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A Domain Decomposition Solver
for Three-Dimensional Steady Free
Surface Flows

Einar M. Rgnquist

1 Introduction

The prediction of the free surface shape is an important aspect of many materials
processing applications. It poses great challenges in terms of the design of efficient
solution algorithms for the governing equations, in particular, for three-dimensional
problems. The governing equations are highly coupled, and there is a great need
for fast, robust and memory efficient methods. Even though recent improvements
in solution strategies have made three-dimensional simulations tractable [HP91,
CMBBC91, EPW92, RE96], there is still room for significant improvement.

In [Rgn96], a domain decomposition method was proposed for the solution of the
steady, incompressible Navier-Stokes equations, but in the context of imposing velocity
boundary conditions. This paper represents an extension of the method in [Rgn96]
to general stress boundary conditions. In particular, we consider steady free surface
problems in which surface tension plays an important role. The segregated solution
approach used in [HR94] for two-dimensional problems is here extended to the three-
dimensional case. The update of the geometry is decoupled from the solution of the
steady Navier-Stokes equations; this paper emphasizes the latter step.

In terms of providing insight into why the method in [Rgn96] works as well as it
does, we refer to [Cas96]. In [Cas96] other solution approaches are also proposed for
the steady Navier-Stokes equations. However, no numerical results exist yet for these
alternative approaches.
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2 Governing Equations

We consider here steady, incompressible, Newtonian, viscous fluid flow in a three-
dimensional domain €2, as governed by the incompressible Navier-Stokes equations

pujui,j — Tij,j —+ fz in Q, (21)
ui; = 0 in Q.

)

Here, the stress tensor 7;; can be expressed as
Tij = —p(si]’ + ,u(ui,j + U]’,i) . (23)

In (2.1)-(2.3), u; is the velocity, p is the pressure (relative to zero ambient), f; is the
body force, p is the density, p is the viscosity and J;; is the Kronecker delta symbol.
We use indicial notation, with subscript indicial comma denoting differentiation, e.g.,
u;,; = Ou;/0z;. Summation over repeated indices is assumed.

The domain boundary 912 is decomposed as 92 = 9, U 9Q, U 9, U 912,, with
velocity boundary conditions imposed on 012, surface tension traction boundary
conditions imposed on 0f2,, symmetry conditions imposed on 9€); and outflow
boundary conditions imposed on 912,. The appropriate boundary conditions can then
be expressed as

u; = U on 09, (2.4)
niTiin; = OK on 0, (2.5)
tiTiyn; = tio; on 0, (2.6)
tiTijn; = 0 on 0, (2.7

niu; = 0 on 0f) (2.8)
nTiiN; = —D on 91, (2.9)
tiu; = 0 on 08, (2.10)

Here, @w; is the prescribed velocity on 0, (this specification also includes the
specification of no-slip conditions), n; is the outward unit normal on the surface,
t; is any tangent vector on the surface, o is the surface tension, k is twice the
mean curvature, and P is the ambient pressure. Note that the ¢; 0, in (2.6) must
be interpreted as the surface gradient of the surface tension on 99, . From (2.7)-(2.10)
we also note that the symmetry conditions represent zero normal velocity and zero
tangential stress, while the outflow conditions represent zero tangential velocity and
normal stress equal to minus the ambient pressure.
Finally, the kinematic condition at steady state is

uwn; =0  on 00, . (2.11)

3 Variational Formulation

From (2.4)-(2.10) we note that all the three velocity components are specified on 9Q,,,
two components are specified on 9€,, one component is specified on 9Qs and no
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component is specified on 9€,. We first define the space HL(2) to be the usual H*
space, but where the (scalar) members of the space must be compatible with both the
non-homogeneous and homogeneous Dirichlet (vector) velocity boundary conditions
on the domain boundary 2. In an analogous fashion, we define the space H(2) to be
similar to the space H} () except that homogeneous Dirichlet conditions are imposed
wherever Dirichlet velocity boundary conditions are specified in H} ().

