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Optimization of Flexible Coupling
in Domain Decomposition for a
System of PDEs

H. T. M. Van Der Maarel and A. W. Platschorre

1 Introduction

Domain decomposition (DD) may be applied to boundary-value problems for various
reasons, ranging from the wish to solve the discretized problem on a (massively)
parallel machine or a cluster of scalar machines, to the necessity to use different
mathematical or numerical models in different parts of the domain of definition,
or the need of a flexible modeling technique on complex domains. In any case, the
performance of domain decomposition methods is of utmost importance. For an
application running on a parallel architecture, computing time may be duly saved, in
spite of the overhead imposed by the domain decomposition method. The performance
of a DD method becomes especially a factor of importance when such a method is
to be used in a non-parallel environment. In that case there is no gain in wall-clock
time for the method, which could compensate for the method’s overhead. Then, the
benefits of possible gain in modeling-flexibility or possibly a higher accuracy of results
obtained with a DD method, must compensate for the DD method’s overhead cost.

In the present paper we report on the optimization of a flexible coupling technique
for a system of PDEs.

Optimization of Interface Conditions

We consider a two-grid DD method for a system of partial differential equations.
For our analysis the domain of definition is divided into two disjoint subdomains, on
each of which a subproblem is defined. The subproblems are artificially decoupled.
The coupling between the subproblems, such that the substructured problem becomes
equivalent to the original problem, is restored in the iteration scheme applied on
the level of the subproblems. The convergence of this iteration scheme and hence
the performance of the DD method, depends strongly on the equations (interface
conditions) that are used to restore the coupling of the subproblems. The proposed

Ninth International Conference on Domain Decomposition Methods
Editor Petter E. Bjorstad, Magne S. Espedal and David E. Keyes ©1998 DDM.org



OPTIMIZATION OF DD FOR A SYSTEM OF PDES 567

method features the optimization of a set of parameters which appear in the interface
conditions. Optimization is considered w.r.t. the convergence rate of the additive
Schwarz method used in the subproblem iteration scheme.

The Generalized Schwarz Coupling and Convergence

A flexible coupling mechanism is obtained by introducing a set of free parameters in the
interface conditions. An optimal set of values for the parameters in a given problem is
obtained when the best convergence rate of the subproblem-iteration, over all possible
values that these parameters can take, is achieved. The optimal values depend on the
specific problem at hand, as well as on the choices made for the substructuring, the
discretization used to obtain a set of algebraic equations and the iteration scheme on
the level of subproblems to solve this set of equations.

Our starting point is the optimization of a flexible coupling technique proposed by
Tan and Borsboom [TB93] and Tan [Tan95]. This method is based on a generalization
of the classical Schwarz algorithm, known as ‘Generalized Schwarz Splitting’ by
Tang [Tan92]. For a one-dimensional two-point boundary-value problem Tang obtained
an increase in convergence rate, with the asymptotic convergence factor changing from
0.91 for the classical Alternating Schwarz Method (requiring 60 iterations to satisfy
his convergence criterion) to 10~ (requiring only 3 iterations to satisfy his criterion)
for Tang’s generalized Schwarz method. Tan and Borsboom applied Tang’s generalized
Schwarz to a two-dimensional advection-diffusion problem and obtained an asymptotic
convergence factor of 0.3. Their even-more-generalized Schwarz method, with interface
conditions including second-order cross-derivatives, gives an asymptotic convergence
factor of 0.05. The latter method is the generalized Schwarz method that we adopt as
a starting point for our method and which we will extend for use with a set of PDEs.

We consider a DD method for a system of n linear partial differential equations,
discretized with a finite-difference scheme. The domain of definition (2 is divided in two
parts denoted by Q;, ¢ = 1,2, with a common boundary I'. For the interface conditions
on iteration level m of the subproblem defined on ;, we use a discretization of the
general interface condition
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Here n and ¢t denote normal and tangential directions on T', respectively. The
discretized interface conditions involve the values the unknown function variables
across the interface I'.

A local mode analysis is applied to reveal the relation between the interface
parameters «a, 3, and <y on the one hand and the asymptotic convergence rate of
the iteration process on the other hand. From this analysis the sensitivity of the
convergence rate as depending on the interface parameters can be studied, which seems
to be an important issue for the practical application of the proposed DD method.

Finally an optimization algorithm is applied, which is used to obtain an optimal
set of values for the parameters in each of the interface equations. Unfortunately, it
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appears that for the cases considered, the optimal set of interface parameters and the
corresponding asymptotic convergence factors are very close to the classical Dirichlet-
Dirichlet domain coupling of Schwarz’ original method.

2 Model Equations and Discretization

The area of application that we will concentrate on in the future, is part of the field
of viscous CFD for ship hydrodynamics. Therefore, our target is the incompressible,
steady Navier-Stokes equations.

