Digital Look Up Tables and Real Number Theorem
Proving

A. A. Adams
School of CS, Cyb and EE
University of Reading *

September 28, 2001

Abstract

We consider the utility of digital look up tables, as adjuncts/helpers to computer
algebra systems. The requirements for dealing with logical side conditions raised by
such tables are considered and proposals for using theorem proving technology as black
box aids are considered. In addition, the use of real number theorem proving libraries
to support validation of table entries is also presented.

1 Introduction

Mathematics is performed by a number of distinct groups. The distinguishing characteristics
that are relevant to this paper are whether a user is involved in applying mathematics
or in extending mathematics. Both kinds of user obviously have a role to play in the
development of mathematical software. For centuries problems requiring long, involved
calculations have been solved by turning to mathematical tables. This results in a much
lower level of mathematical knowledge required of the calculator (the person who calculates).
The calculator can use a look up table without any knowledge of how the answers in the
table are calculated. It is possible, although generally not appropriate, that the calculator
may not even understand the meaning of some of the concepts they are looking up, provided
they understand how to use the tables. Even with the advent of pocket calculators, PDAs
and laptop computers, engineers and scientists will still routinely refer to mathematical
tables. The fact that the Reading University Library copy of [Bey87] is still borrowed for
overnight or longer a number of times per year is testament to this fact. The differences
between [CRC64] (the 2nd edition from 1964) and [Bey87] (the 28th edition from 1987)
highlight the change from an emphasis on numeric and symbolic tables in the ’64 edition to
almost purely symbolic entries in the ’87 edition. In time, computer assistance may make
all paper based tables redundant, but not yet, as we shall demonstrate.

Computer Algebra Systems [CAS] are now described as “tools for all phases of technical
computation” or “complete mathematics assistants”. However, the Mathematica web site
[Wol] does admit: “Have confidence in the accuracy of numerical results”’ i.e. that you
cannot really have confidence in the accuracy of its symbolic results. CAS such as Maple
[Map] and Mathematica already use ad hoc look up tables to cover errors in their systems.
Routine publication in the scientific literature of incorrect results from CAS leads to a future
version of the software producing the correct answer: until you “tweak” the query, that is.
Introducing a parameter in place of a concrete value or similar minor changes to the query

*This work was supported by the UK EPSRC Grant GR/L48256 and by the EU Grant Calculemus
RTN1-1999-00301.

often produces the original incorrect result once again. The implication of this, which has
occasionally been confirmed by those working for the CAS producers, is that a look up
table has been implemented to catch known bugs before they’re subjected to the flawed
algorithms.

Some efforts have also been made to digitise existing mathematical tables. CRC have
produced a CDRom version [Zwi98] of their [Zwi96] (of which 30 printed editions have
appeared). Unfortunately, the CDRom version has a number of flaws, despite its inclusion
of a Maple kernel as an enhancement. Many of its entries are stored as graphics, which is
not helpful in allowing search, nor in copying and pasting into the Maple kernel or any other
mathematical or typesetting software.

These issues do not lead to a conclusion that computer-based versions of the mathe-
matical tables are worthless. On the contrary, the idea is an excellent one. The problems
highlighted above simply show that a more rational approach needs to be taken, considering
the issues of calculation and look up on a higher level, while considering the underlying
technologies needed to produce good working mathematics assistants, building on the good
work of the past and learning from the mistakes that have been made.

This paper will not lay down a step-by-step path towards this goal. Instead, it is meant to
raise some of the issues and discuss some possible solutions, contrasting mutually exclusive
approaches and discussing the benefits of merging as many as are compatible.

1.1 Outline

To understand digital tables, one must first understand the uses and abuses of paper tables,
so section 2 contains an overview of the books of tables that reside in almost all mathe-
matics libraries. Following on from this section 3 covers the principle background to digital
tables, first in 3.1 presenting material on digitised versions of existing tables and then in
3.2 presenting the existing work on creating new tables, including references to the author’s
previous work in this area.

Having presented the background to digital look up tables, the technical issues at the
forefront of this work are then considered: focussing on the language of table entries in 4
and the encoding and semantics of that language in 4.1, with a focus first on normalisation
(4.2) and equivalences (4.3) of the mathematical expressions, followed by a discussion of
storage, retrieval and matching in 4.4.

