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Hybrid Newton-Krylov/Domain
Decomposition methods for
Compressible Flows

Moulay D. Tidriri

1 Introduction

Newton-Krylov methods have been shown to be very efficient for the solution
of compressible flows [CGKT94], [Tid95a]-[Tid96]. On the other hand, domain
decomposition methods provide efficient algorithms suitable for the parallel computing
environment. In this study we are interested to two important classes of domain
decomposition methods. The first class corresponds to the classical Schwarz-based
domain decomposition methods. These methods reduce the solution of a given global
problem into the solution of local problems and have potential applications on parallel
computing environment. The second class is more recent and corresponds to the
domain decomposition time marching algorithm [T'T94]-[JFB96] and [Tid92]-[Tid95b].
This method was introduced initially to solve complex physical problems in which
many different phenomenon occur. In this report we study the combination of these two
classes of domain decomposition methods with Newton-Krylov matrix-free algorithms.
In the next section we study the first hybrid method. The study of the second hybrid
method is performed in section 3. The last section is devoted to some conclusions.

2 First Hybrid Newton-Krylov/Domain Decomposition Methods
Euler Solver
The bidimensional Euler Equations in conservative form are written

Wi+ F(W), +GW), =0,

where W = (p7 pu, pu, e)T’ F= (pua PU2 +p, pUUJU(e +p))T7 and G = (pu’ puv, pv2 +
p,v(e+p))T. In these expressions p is the density, u and v are the velocity components,
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e is the internal energy, p is the pressure defined by p = (v — 1)(e — p(u? +2?)/2), and
finally, v is a constant with v ~ 1.4 for air. After transforming the variables into the
curvilinear coordinates

r=t, £=¢&,y), n=nzy),

we obtain the following set of equations

Wr + (F) +(G), =0, (2.1)

where W and the contravariant flux vectors, F and G, are defined in terms
of the Cartesian fluxes and the Jacobian determinant of the coordinate system

transformation, through W = J'W, F = J Y (&EW +&F+€,G), G =
JL (W + 0. F +n,G), and J = %. An implicit finite volume discretization of

the equation (2.1) together with a flux splitting approach yields the following nonlinear
system

fw™t) =o. (2.2)

A linearization of first order in time yields the standard defect-correction method

ASW™ = b. (2.3)

The different fluxes involved above are computed using Roe’s approximate Riemann
solver [Roe81]. In (2.3), the Jacobians are evaluated using Van Leer’s scheme. In
the fully implicit form the boundary conditions are implemented through: %(WV =
—fo(W). In this case, the CFL number may be adaptively advanced according to:

n—1
CFL"™*! = CFL" - %, where the superscript refers to the iteration in time.

For more details we refer to [MBWS88] and [Tid95a].

Description of the Preconditioned Newton-Krylov matriz-free algorithms

The preconditioned Newton-Krylov matrix-free method [BS90], applied to the fully
implicit nonlinear system (2.2), yields the following algorithm

o Define §W§', an initial guess.

e For £ =0,1,2,--- until convergence do
n Wy — n
Solve M—lf(Wk re W:k) T _ —MLF(WR. (2.4)

Set Wi, = W + oWy

The selection of the parameter € is discussed in [Tid95b]. The preconditioner M~ is
constructed using an approximation similar to that used to derive the matrix A of the
defect-correction procedure (2.3). This results in a combined discretization in which
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for each linear step (2.4) of the Newton iteration the preconditioner is not derived
from the actual higher-order system. Instead, this preconditioner is derived using
an approximation of the Jacobian matrix that employs a lower-order discretization
in a similar fashion to defect-correction procedure. In this study the preconditioner
corresponds to the parallel Schwarz domain decomposition preconditioner which will
be described in the next section and the Krylov methods correspond to GMRES [SS86].