The Reduced Navier-Stokes Equations

The method for the Navier-Stokes equations that we consider is based on a finite-
difference discretization of the steady equations in generalized coordinates. This
method features the neglect of diffusion in the ‘main stream’ direction (parabolization)
and a downwind discretization of the pressure derivative in this direction. The result
is called partially parabolized or reduced discretization of the Navier-Stokes equations.
In a Cartesian coordinate system (z,y) in R? and for (z,y) € Q C R2, they are given
by
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where v : @ - R and v : Q@ — R are Cartesian velocity components in z and y
direction, respectively and where p : @ — R denotes the (generalized) pressure. The
constant D > 0 is the diffusion coefficient. The above set of equations is supplemented
with an appropriate set of boundary conditions.

In this paper we consider a model for the reduced Navier-Stokes equations. This
model will be used in a local mode analysis for a domain-decomposition method which
requires the model to be linear. Since the discretization of the pressure gradient plays
an important role in our Navier-Stokes method, we will not adhere to the usual set of
convection-diffusion equations as a model for analysis. The linearization of the reduced
Navier-Stokes equations that we use includes convection and diffusion of momentum,
driven by a known convection field with a constant diffusion coefficient and driven by
the unknown pressure gradient. Furthermore, the continuity equation is kept in the
model. From the physical point of view this equation will act as a constraint on the
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pressure field. The model equations considered are then given by
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again supplemented with an appropriate set of boundary conditions. Here, a : @ — R
and b : 2 — R are the Cartesian components of the convection field in z and y
direction, respectively. Without loss of generality we will assume a,b > 0. The main
stream direction is chosen to be in the z direction, which leads to the property a > b.
For physical relevance, we will assume that (a,b) is divergence-free. The domain is
assumed to be subdivided in two subdomains, with a common boundary I'. In his
paper I' is assumed to be perpendicular to the main stream direction z.

The Discretized Equations

The discretization that we use is a standard finite-difference discretization. In this
paper the first derivatives of velocity components are discretized with the first-
order upwind finite-difference formula. Second-order derivatives are discretized with
standard second-order finite-differences. The pressure derivative is discretized with
the first-order accurate, downwind finite-difference. See Hoekstra [Hoe92] for more
information on the particular choice for the discretization.

The domain (2 is divided in two domains €2;, i = 1,2. A discrete approximation of
a function uy, : Qp — R, k = 1,2, is denoted by u;’ = uy(iAz,jAy), 0 <i < I + 1
and 0 < j < J+ 1. Here, Az and Ay denote constant step sizes in 2 and y direction,
respectively. Following this scheme, the discretized equations are given by
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The general interface conditions are discretized using central finite differences.
Following Tan and Borsboom in [TB93], the coefficient «y for the cross-derivative
terms in the interface conditions is taken equal to Az, thus reducing the number
of free parameters, while we may still be confident to obtain a considerable increase in
convergence rate for an optimal set of parameters. For the model problem the interface
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equations on I' are given by
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3 Fourier Analysis

For the set of algebraic equations defined above and an additive Schwarz iteration
scheme, we perform a local mode analysis. Therefore, we supplement the set of
equations with Dirichlet boundary conditions on the inlet and outlet parts of the
domain boundary.

Denote an approximation after m iterations with uim) = Ui, u;c”(m). Similar
notations will be used for other grid functions. We assume solutions which are periodic
in y. Discrete Fourier transformation in the direction along the interface I' gives for

the error components after the mth iteration
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where 6, = m, §=0,...,J —1and p; sk, 0is,x and 7; 5 are the discrete Fourier

transforms. The superscript (x) indicates exact solution of the algebraic equations.
For each Fourier mode s the transformed equations for the Fourier transforms p; s i,
oi,s,;, and 7; s Of the errors e,c , k’] and g;”’ can be written as
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where A A
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and where we used 7; = Tiy1, ¢ = 0,...,I;. The above recurrence relation has a
general solution, which can be written as
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Here )\, ,, denotes the nth eigenvalue of the recurrence matrix, with a corresponding
eigenvector e,, n =1,2,3.

If we now make Fourier transforms of the boundary conditions and interface
equations, the iteration index m for the additive Schwarz iteration enters the equations,
and we can readily derive an iteration equation for zgm) = (Rg';), Sg':),Tz(’T))T. Here
the derived algebraic relations between S; 5, 11,5 and R; s and between Ry ; and Sa 4
and T» ; are used to eliminate S; 5, T1,; and Ry . The iteration can be written as

Mz = Npm=1),

The 3 x 3 matrix M has a very simple structure and can be easily inverted
analytically. The eigenvalues x;(M~1N), i = 1,2,3, of the iteration matrix M !N,
the spectral radius p(M ~!N) = max; |x;(M ~1N)| and asymptotic convergence factor
Poo(M~IN) = maxg, p(M~1N) can be determined. The asymptotic convergence
factor depends on the free parameters in the interface conditions.

4 Optimization of the Interface Conditions

The asymptotic convergence rate as a function of the free parameters in the interface
conditions can be studied. In order to choose an optimization algorithm to find the
best possible asymptotic convergence rates, a better understanding of and insight in
the asymptotic convergence rate as a function of the free parameters is a prerequisite.

