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Parallel Implementation of the
Two-level FETI Method

Frangois-Xavier Roux and Charbel Farhat

1 Introduction

Recently, a new preconditioning technique for the FETI method based upon a coarse
grid problem associated with interface crosspoints has been introduced [MTF]. This
gives optimal convergence property for high-order problems. In the present paper
the problem of the parallel implementation of this new preconditioning technique is
addressed and the performance of this approach is demonstrated for real life structural
analysis problems.

For fourth-order problems, like plate or shell problems, the singularity with interface
crosspoints, that means nodes that belongs to more than two subdomains, deteriorates
the condition number of the dual Schur complement operator, the condensed interface
operator defining the FETI method [FR94].

A new preconditioning technique leading to a two-level handling of interface continuity
requirements has been recently developed [MTF]. The independence upon the number
of subdomains and the polylogarithmical dependence upon the number of elements
per subdomain of the condition number of the preconditioned interface problem has
been proved.

In the present paper the problem of the parallel implementation of this new
preconditioning technique is addressed. After recalling the principle of the FETI
method, the new preconditioning technique is introduced and reinterpreted as a
two-level FETT algorithm. A parallel implementation strategy is derived from this
formulation. Last, the performance of this approach is demonstrated for real life
structural analysis problems on an Intel-PARAGON system.

2 The FETI Method

The FETI method is based on introducing the Lagrange multiplier of the continuity
condition on interfaces between subdomains. In the case of linear elasticity equations,
the Lagrange multipler is equal to the field of interaction forces between subdomains.
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In each subdomain, €;, the local displacement field is solution of the linear elasticity
equations with external loadings and boundary conditions inherited from the complete
problem, and imposed forces (Neumann boundary conditions) on the interfaces with
other subdomains.

With a finite element discretization, this leads to the following set of equations:

Kiu; = BIX+ b; (2.1)

where K is the stiffness matrix, u; the displacement field, B; a signed boolean matrix
associated with the discrete trace operator, and A the Lagrange multipler.
The continuity requirement along the interfaces is written as follows:

> Biu; =0 (2.2)

where the signed discrete trace matrices B; are such that if subdomains €); and ; are
connected by the interface I';;, then restriction of equation (2.2) on I'y; is: u; —u; = 0.
In most subdomains, local problems (2.1) are ill posed, because only Neumann
boundary conditions are imposed.

So, if K Z+ is a pseudo-inverse of matrix K;, and if columns of matrix N; form a basis
of the kernel of K; (rigid body motions), equation (2.1) is equivalent to:

{ u; = K [bi + BIA] + Ny

NI[b: + BIA] = 0 (2:3)

The first equation means that the solution of the problem is defined as the sum of a
particular solution computed using the pseudo-inverse of K; plus an element of the
kernel. The second equation means that the right-hand side of equation (2.1) must be
in the image space of K;.

Introducing u; given by equation (2.3) in the continuity condition (2.2) gives:

Y BiK}BIX+) BiNioy = - Y BiKj'b; (2.4)
% i i

With the constraint on A set by the second equation of (2.3), the global interface
problem can be written:
D -G A d
e L)L 2
With:

e D=> B,K l+ B!, dual Schur complement matrix,
e Ga =) B;N;q;, jump of rigid body motions defined by «; in €,
L] (Gt)\)z = Nlth)\, d=— EBsz_b“ C; = —Nltbl

3 Parallel Solution of the Condensed Interface Problem

The number of constraints of the hybrid condensed interface problem (2.5) is the total
number of rigid body modes. As this number is low, the projector associated with this
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constraint can be explicitly computed:
P=1-GGG)'Gt (3.6)

The computation of the product by projector P requires products by G and G* and
the solution of systems with form:

(G'G)a = Gty (3.7)

The product by Gt can be performed independently in each subdomain, the product
by G requires exchanging data through interfaces between neighbouring subdomains.
Both products can be easily performed in parallel in a message passing programming
environment.

Parallelizing the solution of problem (3.7) is more challenging, because of its global
implicit nature. To avoid the construction of matrix GtG, this problem can be solved
by the conjugate gradient algorithm. Then only products by G and G* that can be
performed in parallel are required.

Applying the projected conjugate gradient algorithm to the condensed interface
problem (2.5), requires the following two main steps.