In the final two sections, some concrete implementation issues are discussed, such as
the architecture of the table, and interoperability with existing mathematical software, in
section 5. A conclusions section (6) rounds off the paper, drawing all these threads together
again

2 Background: Paper Tables

While all readers of this paper may have looked something up in a set of paper based tables
at some point, they may or may not have used them extensively, so in this section the main
relevant points of paper based mathematics tables are presented.

Books of numeric tables have been virtually replaced by computers and the pocket
calculator. Four or six figure tables of logs, trig functions etc. such as [MTC31] are now
primarily of interests to science historians rather than tools in daily use by scientists in all
subjects.

Symbolic tables such as [GR65, Zwi96] are still of use, although their utility is gradually
being replace by computer-based tools, as described above. In considering how best to

replace such books of tables, consideration of existing paper tables is useful.

We will consider tables of integrals as an example of the types of query that may be
answered using paper based tables, since this is the area of application of the existing
digital tables we consider below.

The main consideration of paper based tables that we wish to highlight is the look up
and identification procedure. Say we wish to integrate:

3
1
—— d
/1 + sin(2z) v
0

To look this up in [Bey87], we find that the section on integrals is subdivided for various
polynomial forms, but has only a single subsection (of 12 pages) dealing with “Forms In-
volving Trigonometric Functions”. This subsection contains 151 separate entries, which we
must systematically check through until we find entry 337:

| I
1 + sin(ax) = Ta 17732

Even in this well-respected book of tables there is no indication of the limits of applicability
of this indefinite integral to definite integrations. Our query above has no problems, but it
requires a fairly good insight into the nature of the sin function to realise this.

Having found our indefinite integral, we still have much work to do in matching the
values of our query to the table entry, substituting them in the result, and then performing
further calculation on that result to find that the answer is actually 1.

3 Background: Digital Tables

There have been a number of projects looking to provide digital look up tables. Most have
been research projects considering how to produce useful tables for a specific domain. There
has also been work done on the idea of digitising existing tables. These different aspects are
considered separately below.

3.1 Digitising Existing Tables

The attempt by CRC to digitise their existing paper table [Zwi96] on a CDRom [Zwi98],
and to include a Maple kernel for further computation, was an interesting experiment. As
mentioned above, however, it is a deeply flawed resulting product. Since a large minority
of the entries are stored simply as graphics, there is no possibility of performing automated
search or substitution, no ability to transfer the entries to the Maple kernel for computation,
and no ability to re-size the text for easier viewing. About as useful as scanning a novel as
a set of graphics images to try and replace paper books with e-books.

A similar project [GR96a] digitising [GR96b] has been heavily criticised by Fateman, in
an unpublished article, on various points. The main point to note here is that the entries
are primarily stored as TgX, and thus again in a form suited for display rather than further
symbolic calculation. A new edition [GRJZ00] of the paper version has been produced, but
there are no signs of a new edition of the CDRom.

The shortcomings of these projects are even more disappointing given that research into
optical recognition of mathematical symbols has been performed (for example [FTBM96]),
with specifically this sort of digitisation in mind. The recent development of OpenMath
[Dew00], a specification of an interchange language for mathematical software packages,
might provide solutions to some of the problems of these previous digitisation projects.

However, the general approach taken would not seem that successful. In order to make
digitised tables useful they must address needs beyond the utility of a printed book.

3.2 Creating New Digital Tables

Various projects have produced limited tables from scratch. The source of material for these
tables may well be the contents of printed paper copies, but simple digitisation of them was
not the intent of such work. Rather, these projects have investigated various aspects of the
problem of digital tables. This paper, in part, is an attempt to bring some of these aspects
together in a coherent picture.

We will focus on three particular projects in this section, although doubtless there are
other projects in existence focussing on other aspects of digital maths tables.

The projects on which we shall focus our attention are:

1. Einwohner and Fateman’s TILU [EF95, FE]
2. Dalmas et al’s MFD2 [DGH96, Huc97]
3. Adams et al’s DITLU [AGLM99b, AGLM99c]

All of these tools were designed and implemented as research tools to investigate aspects
of the problem rather than as production tables for distribution. The code for each of them
is probably available from the authors or is available as an on-line supplement to published
papers.

3.2.1 TILU

TILU stands for Table of Integrals Look Up. An implementation has been available for
accessing via the web [FE], although this service may have been terminated (as of writing
the service is unavailable).