Convergence Factor

The convergence factor is the maximum over all Fourier modes and the three
eigenvalues of the iteration matrix. While changing the free parameters, the asymptotic
convergence factor may be reached at a different eigenvalue and/or at a different
Fourier mode. So, even if the eigenvalues for a fixed Fourier mode depend C*
continuously on the free parameters, po, is not necessarily a C! continuous function
of the parameters. The discrete set of Fourier modes may be extended to include all
modes 0 < 8 < 27. Then, in general, the asymptotic convergence factor as a function of
the free parameters will only be non-differentiable at the intersection points x; = x;,
i # j. Therefore, any technique used for the optimization of the free parameters
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in the interface conditions with respect to convergence factor should not require the
derivative of the asymptotic convergence factor with respect to the free parameters. An
example of the convergence factor as a function of a free parameter is given in Figure 1.
Here the coefficient of the £ component of the pressure gradient is varied, while the
coefficients are fixed (at there optimal values). It appears that the convergence factor

Figure 1 Asymptotic convergence factor as a function of as/Az.
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is quite strongly dependent on the interface parameters, which makes a sensible choice
for these parameters even more important.

Optimization

The optimal values of the free parameters can be computed by applying an appropriate
minimization algorithm. However, any of the classical minimization schemes will fail
in general, unless the starting value is chosen sufficiently close to the solution. This
is particularly so for the present case, since the asymptotic convergence factor as a
function of the free parameters appears to have a number of local minima.

We apply a minimization algorithm by Powell [Pow64], which is based on a one-
dimensional or line minimization algorithm. The line minimizations are consecutively
applied in mutually conjugate directions, which are constructed during the minimi-
zation process. As a line minimization an inverse parabolic interpolation scheme is
used.

As an example, we present in Table 1 the results of a numerical optimization of the
free parameters and their corresponding (optimal) convergence factors for the model
problem, as predicted by the Fourier analysis presented in this paper. We considered

Table 1 Optimal parameters and convergence factors.

I a1 /Az B1/Ay as/Az  [a/Ay asz/Azx Bs /Ay Poo 5
10 —0.3941 0.0986 —0.2022 10.67 —0.0672 —0.0012 0.567 0.594
100 —0.0799 0.2937 0.0607 17.47 —0.0607 0.0576 0.561 0.594
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= 0.1, Péclet

number Pe = and number of steps in ¢ direction I I, = I. The
table also contains the asymptotic convergence factor pS, for the classical Schwarz
method, as predicted with the Fourier analysis. Unfortunately, it appears that the
optimal value of the asymptotic convergence factor is not significantly different from
that of the classical Schwarz method. In an experiment which numerically solves the
discretized problem in the present DD context, using the optimal interface parameters
from Table 1, the convergence factor was found to be 0.60. This is in good agreement
with the theoretical convergence factors presented in Table 1.

a domain @ = (0,2) x (0,1) and used a constant convection field with

b
a
alAzx — 104 =

5 Concluding Remarks

The DD method presented involves optimization of interface conditions with respect
to the convergence rate of the additive Schwarz iteration scheme used on the level of
the subproblem blocks. As such, the method may be considered a generalized Schwarz
splitting method. We considered a first-order accurate discretization of a model for the
reduced Navier-Stokes equations and an interface perpendicular to the main stream
direction. The interface equations involve the unknown function values, first-order
derivatives in normal and tangential direction and the second-order cross-derivative
term.

For the rather simple discretization used, a Fourier analysis for the additive Schwarz
iteration can be done analytically with the aid of modern tools from computer algebra.

The Fourier analysis revealed the relation between the asymptotic convergence rate
and the free parameters in the interface conditions.

In general, the asymptotic convergence rate is a non-smooth function of the free
parameters. The minimization of Powell may be used to obtain a local minimum
in the asymptotic convergence factor as a function of the parameters. However, this
function may have a substantial number of local minima, and such a minimization
method is not suited for general application.

Unfortunately, the minimum convergence factor for the generalized interface con-
ditions as obtained by the optimization, is only slightly smaller than the convergence
factor for the classical Dirichlet-Dirichlet coupling of the original Schwarz method.
This is contrary to the expectations, based on results obtained by Tang [Tan92] and
Tan and Borsboom [TB93].

The reason for this may be the one-sided upwind and downwind discretization of the
various terms in the PDEs considered. Furthermore, early in our analysis we decided
to make the coefficient of the cross-derivative term in the interface conditions equal to
the coefficient of the tangential-derivative term in the interface conditions. This choice
was based on the results obtained by Tan and Borsboom, who with the same choice
for a scalar advection-diffusion equation have been rather successful. For the present
case this choice may be less appropriate.

The minimum convergence factor seems to be quite sensitive to the choice of the
parameters in the interface condition. However, further research has shown that, in
the case considered and the specific choices that we made, the optimal convergence
rate itself is not very sensitive for problem parameters such as convection angle, the
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mesh Péclet number or the number of grid cells used.
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