Additive and Multiplicative Schwarz methods

Considering an overlapping decomposition of the physical polygonal domain, the
multiplicative Schwarz algorithm for the solution of the linear system (2.3) or (2.4)
corresponds to:

(I-0nv =g, (2.5)

with an appropriate g. Above, Oy = (I — Py_,)---(I — P1), Ny is the number of
subdomains, and P; = RZTAi_lRiA. A; are the local matrices and R; are the algebraic
restrictions while RY are the algebraic extensions. The additive Schwarz method
corresponds to

Nsa
=1

with an appropriate g.

Numerical Results

The test problem on which we study the performance of the methodology described
above corresponds to a NACAQ012 steady transonic airfoil at an angle of attack of
1.25 degrees and a freestream Mach number of 0.8 using the C-grids 128 x 32 cells.
All calculations in this section are performed on the same SparclQ machine. Since we
are dealing with different methods which require varying amounts of work at each
time step we believe that the CPU time is the only true measure for comparing
them. The steady state regime is declared when the nonlinear residual norm reaches
a value of (or less than) 1075. The Schwarz-based domain decomposition solver uses
the PETSc library that was developed at Argonne National Laboratory [GS93]. In
Table 1, we present the iteration count (number of nonlinear iterations) and CPU
time (in seconds) for steady transonic flow at convergence using Schwarz algorithms
in combination with defect correction procedures. The treatment of the boundary
conditions is implicit and the CFL number is equal to 100. In Table 2, we present the
iteration count and CPU time (in seconds) for steady transonic flow at convergence
using Schwarz algorithms in combination with Newton-Krylov matrix-free methods.
The treatment of the boundary conditions is also implicit and the starting CFL number
is 30. Comparing the two tables, we observe that the additive Schwarz algorithm
combined with Newton-Krylov matrix-free method reduces the CPU time by almost
50% for the various decompositions studied here, as compared to its combination with
defect correction procedures (see [Tid96]).
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Table 1 Schwarz methods combined with defect-correction procedures.

Block Jacobi Add. Schwarz Mult. Schwarz
Decomp. Iter CPU Iter CPU Iter CPU

2x2 547 8911 553 11096 566 9123
4x4 540 9114 552 11899 577 9717
8§x8 539 11430 546 16215 574 11482

Table 2 Schwarz methods combined with preconditioned Newton-Krylov
matrix-free methods.

Block Jacobi Add. Schwarz Mult. Schwarz
Decomp. Iter CPU Tter CPU Iter CPU

2x2 31 5474 31 6102 33 8409
4x4 32 5384 28 5708 30 4759
8§x8 32 6594 35 7493 25 4106

3 Second Hybrid Newton-Krylov/Domain Decomposition
Methods

Navier-Stokes Equations

Let us consider the compressible Navier-Stokes equations which we formally write
either as

ow

¥ + div[F(W)] =0 on Q (conservative form)
or as oU
B +T(U)+D(U) =0 onf (non conservative form)
with W = (p,pv,pE) and U = (p,v,0) as the conservative and nonconservative

variables, F' = F¢ + Fp as the total flux (convective and viscous part), and T' and
D the convective and viscous terms in the nonconservative form of the Navier-Stokes
equations. The problem consists in computing a steady solution of these equations,
with boundary conditions

pv, pE given on T, (exterior limit of the domain),
pgiven on ', N {z,v(z) -n < 0} (inflow),
v = 0 on the body I, (no slip),
6 = 0, on the body I['p.

The strategy discussed below couples a global conservative scheme, defined on the
whole domain, and based on a finite volume space discretization [RS88], and a local
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Figure 1 The global geometry

approximation, defined in the neighborhood of the body, which is presently based on a
mixed Finite Element approximation of the nonconservative Navier-Stokes equations
[BGD*89].

