear problems, the solutions of which converge towards the solution
to the considered problem. Note that the parent matrices of those linear problems
are symmetric positive definite for the type of mechanical problems we consider
[Rey94]. The use of non-overlapping domain decomposition methods (primal [LeT94]
or dual [FR94] approach) coupled with a conjugate gradient algorithm provides
a particularly well-adapted solution for parallel computation for the solution to
those symmetric linear problems. However, the numerical efficiency of the conjugate
gradient algorithm depends upon the construction of Krylov spaces of the solution
to the associated problems. In order to significantly speed up the resolutions of the
succession of symmetric linear problems, we developed a technique, well-adapted to an
implementation on parallel computers, known as the Generalized Krylov Correction
[RDL95] [Rey96]. This method relies upon an efficient utilisation of descent directions
calculated in the course of the resolution of previous systems so as to correct the new
descent directions. Besides, it can be interpreted as a generalization of the iterative
solution of symmetric systems with multiple right-hand sides but with an invariant
matrix previously addressed in [Par80], [Saa93] and [FCR94]. This technique is tested
on an industrial three-dimensional example (see Fig. 1), a steel-elastomer structure.

Such structures are increasingly used and developed in industry to produce efficient
elastic supports. But their numerical computation using the finite element method
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implies a number of difficulties linked to the great heterogeneousness of the structure,
and to the nonlinear behavior of rubber layers. We demonstrate, using this ill-
conditioned three-dimensional example, the efficiency of the Generalized Krylov
Correction from a numerical point of view and from the point of view of its
implementation on parallel computers. We also outline the validity domain of this
correction vis-a-vis the evolution of matrices of the various symmetric linear systems.
Then, after briefly recollecting of the solution to nonlinear elasticity problems with
a Newton-type method, we describe the Generalized Krylov Correction. In the last
section, we study the results obtained for the elastic support.

2 Solution to Nonlinear Elasticity Problems

In order to model bodies made up of compressible or quasi-incompressible hyperelastic
materials and undergoing large deformations, we choose the Lagrangian formulation.
All variables are thus defined and retained in a reference configuration. The equilibrium
equations may be written in a weak form as follows :
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(2.1)

where, v(z), is any admissible displacement field in the reference configuration,
u(z), is the displacement field, f(z) and g(z) are the density of body forces and
surface tractions respectively, F'(z) = Id + Vu(z), is the deformation gradient, @,
is the specific internal elastic energy, and (:), stands for the double-contractor operator.

The problem (2.1) is usually discretized through a finite element method [Cia78]
and leads to the solution to a nonlinear problem in the form G(u) = 0. Methods
classically used for the solution to such problems are Newton-type methods. The
simplest method, Newton-Raphson, consists in iteratively replacing in the equation
G(u) = 0 the function G with its first-order expansion around the point (u). It then
iteratively solves the series of linear problems thus obtained.

A first variant of this method (Quasi Newton) consists of reactualizing the linear
system matrix only every p nonlinear iterations. However, depending on the stiffness
of the problem to be solved, we will use stronger variants, such as that of the Newton
Incremental (which consists in incrementing the loading) or even better the so-called
bordering algorithm [Kel83]. But whatever the chosen method may be, all the methods
come down to the solution to a succession of linear problems, the right-hand sides and
matrices of which are to be reactualized.

Refer to Ciarlet [Cia86] for a complete presentation of the formulation of nonlinear
elasticity problems and to Keller [Kel83] or Le Tallec [LeT90] for Newton-type
nonlinear solvers.
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3 Solution to a Succession of Linear Problems

The use of direct solvers for the resolution of such a succession of symmetric linear
problems requires huge memory space and is extremely time-consuming when carrying
out calculations, particularly for large-scale three-dimensional elasticity problems.
Moreover they are not suited for an implementation on parallel computers. This is
all the more the case as the matrices of the various problems are to be reactualized.

Domain decomposition methods (primal [LeT94] or dual approach [FR94])), coupled
with a conjugate gradient algorithm, make it possible, by condensing problems on the
interface of subdomains, to solve the following succession of condensed symmetric
linear systems, the parent matrices of which are symmetric, positive definite.

CENe =k fork=1,2,..,N (3.2)
where C* is the matrix of Schur complement in dual or primal form according to the
approach chosen and b* the associated condensed right-hand side.

Principle and Initialisation of the Conjugate Gradient

The resolution of the kth of these symmetric linear systems by the algorithm of the
conjugate gradient, preconditioned by the matrix M* generates the following K (C*)

Krylov space, constructed in the course of iterations using descent directions w?
[TL87]:
K(C*) = Vect(wf, ..., wk). (3.3)

The A5 p-rank approximation of the solution that minimizes g = C*Ak — b¥ residual
over the {\f} + K(C*) space (where A is a given initial field) for the dot product
associated with the C* matrix is then given by :
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(3.4)

The approximation may then define a correct initialization for the resolution of a
linear system with the same matrix (the initialization is optimal provided that it is
used to restart the resolution of the same linear problem). Moreover, these condensed
systems are small in comparison to the dimensions of the global problem; we can
therefore keep the information obtained following their resolution using the conjugate
gradient method; this approach does not however entail high additional costs (in terms
of memory capacity). We may therefore use them in order to speed up the resolution
of the following systems.

