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Preconditioning the FETI Method
for Problems with Intra- and
Inter-Subdomain Coefficient Jumps

Daniel Rixen and Charbel Farhat

1 Introduction

The FETI method [FR94, MTF, FCR96] and related Balancing algorithm [Man93,
LMV95] are two domain decomposition (DD) based iterative solvers that have gained
popularity in the last few years. When applied to the solution of problems where
the subdomains (a) do not feature neither inter nor intra coefficient jumps, and (b)
have good and/or comparable aspect ratios, these DD methods are scalable and quasi-
optimal. In order to extend the range of applications where these solvers excel, a simple
scaling procedure was described in [LeT94] to address the issue of inter-subdomain
coefficient jumps, and a mesh partitioning optimizer was proposed in [FMB95] to
remedy the subdomain aspect ratio problem. In this paper, we revisit both issues
and present a preconditioning algorithm that addresses the problems of arbitrary
subdomain aspect ratios, and large inter- as well as intra-subdomain coefficient jumps
(so far, most authors have addressed only the problem of inter-subdomain coefficient
jumps [LeT94]). The proposed preconditioner is derived from sound energy principles
that were initially introduced in [RF96] for improving the accuracy of the solution of
subdomain problems by polynomial and piece-wise polynomial Lagrange multipliers.
It can be equally used with the FETI and Balanced algorithms. However, because
of space limitation, we limit our presentation to the case of the FETI method. We
do not offer a mathematical proof of the optimality of our preconditioner, but we
demonstrate numerically its scalability with the solution of highly heterogeneous
structural mechanics problems.

2 The Focus Problem

The solution of a problem of the form Ku = f, where K is a symmetric positive
definite matrix arising from the discretization of some second- or fourth-order elliptic
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problem on a domain €, can be obtained by partitioning © into N, subdomains Q)
and gluing these with discrete Lagrange multipliers A:

K®y® = & _p&Ty s =1, .., N, (2.1)
s=Ng
Y B = 0 (2.2)
s=1

Here, B®) is a signed subdomain Boolean matrix that extracts and signs the interface
components of a vector or a matrix related to Q(*). Eliminating u(*) from Egs. (2.1-2.2)
leads to the so-called dual interface problem

[—gT _OGHQ]:H] (2:3)

s=N,
Fr = Y BOK®'BO', G = [ BURD .. BWARWND |
s=1
s=N, + T
d= Y BOKO O, o= - [ FOTRM V)T RN }
s=1

where K(®" denotes the inverse of K(®) if Q( is not a floating subdomain, or a
generalized inverse if K(%) is singular. In the latter case, R(®) = Ker(K®)) (rigid
body modes in structural mechanics), @ = [a(!)...a!N)]T where N; denotes the total
number of floating subdomains, and a(*) stores the amplitude coefficients of R(*).
The FETI method consists in constructing the dual interface problem (2.3) and
solving this interface problem by a preconditioned conjugate projected gradient
(PCPG) algorithm where the projector is set to P = I — G (GTG)"'GT. If W is a
diagonal matrix which stores for each interface unknown the number of subdomains it

belongs to, and FI_1 denotes the chosen preconditioner, the FETT algorithm for second-
order elasticity problems can be written as summarized in Table 1. (see [FCR96] for
an extension to fourth-order elasticity and shell problems).

Two preconditioners have been previously developed for the FETI method:
-1

. - .. —D .
a mathematically optimal Dirichlet preconditioner F'; , and a computationally
-1

. i, —L
economical “lumped” preconditioner F';

F?_l _ S§SB(S) [ 0 (()) ] BO” Ff_l _ sivs B [ 0 (2 ) ] BT
0 Sy = 0 Ky | (g4

Here, Slsz) denotes the primal Schur complement associated with subdomain Q(),
and the subscripts 4 and b designate the interior and interface boundary unknowns,
respectively.

It is well known that the performance of many DD methods including FETI can
deteriorate when either material or geometrical heterogeneities are present in the
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Table 1 The FETI PCPG method

1. Initialize
N=—GGTe) e, P=d-—F)\
2. Iterate £ =1, 2, ... until convergence
Project — Scale w*™ 1 = W1pT pr-1
Precondition 2¥7! = Fl_lwk_l

Re — scale — Project y*1 = W7ipZF-1
Cho= Rkl k2T k2 (el )
o= g (0t =)

T T

Vb= gkt gk
D I P e Y

Figure 1 Two examples of heterogeneous structures

(a) (b)

vicinity of the subdomain interfaces. Two examples of such problems in structural
mechanics are depicted in Fig. 1: (a) a 2D clamped structure featuring inserts
of a material that is 1000 times softer than the main material, discretized with
64 x 64 plane stress elements (second-order elasticity) and successively decomposed
into 4, 8 and 64 square subdomains; (b) a 3D model of a wing-box structure
constructed with DKT plate elements (fourth-order elasticity) and decomposed into
subdomains whose interfaces coincide with the intersection of the skin and the
stiffeners. Each subdomain with soft inserts in problem (a) is heterogeneous (intra-
subdomain heterogeneity) whereas in problem (b) all subdomains are homogeneous,
but the mechanical properties are very different depending on the domain orientation
(inter-subdomain heterogeneity). In both examples, the subdomain stiffness cannot be
characterized by a single coefficient, and therefore the scaling procedure proposed in
[LeT94] cannot be applied.
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3 Preconditioning with an Energy-based Smoothing Procedure