Einwohner and Fateman’s work (as exposited in [EF95] focussed primarily on the practi-
calities of the search problem for large tables of mathematical formulae, using integrals as a
specific case study. Their primary approach involves the use of hash table look up (to avoid
a trade-off between size of table and search time) and successive approximations via expres-
sion kernel identification (to increase the speed of identification of possible matches). None
of their techniques appear to be incompatible with other work such as MFD2 or DITLU.
As with most other work in this area, little attention is given to pre- and post-processing of
the query or answers, concentrating on the still under-researched area of how to implement
efficient and useful digital look up tables at their core.

The system of “successive approximate matches” categorises a query in successive rounds,
and then attempts to match the query against the categorisations of table entries. The
example given in [EF95] is:

Thus, e.g., the integrand 1/(z?+1) would match 1/(2?+1), 1/(z2—a), 1/ (z>+a?)
and (22 + bx + ¢) 7! (etc).

They continue to describe the matching process with the categorisations made explicit:

The keys [associated with the integrand] grow in discriminatory power and length
as one goes down the expression tree of the integrand. In the above example,
the first two keys would be the atom reciprocal and the list (reciprocal
quadratic).

The main thrust of the TILU was to demonstrate the possible power of this successive
matching approach, and little work was done on further aspects of unification, and parameter
constraint, the focus of the other two systems we will now consider.

One specific limitation to note about the TILU is that the definite integrals contained in
the table were of a very specific form and highly limited in their limits of integration (only
about eight different limits were in the table).

3.2.2 MFD2

MFD2 (Mathematical Formula Database 2) is a more wide-ranging project than the other
two presented in this section. The aim of MFD2 is to consider a completely generic math-
ematical formula database. As such, the specific issues of integration are not a concern,
simply the general issues with matching constrained parametric mathematical expression.
The interface of MFD2 includes two mode of operation. The first is for a user to check if a
proposition appears in the database. This proposition can be an equality, inequality or any
other mathematical proposition, such as irreducibility. So long as the predicate of interest
is present in the database, an answer to the question may be contained therein. The other
mode of usage proposed for MFD2 is that of calculation, where an expression is entered and
a matching right hand side of an equality is searched for. This latter format is used as a
substitute for such queries as are the primary mode for TILU and DITLU.

The central idea of MFD2 which sets it apart from other systems is that it uses logic
programming ideas to aid unification in the presence of constrained parameters. We will
consider this idea in more detail in section 4.4, but present it here as implemented in MFD2.

Entries in MFD2 may have constraints on the parameters contained within them. Thus,
the example from the abstract of [Huc97]:

z>1=1In(z) >0 (1)

So, a query to the database:
a>1=1In(a®) >0 (2)

matches z to a2, and then launches a logic programming search for evidence that:
a>1=a*>1 (3)

which fact should be in the definitions of < and ~ as held in the logic program. This
sequence can be extended to arbitrarily complicated expressions, with the logic program
regarded as a search mechanism for existence proofs of values which allow the parametric
constraints to be satisfiable. The TILU contains something similar as a method of matching
multiple candidates from the table to a particular query, although the TILU version was
rather rudimentary in comparison.

3.2.3 DITLU

The DITLU (Definite Integral Table Look Up) is a prototype system which drew upon the
ideas of both the TILU and the MFD2. The aim of the DITLU is to sit within a CAS
and provide known answers to parametric definite integration problems. This extended
the work done by the TILU to cover a much wider range of definite integrals. Indefinite
integration within computer algebra packages is quite a well understood problem, although
efficient solutions in the presence of multiple parameters are still under development. A
prototype implementation of the DITLU was produced, programmed in Lisp, and a more
robust implementation inside a CAS is currently under consideration. The main focus of
this work was on rationalising and extending the consideration of parametric constraints
compared to that of the MFD2. While the MFD2 used a logic program to perform both

the matching and constraint checking, the prototype DITLU included a separate unification
routine which passed certain parts of the problem off to a constraint checker which uses
the theorem prover PVS as its logic engine. The advantage of such a system is that the
dependence on a complicated special-purpose logic program is replace with dependence
on a general purpose theorem prover. The standard architecture is similar, although the
unification and search routines are designed such that they may be re-implemented using
ideas from the prototype but including methods from the TILU and other sources.