The Generalized Krylov Correction

A good preconditioner of the kth linear system is the matrix M such that C*Mg = g.
We propose a g* approximation [Rey96] of the g°?* optimal correction term defined
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by the relation, C*(M*g+ g°Pt) = g, being the orthogonal projection (3.4) associated
with the C*~! matrix of the g®P? solution to the system, C*~1¢%? = g — C*~1M*yg,
in the K(C*~!) p-dimension Krylov space.

According to (3.4), the g* correction term may be written :

p k k—1, k—1
" _ _ _ M*g, C* w; _
g = P(C*)(g— C* M ) = P(C*)(9) = 3_ ((Ck_lw@_17w@_1))wf 1(3 5

This expression underlines that the calculation of the correction term does not
require the computation of the C*~1(M*g) matrix-vector product. The calculation
time of this correction therefore has a cost comparable to that of a complete
reorthogonalization procedure and consequently remains limited.

However, this correction only requires one Krylov space. So as to extend this first
Krylov correction to the previous £ — 1 Krylov spaces, we proceed by successive
corrections. On each iteration of the conjugate gradient, the correction term is
calculated as follows :

Initialization
State z = MF g
Fori=1,to k—1do
Compute the correction g* = P(C%)(g — C'z)
State z = z + ¢*
End of Loop

k
Compute the new descent direction w = z — £ %)

(Ckw,w)

We finally associate to the Krylov correction a complete reorthogonalization procedure
[Rou91] of descent directions so as to ensure the correct convergence of the conjugate
gradient method.

4 Application

So as to evaluate the efficiency and the validity domain of this technique, we apply
it to the resolution of an industrial problem : a steel-elastomer laminated structure
(see Fig. 1) subject to an axial compression loading with an imposed displacement.
Material behaviors are modelled by the Ciarlet-Geymonat [CG82] specific internal
energy ®. See [Rey94] for a full presentation of the industrial problem.

The problem thus considered is highly nonlinear, and discretized by hexahedral finite
elements (Q1 element). The mesh consists of a total of 6435 degrees of freedom and is
decomposed into 8 sub-domains (Fig. 1). The domain decomposition method, known
as the Dual Schur Complement Method [FR94] coupled with the conjugate gradient
algorithm and preconditioned by local rigidity matrices is chosen for the resolution
of linear systems. The stopping criterion of this iterative solver is 103 whereas the
stopping criterion of nonlinear iterations (Newton iterations) is 1076, The difference
is justified by the quadratic convergence of the Newton method and by the fact that
the solution to linear problems only consists in an intermediate step in the resolution
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Figure 1 Decomposition into 8 sub-domains of an elastic support

of the overall problem.

Case where Matrices are not Reactualized

The first case studied is when the nonlinear problem is solved using the Quasi-
Newton method without any matrix reactualization. The algorithm then converges
in 5 iterations. The number of iterations of the conjugate gradient on each iteration of
the Quasi-Newton with or without the addition of the Generalized Krylov correction
term (and the initialization introduced in (3.4)) is described in Fig. 2 (Quasi-Newton /
Without or With Krylov). It may be observed that introducing the Krylov correction
term coupled with the initialization implies a highly significant decrease in the number
of iterations. It may thus be observed that this iterative approach corresponds to a
semi-direct method which requires only a projection of the solution in Krylov spaces,
with a very limited (or even nil) number of the conjugate gradient iterations.

Case of Reactualized Matrices

The nonlinear problem is now solved by the Newton-Raphson method with systematic
reactualization of the matrix. The algorithm then converges in 3 iterations. The results
obtained with or without the addition of the Generalized Krylov correction term are
shown in Fig. 2 (Newton / Without or With Krylov). The decrease in the number of
iterations however is smaller than in the previous case but remains significant.
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Figure 2 Newton with or Without Generalized Krylov Correction
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Case of the Incremental Newton Method

In the present section, the problem is solved by the Incremental Newton for a
partitioning of the loading into two equal increments. The solution is thus reached
after 2 Newton-Raphson iterations for each of the two considered increments. Fig. 3
describes the results obtained in the three following cases :

o without the Generalized Krylov Correction,

e with the Generalized Krylov Correction for the solution of each linear system,

e with the Generalized Krylov Correction only within an Incremental Newton
iteration (Internal Krylov).

Figure 3 Incremental Newton with or Without Generalized Krylov Correction
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It should be noted that, in the case of the Incremental Newton method, the Krylov
Correction fails when it is used for the resolution of each linear system. Indeed, the
taking account of the new load increment (here with imposed displacement) implies a
very significant evolution of the linear system matrix to be solved and in particularly
its spectrum. This explains the loss of efficiency of the Krylov Correction which relies
upon the construction of an approximation of the inverse of the linear system matrix.
On the other hand, a significant gain may be observed again if the technique is used
only for the resolution of nonlinear problems of each load increment (Internal Krylov).
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However, its use may be automated when introducing a criterion, which, in the case
of a too slow convergence, starts the iteration again without the correction.

5 Conclusion

The introduction of the Generalized Krylov Correction in Domain Decomposition
Methods for the resolution of nonlinear elasticity problems may lead to a significant
reduction in the number of iterations of the conjugate Gradient. Furthermore, as shown
in its expression (3.5), the calculation procedure of the Krylov Correction associated
to a Krylov sub-space can be compared to that of a reorthogonalization. It is therefore
well suited to an implementation on parallel computers.
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