The equivalent weak form of (2.1)-(2.10) can then be expressed as: Find u; € H}(Q)
and p € L%(Q) such that Vv; € H} (),

/Q{ poitjui; + vij[=pOi; + pui g + uji)] —vifi }dQ — 1o (vi) =0, (3.12)
Vq € L*(Q), /Q qui;dQ =0 , (3.13)
where
I (v;) = / v; Tijn; dS = v;g; dS . (3.14)
a0, %,

The surface integral given in (3.14) corresponds to the natural imposition of stress
boundary conditions along the free surface. In [HP91] a very elegant form is derived for
the imposed surface traction g;, where only surface-intrinsic co-ordinates are needed,
and where a single form automatically generates both the normal and tangential
boundary conditions required for viscous analysis.

In this study, our variational form is based on the results derived in [HP91]. Even
though the numerical results in [HP91] put a restriction on the free surface to be
either closed or periodic, the variational results derived in [HP91] are also appropriate
for the more general case where the free surface intersects an outflow boundary or
a symmetry boundary. For example, the variational form automatically provides a
term which allows for the imposition of contact angles in three dimensions; this term
is needed in this study in order to impose a 90° angle along the line where the free
surface intersects the symmetry boundary or the outflow boundary.

For free surface problem, the geometry along the free surface is an unknown in
addition to the velocity and pressure. The variational form derived in [HP91] only
requires the geometry space to include C°-surfaces, even though the curvature term
in (2.5) (strong form) suggests that C'-surfaces may be required. The lowering of the
continuity requirement for the geometry description is here in line with finite element
analysis for second-order partial differential equations.

The kinematic condition given in (2.11) can be used directly in order to update the
free surface shape. Here, however, we shall use an approach similar to the approach
studied in [HR94] for two-dimensional problems. In particular, we shall consider an
extension to three dimensions for the case when surface tension plays an important
role; this is described in the next section.

4 Discretization and Solution Strategy

Our discrete equations are generated based upon the weak form. Following a spectral
element discretization procedure [MP89], the domain is broken up into K hexahedral
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elements. Within each element, and along each (local) spatial direction, the geometry
and the velocity are approximated as N** order polynomials, while the pressure is
approximated as a polynomial of degree N — 2 [MPR92].

Following a similar procedure as described in [Rgn96] (non-staggered grid), we arrive
at a set of discrete equations which can be expressed in matrix form as

Au+C(u)u-D'p , (4.15)

IS I=n

Here, A is the discrete (coupled) viscous operator, C(u) is the discrete, nonlinear,
nonsymmetric advection operator. D is the discrete divergence operator, and its
transpose D7 is the discrete gradient operator. The vector u contains the nodal
velocity values, p represents the nodal pressure values, and the components of f are
the nodal forces.

We now give a brief summary of the entire solution procedure:

1. Similar to the approach used in [HR94], we first solve the discrete Navier-
Stokes equations imposing the kinematic condition along the free surface
(zero normal component) instead of the original free surface boundary
conditions.

2. Next, we evaluate the residual in the discrete momentum equations imposing
the original free surface boundary conditions, and restrict this residual to the
free surface. We remark that, since we assume that surface tension plays an
important role (large Weber number), we can interpret the normal component
of this free surface residual as being due to an incorrect local curvature used
in (3.14).

3. The surface term (3.14), represented in the form derived in [HP91], is
linearized with respect to the normal surface displacement. From this
linearization, we create a system of equations for the normal free surface
displacement, with a right hand side equal to the residual in the momentum
equations, restricted to the free surface, and restricted to the normal
component.

4. We now solve the system for the normal free surface displacement.

5. The free surface displacement is extended smoothly to the interior of the
computational domain by solving the three-dimensional, discrete elasticity
equations, imposing the free surface displacement as Dirichlet data.