1. Given an approximate value AP, compute the particular solution of the local
Neumann problem in each subdomain:

ubt = K;F[b + BINP (3.8)

and compute the jump of the local displacement fields along interfaces
between subdomains that is the gradient of the condensed interface problem:

¢ =Y Burt (3.9)

2. Compute the projected gradient, Pg?P given by formula:
Pg? = g* + Ga® with (G'G)a? = —Gtg? (3.10)

The projection step consists in fact in computing the rigid body motions coefficients
a; that minimize the jump of the complete displacement fields given by:

u? = ub + Njoy (3.11)

(3

This minimization is performed in the sense that the jump of the complete
displacement fields «¥, which is in fact the projected gradient, is orthogonal to the
traces of all the local rigid body modes:

i i i

(GB)tPgP =0VB & (B;N;)'Pg? =0 Vi (3.13)

This projection phase consists in solving a global coarse problem associated with the
rigid body coefficients. The condition number of the projected dual Schur complement
can be proved to be independent upon the number of subdomains ([FMR94]).
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Figure 1 A “corner mode” for a scalar problem

4 The Second-level FETI Preconditioner

With domain decomposition method using local Neumann problems, the jumps of
local solution fields at interface crosspoints can be discontinuous. For second-order
problems, this singularity entails a polylogarithmic dependence of the condition
number upon the local mesh size h/H ([Le 94]). For higher order problems, like plate
and shell problems in structural analysis, the singularity is polynomial. So it is of great
importance to get rid of these singularities.

The solution consists in constraining the Lagrange multiplier to generate local
displacement fields that are continuous at interface crosspoints. Enforcing this
constraint induces another level of preconditioning for the FETI method, that restores
the optimality property of the FETI method ([FM]).

To get a practical formulation of this constraint, it can be observed that requiring
the continuity of displacement fields at interface crosspoints is equivalent to imposing
their jump to be orthogonal to the jump of “corner modes” defined as displacement
fields with unit value in one space direction at a node connected to a crosspoint as in
Figure 1.

Note C; the set of corner modes in subdomain §2;, then the Lagrange multiplier
AP satisfies the continuity requirement of associated displacement fields at interface
crosspoints if the projected gradient satisfies:

(BiCi)tng =0Vi & (Z BiCi"ﬁ)tng =0 \Vl’)’ (414)

k3

The analogy between constraints defined by equations (3.13) and (4.14) suggests that
the preconditioner can be constructed as a correction based upon jumps of corner
modes in the same way as the projected gradient is constructed as a correction of the
gradient based upon jumps of rigid body modes in (3.12).

MPgP = Pg® + > BiC;6; (4.15)

In term of structural analysis, this means that correcting the interaction forces at
interface crosspoints should be enough to make the local displacement fields continuous
at these points. In fact, the direction vector must be constructed from the projection
of the preconditioned vector M Pg? to satisfy the constraint of orthogonality to the
traces of rigid body modes (3.13). This projected preconditioned projected gradient
takes the following form:

wP = PMPg? = Pg?P + ZBZCZJ, + ZBiN,-a,- (416)
i i
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The variation of displacement fields induced by the variation w? of interaction forces
must have a null jump at interface crosspoints. By definition of the dual Schur
complement, the jump of displacement fields induced by interface forces w? is PDwP.
According to (4.14) this condition can be written:

() BiCivi)'PDw? = 0 Vy (4.17)

2

By definition of projector P given by (3.13), this jump satisfies also :

() BiN:3;)'PDw? =0 Vp (4.18)

k3

Introduce now the coarse subspace defined by both the rigid body modes and the
corner modes of all subdomains. Given «; and J;, coefficients of rigid body motions
and corner displacements in each subdomain €2;, define local coarse grid coefficients &;
by merging «; and §; vectors. Then, the global coarse correction of interaction forces
is defined as:

Ceé = (Z B;N;a;) + (Z B;C;;) (4.19)

Thus the direction vector w? takes form: w? = Pg? + Cgé (4.20)

From equations (4.18) and (4.17) the coarse correction must satisfy the variational
equality:

(CaC)!PDw? = (Cg¢)!PDPw? =0 Y( & (CgC)!PDPCgé = —(Ca()!PgP V¢
(4.21)

From (4.16), w? must satisfy the constraint:
Puw? =uw? & PCGE = ng (4.22)

Equations (4.21) and (4.22) represent in fact a constrained variational problem for the
coarse grid space defined by rigid body and corner modes, which is similar to problem
(2.5). Its formulation as an hybrid algebraic system of equation can be written:

t _(t Ot
W w1 e

This system is precisely a coarse FETI problem, posed in the subspace of Lagrange
multipliers defined as the image space of Cg. With this coarse grid preconditioner, the
solution algorithm appears clearly as a two-level FETI method: at each iteration of
projected conjugate gradient at the fine level, an additional preconditioning problem
of the same type has to be solved at the coarse grid level.
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5 Parallel Implementation and Performance Results

To keep a local representation of each operator, and to exploit domain-based
parallelism, both the fine and the coarse grid problems must be solved through the
same projected gradient procedure. However, this approach may appear very costly for
the coarse grid problem, firstly because this problem must be solved exactly at each
projected conjugate gradient iteration for the fine grid problem, and secondly because
each coarse grid iteration is as expensive as a fine grid iteration, as local problems are
the same for both.

