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A Multigrid Iterated Penalty
Method for Mixed Elements

Ridgway Scott and Shangyou Zhang

1 Introduction

We consider the following stationary Stokes problem: Find functions u (the fluid
velocity) and p (the pressure) on a bounded polygonal/polyhedral domain Q C R4
(d = 2,3), such that

—Au+gradp =1 in Q,
divu =0 in Q, (1)
u =0 on 092,

where f is the body force. In the variation form of velocity-pressure formulation of
the Stokes equations, the velocity and pressure are in the Sobolev spaces Hj ()¢
and L3(1), respectively. The mixed element approximation spaces can be chosen to
be the corresponding subspaces. A natural pairing would be continuous piecewise-
polynomials of degree (k + 1) and discontinuous piecewise-polynomials of degree k
for the velocity and pressure, respectively. Such mixed element solutions satisfy the
incompressibility condition, i.e. pointwise divergence free. Scott and Vogelius [SV85]
showed that the Babugka-Brezzi inequality holds for such Pjy1-Pp triangular mixed-
elements in 2D if the polynomial degree k is 3 or higher and if the meshes are singular-
vertex free. This result is partially extended to 3D in [Zha94]. It is shown that, when
defined on tetrahedral meshes of a macro-element type, the above Py 1-Pj elements
are stable if the polynomial degree for velocity is 3 or higher.

The mixed elements approximation to (1) in weak formulation is: Find [u;, p,] € Vj,
such that

a(u;, v) +b(v,p;) +b(u;, ) = (f,v) V[v.q]€Vj, (2)

where a(u,v) := (Vu, Vv) and b(v,p) := —(divv,p). Here {V;} are multilevel Py -
P, mixed finite element spaces:

Vi = (Phar,7;)? % Pog, C (Hg (@) x Lg(€),
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defined on nested or nonnested triangular/tetrahedral grids {7;} covering 2, where
Py = Prr NHG(Q), PRy = Pug; N L3(Q), Pr,7; and Pi7; are the piecewise
continuous and discontinuous polynomials of degree k on the mesh 7;, respectively.

We note that for Pi41-Pr elements, the divergence of the discrete velocity space is
precisely the discrete pressure space, i.e., {divu|u € (P? Jrl’73)d} = P,S’Tj. Therefore,
we can avoid introducing the discrete space PI?,TJ- in computation completely in the
following iterated penalty method (3), which is a special form of the augmented
Lagrangian method [FG83] . Let r > 1. The iterated penalty method [BS94] defines
u” € (P1?+1,7;-)d by

a(u”,v) + r(diva”,divv) = (f,v) + (divv,divw") Vv € (P}, 7, )4,
n+l _ N n

w =w"+ru (3)
sequentially given w® € (PP, 7.)? (which is usually 0). p" = divw" € P} ;.. The key
point of the iterated penalty method is that the system of equations represented by the
first equation in (3) for u™ will be symmetric and positive definite. Each time when we
solve the linear system (3), we apply the multigrid method to get an inner iteration.
Another essential point here is that we only do one or two multigrid iterations for (3),
which needs not to be solved accurately as the solution u” is not final. We show that
the overall convergence rate of the combined iterated penalty — multigrid method is
independent of the size of the discrete system, and that the overall computation cost for
solving the discrete Stokes equations up to the order of approximation is proportional
to the system size if the penalty parameter r is chosen not too big. Therefore the
method is optimal in the order of computation. The analysis is confirmed by our
numerical computation.

2 Analysis

We first analyze the the iterated penalty method. We will define a multigrid iterated
penalty method. Then we will apply the general theory developed in [BP87], [BPX91]
and [SZ92] to obtain a convergence analysis of the multigrid iterated penalty method.
Theorem 1. (Convergence of the iterated penalty method) For u™ defined in (3), the
following error reduction relation holds:

c -
15 S Sl — a7

Iy —u®]

where C is independent of j.