The Two-subdomain Problem

For the sake of clarity, we consider first the case of a two-subdomain heterogeneous
problem. At each iteration of the FETI PCPG algorithm, the matrix-vector product
Frp* produces a jump across the subdomain interfaces of the iterate solution u*. In
the sequel, we drop the superscript k& for simplicity. Elementary mechanics theory
suggests that the solution u(*) on the interface boundary of the stiffer subdomain will
be closer to the converged solution than the solution on the softer side. This in turn
suggests that the computed solution u should be smoothed after each PCPG iteration
as follows

ﬂ,()l) = ﬂ,(f) =ir = (1- a)ugl) + augz) (3.5)

i = u® —KPTKP@P —uY)  s=1,2 (36

which indicates that when the interface solution has been smoothed, a Dirichlet
problem must be solved in each subdomain. Of course, the important question is
how to select an optimal value of the smoothing parameter a? Let 6; = ugz) - ugl)
denote the jump of the solution on the interface I';. After smoothing, the governing
equations (2.1) can be written as

KO K 0 Y o .
kP kD4 k® k@ i | = fO45® [+
0o kP kP ][ £ 0] e

where 7y, is the interface residual induced by smoothing. From (3.5-3.6) and from (2.1),
it follows that ry(a) = <aS§Z) +(a— 1)5,52)) dr. Hence, an optimal value of a is one
which minimizes r,. However, rather than minimizing directly some norm of ry, we
propose to adopt a Rayleigh-Ritz approach where the smoothed solutions are viewed

as kinematically admissible fields. In view of Egs. (3.5-3.6-3.7), the total energy can
be written as

£(a) = C —2a8T SV 61 + a®6T (S + S2)6; (3.8)
where C' is an expression that does not depend on a. Minimizing £(a) yields

E2)°

D =
EDP L @

KO” =TSV, kD7 =6TSPs  (3.9)

Here, the superscript D is used to highlight the fact that computing the smoothing
parameter a” requires solving two subdomain Dirichlet problems. Since in general
the corrections (3.5-3.6) will create an interface residual r, = A f,fl) +A f,SQ)

propose to correct the Lagrange multipliers iterates as follows

we also

AX = —aPAfY + (1 —aP)AFY = —(aP SPaP + (1 - aP) ST (1 - aP))é;
(3.10)
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which guarantees the symmetry of our solution method.

(From a physical viewpoint and in a structural mechanics context, the smoothing
procedure proposed here consists in treating two subdomains as two linear springs
connected in series, computing the jump of the displacement field at their connection,
and redistributing this jump among both springs according to their “relative
stiffnesses” k(*) and k(?). While this idea is not new [FR94], the derivation of the
smoother yields for the first time a rational estimate of the local measure of a
subdomain stiffness.

The Multiple Subdomain Problem - a New Coarse Problem

In order to generalize the smoothing procedure discussed above to the case of
an arbitrary number of subdomains, we denote by b(*)J the restriction of the
Boolean operator B(®) to the j-th edge of the interface boundary ng). Using the
interior /interface boundary partitioning of the subdomain unknowns we can write

B(s) — |: 0 b(s)vi b(S)J e b(s)vl ] (311)

b($)J can be further decomposed into square submatrices b(s7)7 that describe the
connectivity of subdomains Q(*) and Q) along edge j. Designating by r,[... the
subdomains interconnected with Q(*) along I'}, we have

b(sM'T:[O I YOO C S T C) R e ] (3.12)

Next, we designate the unsigned equivalents of b*")»J by a hat, and introduce the
operator b(sm):3" p(rs):d which gives the correspondence between the numberings of the
unknowns on both sides of the interface. Of course, we have b(sm):" plsm)d = J. The
generalization to an arbitrary number of subdomains of the smoothing procedure (3.5—
3.6) then goes as follows:

r#s
aés)’ﬂ — ﬁ(s)’j’u,gs)’]-f— Z ];(37‘),jT[;(Ts),jﬁ(T),jugT)aJ Vedgej (313)
rr{ord
i = u® - KO KO @ —ul®) s=1,---N, (3.14)

where 8(*)7 are scalar smoothing parameters. If the 3(*):7 are constrained to have a
unit sum

o =1 Y edge j (3.15)
r¢org
the corrections of the subdomain interface solutions can be written as

r#£s
Au[()s)aj — ﬂ[()S),J _ 'u,((]s)’J - _ Z ﬁ(r),j B(sr),jT 5?7‘),] (3.16)