Another interesting aspect of the DITLU is the concept of validating the table entries
using the same technology in PVS as that used to check parameter constraints. It is well
known [KG68, EF95] that existing look up tables (both paper and digital versions) contain
errors. Such errors could be minimised, if not entirely avoided, were table entries to be
validated. This validation, since it would only have to be performed once, could be manually
directed by experts in the field (here definite integration) rather than requiring the CAS
user to perform proofs in an unfamiliar system or requiring highly intelligent automated
proof systems.

The kinds of query and process used in the DITLU are shown in the following example.
Say the table contains the following definite integral:

b 1 Injb+cl—Inla+c for(a<cAb<c)V(a>cAb>c)
/ dz = Unknown fora=cVb=cV
zte (a<eAb>c)V(a>cAb<c)

a
The query: f23z+r1 dz will be transformed into the parametrised query

™o
/ de, =2, m=3, k=1
1 .Z""k

and matched with the table entry. The following queries will then be sent to the PVS
theorem prover:

Q1 -3, m,k:RI=2Am=3Ak=1A
(I<kAm<Ek)V({I>kEAm>Ek))
Q2 AL, m, k:RI=2Am=3Ak=1A

(l=kvm=kVv(I<kAm>Ek)V(I>kAm<Ek))

See [AGLM99a] for an explanation of the reason for attempting to prove the negation of
the constraints. From an examination of these logical queries it is obvious that @); is false
while @) is not only true, but easily provable. The DITLU will therefore return the answer:

In|3+1—In|2+ 1|

which may then be subjected to further simplification.

4 Mathematical Expression Languages

One of the problems involved in developing digital look up tables, either as part of a larger
mathematical software package or as a stand-alone tool, is the issue of the interface lan-
guage. mathematical notation developed over many centuries of hand-written notations,
with movable-type printing and wider distribution of mathematics texts causing conver-
gence of notation. The notation of mathematics is still a very rich language, however, in
terms of the number of symbols available in it, and the overloading of those symbols for
multiple areas of interest.

The advent of machines, first typewriters and then computers, into the world of math-
ematics caused quite a few problems, suddenly limiting the notations available. Quite a

number of maths and logic texts from the thirties through even to the eighties were type-
writer written, with the extra maths symbols written in by hand before photographic copying
techniques were applied for printing.

Knuth’s TEX was a great leap forward in allowing for the typesetting of mathematics by
the author, without relying on the expertise of a movable type operator or tedious hand-
addition of symbols. However, the problem of using a standard keyboard to interface with
a computer assistance tool for maths is still under consideration.

Various projects have looked at this problem, and various languages have evolved to
cope. In recent years, the problem of interoperability of different forms of maths assistance
(multiple computer algebra packages, theorem proving environments, display environments)
has been addressed by the OpenMath project [Dew00]. The first results of this project
have proved very useful in terms of display and interoperability between systems: passing
messages between any two mathematics packages now involves having OpenMath compliant
interfaces for each rather than writing a purpose-built translator. Even the problem of
semantics has been addressed with the use of content dictionaries fixing the relative meanings
of symbols within a context.

The OpenMath approach presents solutions to some of the problems involved in de-
veloping digital look up tables, but not all. The question of the language in which one
stores a large table is obviously OpenMath, should one wish to develop a table accessible to
many different tools. The problem of how to pass different parts of the look up process to
tools with different capabilities is also solved by working in an OpenMath-compliant object
language.

The user-interaction with a table will almost certainly be within an ASCII text envi-
ronment, such as those deployed within the various theorem proving and CAS available
now. Indeed, it is unlikely that direct access to the table would be required, since a table is
unlikely to include any calculation of answers from the generic form of their storage. More
commonly a CAS will be the front-end presented to a user, with the table and a theorem
prover used as black box subsidiary programs. An interface for the compiler/maintainer of
the table might be useful, although it is likely to remain useful to access these functions via
a CAS also.

4.1 Semantics and Encoding

As mentioned above, the language used in the table can be represented using the OpenMath
standard. This has a number of advantages, not least that a single table might then be
accessible to a number of different applications. There still remains the problem of specifying
the semantic of the language, and restricting the language to a set of symbols.

Following the OpenMath approach, it is obvious that the table should be so constructed
as to allow the same mechanisms to be used for various application areas within mathematics.
For instance, in real analysis, both addition (+) and multiplication (x) are associative-
commutative, whereas in matrix algebra multiplication is non-commutative.