PROOF. Let the errors be denoted as e” = u” —u; and € = p” — p; = divw” — p;.
We will use a short notation

U] = (’P’?J’_l"]; )d.
Subtracting (2) from (3), it follows

a(e”,v) + r(dive”,divv) = b(v,€") Vv e Uy, (4)

€n+1 — Gn + rdivun = en “+ TdiVen. (5)
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Hence, combining the above two equations we can get

a(e™t e 4 r(dive™™!, dive™™t) = b(e™, ) (6)
= b(e"! ") — r(dive™t!, dive™)
a(e"tt e™) < e" T gl g (7)

By (4), a(e™,v) = 0 for all divergence-free function v € U;. Therefore, for our special
choices of Uj;, we have

(Vxe®,Vxe")=0 and a(e" e") = (dive”,dive™).
The theorem is proven with C' = 1. g

By Theorem 1, we can see that |||u; —u”||[1,; = O(r~"). One may like to choose a
very large r to get a fast convergence. However, large n will cause a bad conditioning
for the linear system in (3), which will in turn increase the work of the multigrid
method when solving the linear system.

In the multigrid method, we have two steps, the fine-level smoothing and the coarse-
level correction. The fine-level smoothing is usually the Richardson iteration, where
we can introduce an L2-equivalent discrete inner-product, (-,-);, on U; defined by the
diagonal entries of the L? inner-product for the nodal basis. We note the equivalence
constant depends on the polynomial degree, k + 1, but is independent of the level
number j. We start by defining a family of symmetric positive definite operators,
Aj : Uj — Uj,

(45u,v); = ar(u,v) :=a(u,v) + r(diva,divv) Vu,v e Uj;

Let p(A;) be the spectral radius of A;. Then it is well known by the inverse inequality
that

p(4;) = Chi™r, (8)

where the constant C' depends on k but not on j. We assume the following regularity
for the solution of the continuous version of the first equation (3):

gl grite(ye < Cligllg-1+ae Vg € H(Q)7, 9)

where o > 0 and u, is defined by a.(u,,v) = (g,v) Vv € H}(2)% In (9) the
constant C' is independent of the penalty parameter r. By the standard finite element
theory, we have the following estimate in the energy norm

[[lug —Pjuyl|l1,; < Crhs||ug||H1+s(Q)d, s =min{k + 1,a}, (10)

where P;u, denotes the finite element solution for u,. Here the triple-bar norms are
defined by |||v]|2; := (A3v,v);, 0<s<2.

Definition 1 (One level j W-cycle symmetric nested /nonnested multigrid iteration).
1. For j =1, the problem (3) or the residual problem (12) below is solved exactly.
2. For j > 1, wyp41 will be generated from the initial guess, wq (which is either 0
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or a previous solution on the same level, the s below is great than 1), as follows.
2-a. m presmoothings are performed to generate w,:

(W —wWy_1,V); = )\j_l(F(v) —ar(Wi—1,v)) VweU;, [=1,2,...,m,

(11)

where p(A4;)/Ar < w for some fixed w satisfying 0 < w < 2 and F is either the
functional defined in the right-hand side of (3) or the F in (12).

2-b. w,, is corrected by ;g to generate wy,1: Let ¢ solve the following coarse—level
residual problem,

ar(q,v) = F(I;v) — ap(wp,Ljv) = F(v) Vv eU;_;. (12)

Let g € U;_; be the approximation of q obtained by applying s (s = 2) iterations
of the (7 — 1)st level multigrid scheme to (12) starting with initial guess zero. Then
Wmt1 = W + Lijg. Here, I; : U;_; — Uj is the usual Lagrange interpolation
operator if U;_; ¢ Uj, or just an identity operator if U;_, C U;.