() j
5 i) )

where 837 = hlsr)igy ()7 _ ).y ("I To determine the edge coefficients B()7 we
follow conceptually the same Rayleigh-Ritz approach as presented in Section 3. If the
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unit sum condition is enforced by a set of multipliers 7;, the minimization of the total
energy leads to the following auziliary coarse problem

s#q pF#S ' _ )
)R DD DI V((g),4]: TS 3 j
sT{ord  er{ori  pror: (3.17)
. . o . T ~ .
where k(@750 = (b(sq),J(;S_GS)) [ng)]j,i (b(sp),z(sf_pS)) (3.18)

and [S,EZ)] ;i is the Schur-complement of K(*) associated with the edges j and i.
For symmetry, the correction of the Lagrange multipliers introduced by between
Q) and Q) along edge j is then computed as

AN — b(sr),jﬁ(r),jAfés)J + p(rs)d gle)i AféT)’j (3.19)

where AfY = 5@ — 4{”). In summary, using the notation of Table 1, this
preconditioning step can be written as

s=N,
¥ 0 0
21 = { Y ) BO) [ 0 S ] BW" g)" } wh (3-20)
s=1 bb

Cost-effective Alternatives — Lumping and “Superlumping”

The smoothing procedure presented in Sections 3 and 3 requires solving in each
subdomain several Dirichlet problems. A first economical variant can be designed
by replacing ﬂgs) = ul(-s in (3.14), which has the effect of not propagating the
correction of interface smoothing to the subdomain interior unknowns. It can be

shown that such a strategy leads to similar expressions of the smoothing coefficients,
but replaces the expensive Dirichlet operators S,SZ) by the more economical lumping

matrices K,S;) in the expression (3.20) and in the computation of the interface
stiffnesses (3.18). This lumped preconditioner does no longer take into account the
intra-subdomain heterogeneities associated with internal nodes. Nevertheless, the
heterogeneities associated with the elements on the interface are still treated correctly.

Noting that the auxiliary coarse problem must be reconstructed at each iteration,
an even more economical variant for computing the smoothing parameters 5(*) in the
lumped preconditioner can be constructed by assuming that the total energy of the
system can be “superlumped” and written as

s=N,
. ]. g s T k] s
g(ﬂ(S),J) =C+ 5 E : A’U,g ) Klsb,)d'iag AU’I() ) (321)
s=1

where K ,Ez’)di ag denotes the diagonal part of K lg;). In that case, the smoothed interface
solution is still given by (3.13), but 3(")» is now understood as the diagonal matrix
of the interface smoothing parameters (one coefficient per unknown). The unit sum
constraint is then expressed at the unknown level. Noting c(s7):3" = plsr)i” p(rs).s
the correspondence between interface numberings, the generalization of the unit sum
constraint and (3.16) can be written as
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r#q
18(3)1]' + Z C(S’I‘),jTIB(T),jC(ST),]' — I V edge .7 (322)

»r{ord

r#s8
Augs)d - _ Z (c(sr),jTﬂ(r),jc(sr),j) 8(37') 4T 6§sr),] (323)

(M ord
iFrom (3.21), it follows that
. T . -1
/6(3)’] = I:Klsz,)diag]j { Z C(ST)’J [KlEZ?diag]j C(ST)J} (324)
’I‘ZF(IT) DF;

where ¢(*)7 = I. Hence, for this second smoothing alternative referred to here as the
superlumped one, the auxiliary coarse problem is diagonal and needs to be constructed
only once. Therefore, implementing it is trivial and solving it is inexpensive.

4 Numerical Results
We consider again problems (a) and (b) depicted in Fig 1, and perform their linear
static analysis using the FETI method with the Dirichlet and lumped preconditioners,

as well as the various smoothing procedures presented in this paper. We report in Table
2 the number of FETI PCPG iterations.

Table 2 Performance results (||Ku — f||]2 < 107%||f||2)

Nbr. of PCPG iterations

Dirichlet lumped
Decomposition N x M - smooth.  hyper. | - smooth.  hyper.
2x2 18 16 17 35 35 36
plane stress 4x4 63 23 26 80 48 47
8x8 83 27 25 89 46 44
stiffened panel with 4 subdomains | 122 115 25 | 128 116 50

For the 2D plane stress problem (a), the full smoothing method and its
superlumped alternative yield very similar convergence rates, and both of them
improve dramatically the performances of the Dirichlet and lumped preconditioners.
Table 2 also demonstrates the scalability of the overall solution method with respect
to the number of subdomains.

For the stiffened panel problem, the full smoothing procedure improves only slightly
the convergence of the FETT method, whereas the superlumped variant reduces the
number of iterations by a factor of 5 (Dirichlet preconditioner), and by a factor
greater than two (lumped preconditioner). For this problem, the poor efficiency of
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the full smoothing method can be explained by the fact that one coefficient cannot
characterize an interface stiffness, because the relative interface stiffnesses at the
intersection between the stiffeners and the skin depend strongly on the direction of
the displacement unknown.
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