6. The geometry is now updated, taking into account the computed deformation
in the entire domain.

7. Steps 1-6 are repeated until the residual in the momentum equations and the
free surface displacement are below prescribed tolerances.

5 A Domain Decomposition Navier-Stokes Solver

In the following, we shall focus our attention on Step 1 in the algorithm described in the
previous section. We start by first expressing the original, nonsymmetric, nonlinear,
discrete steady Navier-Stokes system (4.15)-(4.16) in the compact form

Fx=g, (5.17)
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where

(>
!
E

g = [gjg]Tz[LQ]T-

As usual we linearize the system (5.17) and perform a Newton iteration. For each
iteration we have to solve a system of the form

Nx"=g~— Fx" 1 (5.18)

where N represents the linearized Navier-Stokes operator, x" is the solution after n
Newton iterations, and 6x” = x™ — x™ 1.

The iterative substructuring algorithm we now present is for the system (5.18).
Our method can therefore be described as a Newton-Krylov method. We proceed by
directly considering the preconditioned, linearized, steady Navier-Stokes system

M 'Nox"=M'(g-Fx""), (5.19)

where M ™! represents the Navier-Stokes preconditioner.
Following the approach given in [Rgn96], the Navier-Stokes preconditioner can be
expressed in the additive form

M1 =M+ IT+MIG)[Y M+ Mt (5.20)

M=

=~
Il

1

G= ( g ‘%T ) . (5.21)

We now briefly comment on the individual components in this preconditioner. Most
of the details are given in [Rgn96] in the context of the velocity formulation of the
Navier-Stokes equations. We shall here emphasize the extension of this preconditioner
to solving problems with general boundary conditions, for which the stress formulation
of the Navier-Stokes equations is required. Our specific application will be the study
of three-dimensional free surface flow. The original work in [Rgn96] was inspired by
progress in the understanding and application of domain decomposition methods over
the past years [DW90, SBG96].

The first term in the preconditioner, Mal, involves the restriction of the velocity-
pressure residual to a coarse grid. We consider here a coarse grid based upon quadratic
Q2/P; finite elements induced by the original spectral element decomposition.
Note that, in this study, each N*"-order spectral element represents an individual
subdomain. The quadratic finite element grid is used in order to construct a coarse
discretization of the original, linearized Navier-Stokes operator. We also add streamline
diffusion on the coarse grid if the grid Peclet number is sufficiently large. The coarse

where
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residual represents the right-hand-side for this coarse system, which is solved using
a direct, banded solver. Note that the coarse, linearized Navier-Stokes system here
couples all the velocity components, even for the linear Stokes case. The coarse system
is also compatible with all the original boundary conditions, in which zero, one, two
or three velocity components are specified on the various surface segments. After the
coarse solution has been computed, the solution is extended to the original spectral
element mesh.

The term M;l in the preconditioner represents the solution of a local Stokes
problem defined in subdomain Q, k = 1,..., K, with homogeneous velocity boundary
conditions prescribed on the subdomain boundary 0€2;. We now make several remarks
regarding the local, discrete Stokes operator. First, the stress formulation is replaced
by the velocity formulation. This is a valid replacement due to the homogeneous
velocity boundary conditions. Thus, the coupled viscous operator is replaced by
the (vector) Laplacian operator. Second, the scalar, spectral, elemental Laplacian
operator is replaced by a spectrally equivalent finite element operator [DM90]; in three
dimensions, this operator represents linear tetrahedral elements based on the tensor-
product Gauss-Lobatto Legendre points. The local, scalar, discrete finite element
Laplacian operator is explicitly constructed and inverted using a banded, direct solver.
In order to proceed, this operator is then used to explicitly construct and invert the
local, Uzawa pressure operator (the local pressure is defined to have a zero average).
Hence, only back substitution is needed during each preconditioning step, one to find
the local pressure, and one for each velocity component. For more details, see [Rgn96].