2-c. m postsmoothings of the form (11) are performed to generate way, 11 from wy,41.
1

Definition 2 (A multigrid iterated penalty method). Let w° = 0. @" is defined
by doing [ jth level W-cycle symmetric nested/nonnested multigrid iteration for the
problem defined by the first equation in (3) where w” being replaced by W™, i.e., for
the equation

a(a”,v) + r(diva®, divv) = (f,v) + (divv,divw™) Vv € Uj;. (13)

Here the initial guess for the multigrid iteration is @”~! and a~! = 0. W™ is defined
by W = w1 + rdivil”. g

By the assumptions (8-9) and (10) it is standard to verify the “regularity and
approximation” assumption introduced by Bramble et al. (see (3.2) in [BP87], also
[BPX91] and [SZ92)):

114;ulll3,;

B
) ar(u,u)'=?  Vue U;
Aj

a(u—Pj_1,u) < Cg (

with C3 = Cr'*®/2 and 8 = a/2 (a is defined in (9) ). Therefore, we can get the
following theorem by the theory of [BP87].

Theorem 2. The error reduction factor in the |||-|||1,; norm for one jth level W -cycle
symmetric nested/nonnested multigrid iteration is bounded by

Crl/a+1/2 @
Y= (Crl/a+1/2 +m> <].7

where o is introduced in (9).
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Theorem 3.The error reduction factor in the ||| -|||1,; norm for the multigrid iterated
penalty method defined in Definition 2 can be estimated by

~ C u
s =l < (€40 " = il

where v is defined in Theorem 2.

PROOF. Let the errors be denoted by €* = " — u;. Let @" be the exact solution of
the first equation in (3) with w™ there being replaced by W". Repeat (4 — 6) in the
proof for Theorem 1, it follows also that

_ Cix
1™ = wyllla; < A" =l (14)

By (14) and Theorems , we get that

e,y < ([[a™ —a™ | + (][0 — wll|;
< AT =@ | 4 R = gl
< Y1EM; + (T + )" — uy|];-

B C(l+~%), .
< P s+ e

According to Theorem 3, we have a constant convergence-rate for the multigrid
iterated penalty method. By it, with a full multigrid iteration, one gets in a standard
way the optimal order of computation for the algorithm (cf. [SZ92]), i.e., the work to
solve (2) up to the finite element truncation error is proportional to the number of
unknown in the linear system (2).

3 Numerical Test

Table 1 Number of iteration for the iterated penalty method (I =1, k = 3,
m =10, r = 2)

Grid level 2 3 4

Iteration number 20 9

In our numerical test, we let Q@ = (0,1) x (0,1). We let u = V x g and p = Ag be
the exact solutions for (1), where g = 100(z1 — 22)?(z2 — z2)?. The first level grid
consists of two triangles, and higher level grids are defined by refining the previous
level triangles into 4 subtriangles. In our computation, we use the V-cycle, symmetric
multigrid iteration with m = 10 as the inner iteration. The iteration number of the

iterated penalty method is listed in the Table 1 for degree 4 polynomial approximation
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Table 2 Number of iteration for the iterated penalty method (I =1, k =6,
m =10, j = 3)

Penalty parameter r 1/2 1 3 5 10 100
Iteration number 24 10 9 9 12 37
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of u on different grids, where the penalty parameter » = 2. The stopping criterion is

2 x 1077 for a(e”, e").

Next we use degree 7 polynomials to approximate the velocity u. In this case, the
mixed finite element solutions are exact, the same as V x g. We numerically test the
dependence of the iteration number of the iterated penalty method on the penalty
parameter r. We can see from Table 2 that for r between 1 and 10, the number of
iteration seems to be the least. But with bigger r, we have to increase the smoothing
parameter m or use W-cycle multigrid methods to get a more accurate multigrid
solution for each penalty problem. This is indicated by Theorem 3. For example, if
we let m = 50, then the iteration number would become 5 if r = 100. But the overall

work is about 3 times as much as that for the case m = 10 and r = 5.
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