Each area might then have its own content dictionary, in which the properties of the var-
ious operators are described (such as associativity and commutativity) may be stored. The
other mechanisms of table creation, maintenance and retrieval can then use these properties
as necessary. In the DITLU, for example, aspects of this were present in the implementa-
tion. An ordering of the function symbols was defined in a separate global variable to allow
for addition/removal of function symbols from the mathematical language of the system.
The AC properties of + and x was also defined separately and their interactions depended
separately on their common distributivity axiom and their own AC properties, rather than
being hardwired into the normalisation routines.

4.2 Normalisation

Before considering how one store or retrieves table entries, it is necessary to consider normal-
isation routines. While there appear to be no fully normal forms for algebraic expressions
such as appear as integrands in [Zwi96], some useful normalisation can still be performed
on such expressions, which can improve the efficiency of matching algorithms, both in terms
of time taken to find a match or lack of a match, and also in terms of finding all possible
matches. The author is unaware of any categorisations of such a language with respect to
its normalisation or unification properties. Searches of the literature on unification (e.g.
[Kir90]) reveal that most work in this area depends on very limited sets of function, with
highly constrained properties. The intuition gained from consideration of the work that
does exist on unification in the presence of AC operators and on operators with units is
that unification is undecidable and normalisation likewise generally unachievable with such
a rich language as generic maths look up tables require. Certain restricted subject areas
might lend themselves to rigorous normalisation and matching, but certainly the language
of real analysis is too rich. As discussed in [Ada], normalising expressions for storage in
a table, and for queries before matching is attempted can greatly increase the chances of
matching queries to entries. The general problems of AC operations, units and inverses are
added to by the plethora of equivalences present in real analysis. It is possible that theorem
proving support even in the normalisation routines might be beneficial. This concept will
be discussed further in section ?7.

4.3 Equivalence

As mentioned above, one of the main problems with the lack of a normal form for the
sorts of expressions we wish to store and use as queries, is the large set of equivalences.
As mentioned in [Ada], rewriting orientations imposed on a subset of the equivalences is
useful. It is not a complete set of equalities, however, and orientation of even unconditional
equivalences fails to produce a normalising set of rules. Consider, for instance, some of the
trigonometric identities commonly used in performing geometric proofs:

sin?(t) + cos®(t) = 1 (4)
sin(u +v) = sin(u)cos(v) + cos(u) sin(v) (5)
sin(2u) = 2sin(u) cos(u) (6)

A properly developed theory of transcendental functions within a theorem proving en-
vironment should include most or all of these identities as theorems, but the use of these
theorems to match two possibly equivalent expressions requires much more than simply the
existence of the theorems. At some point, the problem becomes undecidable, as evidenced
by explorations of the “zero constant” problem [RF94]. Artificial Intelligence approaches to
such problems have also been investigated [SBB+89).

4.4 Storage, Retrieval and Matching

Given the number of entries in existing paper tables, even given that the DITLU contains
approximately ten times as much information per entry as [GR65], the volume of data itself
should not cause any real problems for information processing, provided an adequately
focussed retrieval mechanism is used. Einwohner and Fateman [EF95] were entirely correct
in that a look up table which scans every entry for a match to a query would rapidly
become a severe drain on the computing resources available. Their approach, of expression
kernel indexing, could be easily combined with the more advanced matching capabilities
such as those prototyped in MFD2 and DITLU. This would provide a swift but accurate
identification of possible matching table entries, but still leave the details of matching the
user’s requirements with the table entries to a sophisticated logical process.

As mentioned previously, it would seem probable that an interchange language such as
OpenMath would be the best format for storing entries, allowing multiple systems to easily
contribute to and access the actual database. Completely separate programs might then be
used for creating and maintaining the table compared to accessing the information contained
therein. More discussion of this point is contained in the section 5 below.

We have previously briefly discussed the approach of using logical support for the match-
ing process, either in the form of a logic program (MFD2) or a theorem prover (DITLU).
Both approaches have merit, and their use is not, in fact, exclusive (see section 5). In this
section we present a more detailed description of this concept, abstracted away from the
specifics of MFD2 or DITLU.