The term My ! represents the inversion of the diagonal of the viscous operator
for all the velocity degrees-of-freedom on the subdomain interfaces, I'. Note that this
operator appears in two places in the preconditioner (5.20). This is due to the fact that
there are two contributions to the right-hand-side for this interface system. One is the
initial residual in the momentum equations, restricted to the subdomain interfaces.
The second is the result of operating with the gradient operator D7 on the pressure
found from solving all the local Stokes problems, and then restricting the result to
the subdomain interfaces; this second contribution gives rise to the gradient operator
G in (5.20). Finally, the prolongation operator associated with this interface system
represents the identity operator for the velocity degrees-of-freedom along I', and the
zero operator for the remaining degrees-of-freedom in the domain.

In summary, our Navier-Stokes preconditioner is based upon a hierarchy of discrete,
spatial operators, starting with a linearized Navier-Stokes operator for the coarse,
global problem, a steady Stokes operator for each individual, local problem, and finally,
an elliptic (Poisson type) operator for the interface problem.

Finally, we remark that all the individual components in the preconditioner (5.20)
are here updated after each geometry update. This is perhaps a conservative approach,
and future work will include an investigation into finding a more optimal updating
strategy for free surface problems.

6 Numerical Results

We now present numerical results for the extrusion of a three-dimensional die through
an extruder with a square cross-section. Symmetry conditions allows us to only
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consider a quarter of the die. The boundary conditions consist of: (i) the specification
of an inlet velocity; (ii) no-slip velocity conditions along the extruder walls; (iii) free
surface boundary conditions along the surface of the die that is exposed to ambient
pressure; (iv) outflow conditions to limit the computational domain; and (v) two
orthogonal symmetry planes resulting from the fact that we only consider a quarter
of the original, square die.

The computational domain is broken up into K = 33 spectral elements, each of
order N = 5. The Reynolds number is Re = pUL/u = 20 and the Weber number is
We = o/(pLU?) = 2. Here, the characteristic length, L, is based upon the thickness
of the die, and the characteristic velocity, U, is based upon the inlet velocity.

Figure 1 shows the initial surface mesh along the (fixed) extruder walls (right half
of the domain), along the free surface (left half of the domain), and along one of the
symmetry planes (bottom surface). The flow goes from right to left. The fixed, square
extruder exit is represented by the square cross-section in the middle of the domain.

Figure 2 shows the final surface mesh along the fixed extruder walls (identical to
the initial mesh), along one of the symmetry planes (the view is identical to the initial
mesh), along the free surface, and along the outflow boundary. As the die exits from
the extruder (in the middle of the domain), and a relaxation of the stresses occur,
we see that the die swells away from the corners of the square extruder exit, while
the die contracts near the corners of the extruder (only a single corner is present in
this computational model due to the two orthogonal symmetry planes). The die shape
also undergoes a dramatic change in shape from having a square cross section at the
extruder exit to having a circular cross section at the outflow boundary.

We now comment on the outflow conditions used during this simulation. A priori,
the pressure at the outflow is not known. However, we made the assumption that the
final die shape at the outflow would, in fact, have a circular shape. In this case, the
pressure can readily be calculated from knowing the radius of the cross-section and
the surface tension. For each update of the geometry, this model was used in order to
update the pressure at the outflow boundary. Note that only a single node along the
intersection of the free surface and the outflow boundary was used for the purpose of
estimating the radius. At convergence, we see that our assumption was correct, and
hence, our strategy is valid for this particular case.

In terms of the performance of the steady Navier-Stokes algorithm, our experience
so far suggests that the behavior is quite similar to the one reported in [Rgn96].
For simple, three-dimensional model problems, the introduction of the more general
stress formulation as well as more general stress boundary conditions, do not seem to
significantly change the earlier performance results.
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Figure 1 Extrusion of a square die; initial mesh



RONQUIST

800

7

980,

L7
V4

i

Grid

Figure 2 Extrusion of a square die; final mesh; Re=20 and We=2
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