In order to limit the cost, the coarse grid dual Schur complement can be preassembled
at each subdomain level. In practice, if {; is a coarse vector that has non zero
entries only in subdomain Q;, DCg(; is non zero only in neighboring subdomains £2;.
Hence, to precompute the C%DCg matrix in each subdomain, it is necessary to solve
the Neumann problem in subdomain 2; for each coarse grid mode in neighbouring
subdomain €); with non zero trace on interface I';;.

The solution time for solving fine grid problems iteratively can be also drastically
reduced using the restarted (projected) conjugate gradient technique presented in
[Rou95]. The principle is as follows: if a set of conjugate directions (w*), 1 < k < p, is
given, then the element z%,,,., of 2°+Span{w!,w?,... ,wP} that minimizes the residual
can be easily computed:

20 =0 i ka (5.24)
start — P (Awk,wk) .

Applying the standard conjugate gradient algorithm from starting vector z%,,,., does
not ensure that the new direction vectors are conjugate to the vectors w*. To enforce
these additional conjugacy relations, the new direction vector d? at iteration number
q must be reconjugated to the vectors w* through the following procedure:

dr =gt - TATT) o i (@t Aw) e (5.25)
(Ada—1,da-1) P (Awk, wk)

where g9 is the gradient vector at iteration q, g? = Az9 — b.

When this procedure is applied for successive right-hand sides with accumulation of
conjugate direction vectors, it finally consists in using the conjugate gradient algorithm
as a direct solver with an explicit computation of the inverse problem. For the two-
level FETI method, this technique is applied for both coarse grid problems. As the
dimensions of these problems are small, the procedure is very efficient numerically,
and it can be parallelized via a domain-based approach.

Table 1 gives the performance results for a real life application of the two-level FETI
method on an Intel-PARAGON machine with increasing number of subdomains and
processors. The model is a submarine shell structure featuring 60332 nodes and 362000
degrees of freedom. The first 4 columns of this table give the numbers of subdomains,
rigid body modes, corner modes and iterations at fine level. Column 5 features the
condition number of the preconditioned condensed interface problem. Columns 6 and
7 give the parallel wall clock times for the initialization phase, including local matrices
factorization and coarse matrix forming, and for the iterative solution phase. In both
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Table 1 Comparison of parallel performance of one- and two-level FETI

|| number of || || timings ||
rigid body corner . init. total iter.
proc. modes modes | %% CN (coarse) (coarse)
[ Two-level FETI, local Dirichlet preconditioner |
30 132 351 93 822 | 361 (108) | 514 (74)
40 168 474 04 662 208 (86) 453 (92)
60 318 762 105 828 128 (57) 355 (146)
80 396 954 87 537 69 (34) 240 (128)
[ One-level FETI, local Dirichlet preconditioner |
30 132 0 289 367398 253 1374
40 168 0 312 || 3206569 212 1217
60 318 0 406 || 3505918 71 869
80 396 0 416 || 315799 35 597

columns the fraction of time spent at coarse grid level is given for the two-level case.
According to theory, thanks to the coarse grid preconditioner associated with rigid
body modes, the condition number should not depend upon the number of subdomains
but only upon a the local mesh size h/H. For a fixed global problem, increasing the
number of subdomains increases the local mesh size, and consequently should decrease
the condition number. But the condition number depends also upon the aspect ratio of
subdomains. In the case of the real life problems like the one presented here, different
mesh splittings lead to different aspect ratios of subdomains. Hence, although the local
mesh size increases with the number of subdomains, the condition number does not
necessarily decrease in a regular way.

Nevertheless, these tests show firstly the great improvement of condition number due
to the second level FETI preconditioner. Secondly, it leads to a significant decrease,
more than a factor of 2, of the total solution time compared to the one-level method.
Thirdly, the parallel implementation exhibits a good scalability, although the time
spent for coarse grid iterations reaches 50% of the solution time. These results are
very representative of the ones obtained for various industrial problems.

6 Conclusion

The two-level FETI method appears to be a very efficient method for solving real
life shell or plate problems. With a parallel implementation using domain-based
parallelism and the restarted conjugate gradient method for coarse grids problems,
the performance of the method on distributed memory parallel machines with message
passing programming environment is already quite satisfactory. Nevertheless, there is
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still room for improvement in the parallel solution of coarse grid problems.
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