When attempting to match constrained parametric expressions, we are performing a
more complex task than purely syntactic unification. Each parameter has a range of possible
values which may be assigned to it. Provided the general structures of the two expressions
match then bindings between the parameters may be more complex thana — p, b = ¢q, ¢ —
r, the norm in first order unification. nor is it higher order unification that we are really
interested in, since our first order function symbols are fixed and must match. Instead, what
we are really interested in is a constraint satisfaction problem. It is, however, a constraint
satisfaction problem which is so far outside the scope of the usual approaches to CSPs as to
require new approaches. Standard CSPs usually restrict their attention to linear or quadratic
functions, occasionally adding in one different function or a higher order polynomial. Even
there, the problem quickly becomes unsatisfiable. In order to accommodate these aspects
of the matching required by a digital look up table, the following process would appear
to be suitable. In the following, parameter is taken as any name that is not a recognised
function symbol, a recognised constant symbol or the variable of integration. The variable

of integration is always assumed to be “x”.

1. Rewrite expressions to:

e replace binary minus with addition and unary minus;
e replace binary occurrences of AC operators with multiary function applications;
e replace division by multiplication and unary negation;
e perform various distributions of operators to ensure a normalisation effect.
2. Identify sub-expressions which do not contain the variable of integration, and where

they occur as arguments of multiary applications of AC operators, commute their
positions together, e.g:

sin(a + 2z + 1) + sin(z) + cos(x) + sin(a) + cos(2a) + = + a + b + 22° (7)
_)
sin(2z + a + 1) + sin(z) 4 cos(z) + = + 222 + sin(a) + cos(2a) + a+ b (8)

3. Replace these “parametric constant” sub-expressions with one new parameter each
and add equality constraints.

sin(2z + a + 1) + sin(x) + cos(z) + = + 222 + sin(a) + cos(2a) +a+b (9)
-
sin(tyx + t2) + sin(z) + cos(x) + = + t32™* + t5 (10)
t1 =2 to=a+1 t3 =2 tg =2 ts = sin(a) + cos(2a) + a + b

4. Merge “new parameters” which have identical values. Note that no processing is done
here, a simple syntactic equality is applied. This is a small heuristic to improve speed

later, but spending logical processing power on this would not be worthwhile. In our
example we “merge” t3 and 4 into t;:

sin(tyx + t2) + sin(z) + cos(x) + z + t3x™ + t5 (11)
t1 =2 ty=a+1 t3 =2 ty =2 t5 = sin(a) + cos(2a) + a+ b
-
sin(tyx + t2) + sin(z) + cos(x) + z + t12"* + t5 (12)
t =2 ta=a+1 ts = sin(a) + cos(2a) + a + b

5. Rewrite multiary applications of AC operators to group sub-expressions containing
the same top-level function symbol.

sin(tiz + t1) + sin(z) + cos(x) + z + t12" + 15 (13)
t1 =2 to=a+1 ts = sin(a) + cos(2a) + a + b
-
(t1z" + z + t5 + (cos(z) + (sin(tiz + t2) + sin(z)))) (14)
t1 =2 ta=a+2 ts = sin(a) + cos(2a) + a + b (15)

This is done in a pre-determined order, in this case putting “polynomial” expressions
(ordered according to the exponent where it is a constant value) first followed by
cos then sin etc. Precisely which ordering would give the most efficient matching
procedures requires further research.

The purpose of this rewriting is to separate out the two aspects of the problem: matching
structure and matching parameters. parameters now occur singly, with side conditions
giving their values in terms of the originally input parameters. Matching the structure of
the expression held in a table to the structure of a query is now easier, but leaves behind the
question of satisfying the sets of constraints that result. Note that these equality constraints
are added to the branching constraints” giving rise to particular answers. On the whole, a
rational approach to building a table would involve table entries which already fit the above
properties before being submitted. This will produce cleaner tables, although branching
side conditions might be made more complicated by this process.

For the sake of argument, however, consider

3 + 222 + sin (z) + cos () + = + sin <2x+ g) (16)

as a query posed to a table containing (14). The query (16) will be re-written to:
(tez' + z +t7 + (cos (z) + (sin (z) + sin (tex + t3)))) (17)
te=2 t;=3 tgzg (18)

Expressions can then be unified using the following procedure:

1. Check the top-level function symbols are the same.

2. If the top-level function symbols are the same AC operator, try to match all possible
binary combinations of arguments.