The General Coupling Strategy

For coupling external Navier-Stokes equations, with local Navier-Stokes equations, we
introduce two domains, a global one 2, a local one Qv included in €2, and an interface
T; (Fig. 1). The global solution W on  and the local solution Uy, on Qy, which both
satisfy the Navier-Stokes equations, are matched by the following boundary conditions,
inspired of Schwarz overlapping techniques :

W = given imposed value on I,

n-o(W)-7=mn-0(Uy) -7 on the body I'y, (equality of friction forces)
qW)-n+mn-c(W)-v=q(Uy)-non Ty, (equality of total heat fluxes)
v-n = 0on T},

Uioe = 0 on Ty Ujpe = W on the interface T';.

Above, n.o.n and n.o.T respectively denote the normal and the tangential force
exerted by the body on the flow, with n the unit normal vector to the body oriented
towards its interior.

The calculation of U, and W satisfying the above boundary conditions is then
obtained by the time marching algorithm, which was introduced in [TT94]-[JFB96]
and [Tid92]-[Tid95b]) and which leads to the following algorithm : Initialization

1. Guess an initial distribution of the conservative variable W in the global domain
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Q;

2. Advance in time this distribution by using the global Navier-Stokes solver on Ny
time steps, with Dirichlet type boundary conditions on the body Iy ;

3. Deduce from this result an initial distribution of the local variable Uj,. on the
interface I'; and in the local domain Qv ;

4. Advance in time this distribution by using the local solver on N time steps with
Dirichlet boundary conditions on I'; and I'.

Iterations

5. From Uj,., compute the friction forces n - 0(Ujoe) - T and heat flux ¢(Uioe) - m on
the body T ;

6. Advance the global solution in time (N7 steps) by using the global Navier-Stokes
solver with the above viscous forces as boundary conditions on I'y;

7. From W, compute the value of U, on the interface I'; ;

8. Using this new value as Dirichlet boundary conditions on I';, advance the local
solution in time (N2 steps) and go back to step 5 until convergence is reached.

This algorithm completely uncouples the local and the global problems, which can
therefore be solved by independent solvers. A parallel version is also quite possible
although it is generally wiser to use parallel solvers within steps 6 and 8.

Global and Local Solvers

To solve the global conservative Navier-Stokes equations we use the hybrid finite
volume/finite element method in which the convective flux is computed by an
Osher approximate Riemann solver. The resulting linear system is solved by a block
relaxation method. The local nonconservative Navier-Stokes equations are discretized
by mixed finite elements (P for p and €, P; on the subdivided P» grid for the velocity).
The resulting nonlinear local system is solved by using the preconditioned Newton-
Krylov matrix-free method described in 2 with diagonal preconditioner. We refer to
[Tid95a] for more details.

Numerical Results

The test problem consists of a two dimensional flow around an ellipse, with 0
angle of attack, M, = 0.85, Reynolds number = 100, and a wall temperature
Tw = 2.82T. First, we have calculated the Navier-Stokes solution employing the
global nonconservative solver alone on a mesh that has 4033 nodes and 7942 elements
for the P; grid and 16184 nodes and 32120 elements for the grid P,. We then performed
a calculation using the coupling algorithm described above on a global mesh that
has 1378 nodes and 2662 elements and a local mesh that has 1114 nodes and 4282
elements. On Figure (2) we show a CPU time comparisons of the two calculations which
were performed on an apollo DN 10000. This figure shows the excellent performance
of Newton-Krylov matrix-free method used to solve the local model through the
domain decomposition time marching algorithm as compared to its use in the standard
approach (see [Tid95a]).
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Figure 2 CPU time comparisons between the uncoupled scheme and the coupled
approach. Above the + curv corresponds to the coupled scheme and the * one
corresponds to the uncoupled nonconservative scheme.
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4 Conclusions

In this study we have studied the combination of Newton-Krylov matrix-free
algorithms with two classes of domain decomposition methods. In both cases we have
given numerical applications to compressible Euler and Navier-Stokes equations that
illustrate the performance of the resulting hybrid algorithms.
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