3. If the top-level function symbols are the same, try to match each pair of arguments in
the same positions.

10

4. Parameters and the variable of integration are the only “atomic” expressions. Any
attempt to match a functional expression with an atomic expression should cause a
failure, as should any attempt to match the variable of integration and a parameter.

5. Two parameters (say t; and t;) always match, and a new constraint is added (¢; = ¢;).

So, for our example, expressions (14) and (17) will provide a suitable candidate match
because the sub-expressions:

(sin(t1x + t2) + sin(z)) (sin(z) + sin(tex + ts))) (19)

have a top-level AC operator (+) and therefore each binary pairing of the arguments is
checked for a match. We are then left with a set of constraints (C), with three sources: (15),
(18) and the constraints produced in the matching process:

ty =2 to=a+2 ts = sin(a) + cos(2a) + a +b (20)
te = 2 ty = 3 tg = —
te = t1 te = t1 tr = t5 te = t1 tg = t2

Note the multiple occurrence of tg = t; caused due to separate instances of the parameters
occurring in the same positions.

In a full look up procedure the set of constraints C would be added to each set of
constraints for particular answers to the integral (along with the matching constraints for the
limits of integration). If there exist values for the original parameters (a and b) which allow
this set of equalities to be satisfied (together with any initial constraints on the parameters),
then we should consider the outcome indicated by that set of constraints. De-referencing
of all expressions back to the original parameters must also be performed before returning
answers to the user.

The complicated constraint satisfaction problems such as we encounter here cannot be
solved by existing CSP methods, which are confined to linear and quadratic constraints.
Even cylindrical algebraic decomposition is not sufficient to the task, since the constraints
are not purely algebraic (they may contain transcendental functions). Thus an approach
such as that of PRESS [SBB*89] may be fruitful. The full power of a theorem proving
environment such as HOL or PVS is obviously the correct milieu in which to develop such
automated proofs. Some early efforts in this direction may be found in [Got00].

5 Architecture: Interoperability

As mentioned previously, it is fairly obvious that the effort in producing a verified look up
table is sufficient that it is worth producing the table in a format which is accessible via a
number of systems. The recent development of OpenMath would seem an appropriate aid
to making tables interoperable for different systems. The question of the environment in
which the table might be developed is still open, however. There are a number of existing
systems which have OpenMath-compliant interfaces, and more are being developed.

Some of the pre- and post-processing facilities of CAS such as Mathematica and Maple
may be of use in developing digital look up tables. However, a fair number of the problems
of using CAS to perform definite integration lies in these very algebraic processing facilities
(see [AGLM99a, ?] for details of these problems). Given this, it might be just as well to
produce the implementation of the table as either a stand alone program or within the
environment of a theorem prover. This latter approach has the advantage that an interface
to the theorem prover such as that described in [?] between Maple and PVS, is not needed
to provide the linkage between the table and the theorem prover.

11

Whatever the implementation environment of the table, it is obvious that storing ta-
ble entries in an OpenMath-compliant language is appropriate. Indeed, the XML which
comprises OpenMath at base, is an entirely appropriate format for what is, effectively, a
database.

6 Conclusions

We have considered the utility of tables of mathematics, which we believe is still useful
despite the development of general mathematics assistants. Even if no other justification
is needed, the fact that it is much easier to verify the contents of a mathematical table as
opposed to to the algorithms in a computer algebra system, is sufficient. Given appropriately
efficient look up and search procedures, such look up can even be faster than calculation
in many cases. Certainly in the case of parametric definite integrals, the complexity of
calculating all the branches each time is much greater than that needed to consider the
branch pruning suggested for the DITLU. The continued production of paper tables, and
the attempts at digitising those tables, demonstrates the interest still in such reference tools.

We have considered many of the complications and necessary technologies for such tables
in this paper, and further work in the area is expected to continue. In particular, work on
the theorem proving support necessary to verify tables is ongoing.

References

[Ada) A. A. Adams. Theorem Proving in Support of Computer Algebra — DITLU:
A Definite Integral Table Lookup. In preparation for journal submission.

[AGLM99a] A. A. Adams, H. Gottliebsen, S. A. Linton, and U. Martin. A
Verifiable Symbolic Definite Integral Table Look-Up. Technical Re-
port CS/99/3, University of St Andrews, 1999. http://www-theory.cs.st-
and.ac.uk/publications/CAAR,/CS993.

[AGLM99b] A. A. Adams, H. Gottliebsen, S. A. Linton, and U. Martin. Automated theorem
proving in support of computer algebra: symbolic definite integration as a case
study. In [D0099], 253-260.

[AGLM99¢c] A. A. Adams, H. Gottliebsen, S. A. Linton, and U. Martin. VSDITLU: a
verifiable symbolic definite integral table look-up. In [Gan99], 112-126.

[Bey87] W. H. Beyer, editor. CRC Standard Mathematical Tables. CRC Press, 28th
edition, 1987.

[CLY6] J. Calmet and C. Limongelli, editors. Design and Implementation of Symbolic
Computation Systems, International Symposium, DISCO ’96. Springer-Verlag
LNCS 1128, 1996.

[CRC64] CRC (Chemical Rubber Company), editor. Handbook of Mathematical Tables.
CRC Press, 2nd edition, 1964.

[DGH96] S. Dalmas, M. Gaétano, and C. Huchet. A Deductive Database for Mathemat-
ical Formulas. In [CL96], 287-77

[Dew00] M. Dewar. Special Issue on OPENMATH. ACM SIGSAM Bulletin, 34(2),
June 2000.

[Do099] S. Dooley, editor. Proceedings of the 1999 International Symposium on Symbolic
and Algebraic Computation. ACM Press, 1999.

12

[EF95]

[FTBM96]

[FE]
[Gan99]
[Got00]
[GR65]
[GR96a]
[GR96b)
[GRJZOO]

[HA00]

[Huc97)

[Kir90]
[KG68]

[Lev95]
[Map]
[MTC31]

[RF94]

[SBB+89]

[Wol]
[Zwi96]

[Zwi98]

T. Einwohner and R. J. Fateman. Searching techniques for Integral Tables. In
[Lev95].

R. Fateman, T. Tokuyasu, B. P. Berman, and N. Mitchell. Optical Character
Recognition and Parsing of Typeset Mathematics. Journal of Visual Commu-
nication and Image Representation, 7(1):2-15, March 1996.

R. J. Fateman and T. Einwohner. Tilu table of integrals look up. Web Service.
http:/ /torte.cs.berkeley.edu:8010/tilu.

H. Ganzinger, editor. Automated Deduction — CADE-16. Springer-Verlag
LNAT 1632, 1999.

H. Gottliebsen. Transcendental Functions and Continuity Checking in PVS.
In [HAOQ], 198-215.

I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series and Products.
Academic Press, 1965.

I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series and Products.
CD-Rom, Academic Press, 1996.

I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series and Products.
Academic Press, 5th edition, 1996.

I. S. Gradshteyn, I. M. Ryzhik, A. Jeffrey, and D. Zwillinger. Table of Integrals,
Series and Products. Academic Press, 6th edition, 2000.

J. Harrison and M. Aagaard, editors. Theorem Proving in Higher Order Logics:
18th International Conference, TPHOLs 2000. Springer-Verlag LNAT 1869,
2000.

C. Huchet. Bas de donées pour les relations mathématiques. PhD thesis,
Université de Nice — Sophia Antipolis, 1997.

C. Kirchner, editor. Unification. Academic Press, 1990.

M. Klerer and F. Grossman. Error Rates in Tables of Indefinite Integrals.
Journal of the Industrial Mathematics Society, 18:31-62, 1968.

A. H. M. Levelt, editor. Proceedings of the 6th International Symposium on
Symbolic and Algebraic Computation, ISSAC ’95. Springer-Verlag LNCS 1004,
1995.

www.maplesoft.com.

L. M. Milne-Thomson and L. J. Comrie. Standard four-figure mathematical
tables. Macmillan, London, 1931.

Dan Richardson and John Fitch. The identity problem for elementary functions
and constants. In ISSAC ’94: Proceedings of the 1994 International Symposium
on Symbolic and Algebraic Computation: July 20-22, 1994, Oxford, England,
United Kingdom, 285—290. ACM Press, 1994.

L. Sterling, A. Bundy, L. Byrd, R. O’Keefe, and B. Silver. Solving symbolic
equations with PRESS. J. Symbolic Comput., 7(1):71-84, 1989.

www.wolfram.com.

D. Zwillinger, editor. CRC Standard Mathematical Tables and Forumlae. CRC
Press, 30th edition, 1996.

D. Zwillinger. Standard math interactive. CD-ROM, 1998.

13

